
Data Structures and Algorithms–Lecture Notes
Winter 2024

Jelle Hellings

Department of Computing and Software
Faculty of Engineering, McMaster University

1280 Main Street West, Hamilton, ON L8S 4L7, Canada

Chapter 1

Introduction

In these notes, we focus on the study of data structures and algorithms, two closely related topics. These
topics are central to computer science, as data structures and algorithms are the basic building blocks of any
correct and efficient solution for problems that can be solved by a computer program.

First, we shall briefly describe what an algorithm is.

Definition 1.1. An algorithm is a description on how to solve a specific problem that is suitable for
implementation via a program. Typical algorithms takes one-or-more input values and, based on these inputs,
produce some output via a well-defined computational procedure.

Take, for example, the ArraySum algorithm of Figure 1.1. This algorithm solves the problem of computing
the sum of an array 𝐿 of values. It does so via a standard while loop that visits each value in the array 𝐿 and
adds them to sum.

Algorithm ArraySum(𝐿) :
Input: 𝐿 is an array with 𝑁 = |𝐿 | values 𝐿[0], . . . , 𝐿[𝑁 − 1].
Result: return the value

∑
𝑣∈𝐿 𝑣 = 𝐿[0] + · · · + 𝐿[𝑁 − 1].

1: sum, 𝑖 := 0, 0.
2: while 𝑖 < 𝑁 do
3: sum, 𝑖 := sum + 𝐿[𝑖], 𝑖 + 1.
4: end while
5: return sum.

Figure 1.1: An algorithm for computing the sum of array 𝐿.

Given the ArraySum algorithm, we can ask a few basic questions about its workings:

1. Is this algorithm correct?

2. Is this algorithm efficient? Can we do better or is it optimal?

Intuitively, the ArraySum looks correct and efficient. It is even likely you wrote programs with similar
functions before and, after debugging and testing, you determined those programs work. Unfortunately,
debugging and testing does not provide guarantees : you cannot test ArraySum with every array in existence.
In these notes, we look at how we can formally argue whether an algorithm is correct and efficient.

Remark 1.2. In these notes, we do not write algorithms in a specific programming language: the choice of
programming language does not really matter. Instead, we typically use a pseudo-code notation such as the
one used in Figure 1.1. The usage of pseudo-code allows us to focus on the important bits, without having to
delve into the specifics on how to implement details in a specific programming language. In the few examples
in which we provide real source code, we shall do so in C++. Knowledge of C++ is not necessary to follow
these examples, however.

1

Algorithms can be seen as an abstraction of a function, method, or procedure in your program: in this
sense, the ArraySum algorithm of Figure 1.1 is very detailed : one can copy-and-paste the algorithm into a
program with only minor changes in notation. We only provide this level of detail in some of the algorithms
we describe.

Most interesting algorithms operate on large collections of data, e.g., ArraySum operates on an array of
values. Hence, the study of algorithms goes hand in hand with the study on how to store and manipulate
large collections of data:

Definition 1.3. A data structure is a scheme describing how to store and organize data in order to facilitate
efficient access to and modification of the data. Typically, data structures consist of an internal representation
of the data and operations to change the data (e.g., adding, removing, or updating data)

A very simple example of a data structure is an array: an array 𝐴 holds a list of 𝑁 = |𝐴| values and allows
one to easily read or update the 𝑖-th value 𝐴[𝑖], 0 ≤ 𝑖 < 𝑁 . In most programming languages, the internal
representation of array 𝐴 is a block of memory that can hold 𝑁 consecutive values. For example, a C++ array
std::array<int, 12> L is an array that can hold 12 values of type int. Here, we assume that a single int
value is a 32-bit value that requires 4 byte to store. In Figure 1.2, we illustrate how this array will be stored
in memory. Using this internal representation, we can access L[5] (the sixth value in this array) by simply
accessing the int value starting after the 20-th byte in the memory representing the array.

18 84 90 16 14 37 30 3 66 44 49 76

@100 @104 @108 @112 @116 @120 @124 @128 @132 @136 @140 @144

Figure 1.2: The possible layout of a C++ array std::array<int, 12> L in memory. Here, the notation
@100 represents the 100-th byte in memory. Hence, this array starts at memory address 100 and each int
value takes up 4 bytes. The value L[5] (the value 37 in this example) can be found at address 100+4 · 5 = 120.

Many data structures represent collections of values on which a limited set of operations is allowed.
Typically, such collections can be implemented in many ways, each with their own benefits and drawbacks.

Efficient algorithms require specific types of highly-efficient data structures. Hence, if we want to formally
argue whether an algorithm is correct or efficient, we typically also have to be able to argue the correctness
and efficiency of data structures.

In these notes, we only provide an introduction to the vast field of algorithms and data structures. In
specific, we will focus on the following main topics:

1. the analysis of elementary iterative and recursive algorithms;

2. fundamental search algorithms and their applications: linear search and binary search;

3. elementary data collections: bags, stacks, and queues;

4. elementary data structures: arrays, singly linked lists, doubly linked lists, and dynamic arrays;

5. the practice and theory of sorting: merge sort, quick sort, counting sort, and radix sort;

6. tree-based data structures: trees, Huffman trees, heaps, search trees, and tries;

7. hash-based data structures; and

8. elementary graph representations and graph algorithms.

These main topics cover many essential topics that will come in handy during day-to-day software development.
For example, these topics cover the majority of the standard data structures and algorithms provided by the
standard libraries of popular programming language.

2

Remark 1.4. The notes take a particular focus on data processing and will take inspiration from algorithms
used in the setting of databases. This is not a coincidence: many fundamental algorithms and data structures,
including those part of standard programming languages, are designed to perform data processing tasks
efficiently.

These notes are not a full replacement for a text book on algorithms and data structures: many excellent
materials exist that provide an alternative or a more in-depth view of the material presented in these notes.
We recommend students to explore these materials to aid in their current or future studies. Some examples:

1. Introduction to Algorithms, 4th edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. (2022). The MIT Press.

This book can serve as an excellent all-round reference that covers all common fundamental algorithms
and data structures, including all material from these notes.

2. Handbook of Data Structures and Applications, 2nd Edition, Dinesh P. Mehta and Sartaj
Sahni. (2018). CRC Press.

This book covers many advanced data structures (e.g., Fibonacci heaps) and can serve as an excellent
starting point when exploring more advanced data structures.

3. Algorithms, 4th edition, Robert Sedgewick and Kevin Wayne. (2011). Addison-Wesley.

This book covers most of the material from these notes with a more practical focus, e.g., by including
details on how to implement the algorithms and data structures in the Java programming language.

4. Programming: The Derivation of Algorithms, Anne Kaldewaij. (1990). Prentice-Hall.

This book provides an in-depth introduction to writing correct programs by deriving correct algorithms
alongside their formal correctness proofs.

3

Chapter 2

Preliminaries

We expect that students can independently write and debug programs. In addition, the notes will heavily
depend on a basic knowledge of calculus (e.g., elementary manipulation of arithmetic expressions involving
sums, products, logarithms, and limits) and basic experience with formal reasoning (e.g., predicate logic,
set notation, induction proofs, and proofs by contradiction). In this chapter, we will summarize this prior
knowledge and detail the notations used in these notes.

2.1 Mathematics
Elementary notation

▶ ⌈𝑥⌉ is the value 𝑥 , rounded up.

▶ ⌊𝑥⌋ is the value 𝑥 , rounded down.

▶ |𝑥 | is the absolute value of 𝑥 .

▶ [𝑎, 𝑏) is the interval from 𝑎 (inclusive) to 𝑏 (exclusive): the values 𝑎, 𝑎 + 1, ..., 𝑏 − 1.
An alternative notation that is used frequently is [𝑎, 𝑏 [.

▶ [𝑎, 𝑏] is the interval from 𝑎 (inclusive) to 𝑏 (inclusive): the values 𝑎, 𝑎 + 1, ..., 𝑏.

▶ We extend the above interval notations to lists and arrays: if 𝐿 is a list with 𝑁 values, then 𝐿[𝑎, 𝑏) is
the list with values 𝐿[𝑎], . . . , 𝐿[𝑏 − 1]. In these notes, lists typically start at zero, hence, we can write
𝐿[0, 𝑁) to denote that a list has 𝑁 values 𝐿[0], . . . , 𝐿[𝑁 − 1].

▶ N are the natural numbers (non-negative whole numbers) and Z are the integers (the whole numbers).

▶ 𝑓 : 𝐴 → 𝐵 identifies a function 𝑓 with domain 𝐴 and range (or codomain) 𝐵: the function 𝑓 maps each
input value from 𝐴 to a unique value in 𝐵. The notation 𝑓 : 𝐴 → 𝐵 : 𝑥 ↦→ 𝑓 (𝑥) not only describes the
domain and range of 𝑓 , but also how 𝑓 maps values from 𝐴 to 𝐵. For example, 𝑓 : N → Z : 𝑥 ↦→ 𝑥2

is a function that takes as input non-negative whole numbers and maps each input 𝑥 onto the whole
number 𝑥2.

A function must be defined for all values of its domain, but does not have to use all values of its range
(e.g., the above function uses only the positive values in Z). If the domain and range are clear from the
context, then we typically omit them: e.g., we typically simply write 𝑓 (𝑥) = 𝑥2.

Divisions and fractions We write 𝑎 div𝑏, with 𝑎, 𝑏 ∈ N to denote
⌊
𝑎
𝑏

⌋
. We often write 𝑎/𝑏 to denote 𝑎

𝑏
.

▶ 𝑥 = 𝑥𝑎
𝑎

for all 𝑎 ≠ 0.

▶ 𝑎

(𝑏𝑐)
= 𝑎·𝑐

𝑏
.

4

▶ 𝑎
𝑏
+ 𝑐

𝑑
= 𝑎𝑑+𝑏𝑐

𝑏𝑑
.

▶ 𝑎
𝑏
· 𝑐
𝑑
= 𝑎𝑐

𝑏𝑑
.

Powers and roots In these notes, we will only see roots 𝑏
√
𝑐 for positive 𝑐.

▶ If 𝑎𝑏 = 𝑐, then 𝑏
√
𝑐 = 𝑎.

▶
𝑏
√
𝑎𝑏 = 𝑎.

▶ 𝑛𝑎 · 𝑛𝑏 = 𝑛𝑎+𝑏 .

▶ (𝑛𝑎)𝑏 = 𝑛𝑎 ·𝑏 .

▶ 𝑛−𝑎 = 1
𝑛𝑎

.

▶ 𝑏
√
𝑛 = 𝑛

1
𝑏 .

Logarithms In these notes, we will only see logarithms log𝑎 (𝑐) for positive bases 𝑎.

▶ If 𝑎𝑏 = 𝑐, then log𝑎 (𝑐) = 𝑏.

▶ log𝑎 (𝑎) = 1 and log𝑎 (1) = 0.

▶ 𝑎log𝑎 (𝑛) = 𝑛.

▶ log𝑎 (𝑛 ·𝑚) = log𝑎 (𝑛) + log𝑎 (𝑚).

▶ log𝑎
(
𝑛
𝑚

)
= log𝑎 (𝑛) − log𝑎 (𝑚).

▶ log𝑎 (𝑛𝑏) = 𝑏 · log𝑎 (𝑛).

▶ log𝑎 (𝑛) =
log𝑏 (𝑛)
log𝑏 (𝑎) for all bases 𝑏.

Summations The summation
∑𝑏

𝑖=𝑎 𝑓 (𝑖), with 𝑓 (𝑖) an expression depending on 𝑖, represents the sum of
terms

𝑏∑︁
𝑖=𝑎

𝑓 (𝑖) = 𝑓 (𝑎) + 𝑓 (𝑎 + 1) + · · · + 𝑓 (𝑏).

For example, we can choose 𝑎 = 5, 𝑏 = 8, and 𝑓 (𝑖) = (4+𝑖) and we have
∑8

𝑖=5 (4+𝑖) = (4+5)+(4+6)+(4+7)+(4+8).

▶
∑𝑛

𝑖=𝑚 𝑐 = (𝑛 −𝑚 + 1) · 𝑐 with 𝑐 a constant (an expression that does not use 𝑖).

▶
∑𝑛

𝑖=𝑚 (𝑓 (𝑖) + 𝑔(𝑖)) =
(∑𝑛

𝑖=𝑚 𝑓 (𝑖)
)
+

(∑𝑛
𝑖=𝑚 𝑔(𝑖)

)
with 𝑓 (𝑖) and 𝑔(𝑖) expressions.

▶
∑𝑛

𝑖=𝑚 𝑐 · 𝑓 (𝑖) = 𝑐 ·
(∑𝑛

𝑖=𝑚 𝑓 (𝑖)
)

with 𝑐 a constant (an expression that does not use 𝑖) and 𝑓 (𝑖) an expression.

▶ Gauss:
𝑛∑︁
𝑖=0

𝑖 =

𝑛∑︁
𝑖=1

𝑖 =
𝑛(𝑛 + 1)

2
.

▶ Geometric series:
𝑛∑︁
𝑖=0

𝑎𝑐𝑖 = 𝑎

𝑛∑︁
𝑖=0

𝑐𝑖 = 𝑎
𝑐𝑛+1 − 1

𝑐 − 1
.

▶ Geometric series, 𝑐 < 1:
∞∑︁
𝑖=0

𝑎𝑐𝑖 =
𝑎

1 − 𝑐 .

5

▶ Special cases of the geometric series:

𝑛∑︁
𝑖=0

2𝑖 =
2𝑛+1 − 1

2 − 1
= 2𝑛+1 − 1;

𝑛∑︁
𝑖=0

(
1

2

)𝑛
=

(
1
2

)𝑛+1 − 1
1
2 − 1

=

(
1
2

)𝑛+1 − 1

− 1
2

= −2 ·
((
1

2

)𝑛+1
− 1

)
= 2 −

(
1

2

)𝑛
;

∞∑︁
𝑖=0

(
1

2

)𝑛
=

1

1 − 1
2

=
1
1
2

= 2.

Products Depending on the context, we write 𝑎𝑏, 𝑎 · 𝑏, or 𝑎 × 𝑏 to denote “𝑎 multiplied by 𝑏”. The product∏𝑏
𝑖=𝑎 𝑓 (𝑖), with 𝑓 (𝑖) an expression depending on 𝑖, represents the product of terms

𝑏∏
𝑖=𝑎

𝑓 (𝑖) = 𝑓 (𝑎) × 𝑓 (𝑎 + 1) × 𝑓 (𝑎 + 2) × · · · × 𝑓 (𝑏).

For example,
∏8

𝑖=5 (4 + 𝑖) = (4 + 5) · (4 + 6) · (4 + 7) · (4 + 8).

▶ log
(∏𝑏

𝑖=𝑎 𝑓 (𝑖)
)
=

∑𝑏
𝑖=𝑎 log(𝑓 (𝑖)) with 𝑓 (𝑖) an expression.

▶ Factorial:

𝑎! =
𝑎∏
𝑖=1

𝑖 = (𝑎) · (𝑎 − 1) · (𝑎 − 2) · · · · · 2 · 1.

Limits Knowledge of limits is not strictly required for these notes, but can help with deriving some of the
rule of thumbs introduced in Section 3.1.4. We informally say that lim𝑛→𝑎 𝑓 (𝑛) = 𝐿 if the value 𝑓 (𝑛) gets
arbitrary close to 𝐿 (we can make the distance |𝐿 − 𝑓 (𝑛) | between 𝐿 and 𝑓 (𝑛) arbitrary small by choosing 𝑛
sufficiently close to 𝑎). We informally say that lim𝑛→∞ 𝑓 (𝑛) = 𝐿 if the value 𝑓 (𝑛) gets arbitrary close to 𝐿
when we take values for 𝑛 sufficiently large. We say that lim𝑛→𝑎 𝑓 (𝑛) = ∞ if the value 𝑓 (𝑛) becomes arbitrary
large. Note that ∞ is not a number and cannot be used as such.

▶ lim𝑛→𝑎 (𝑓 (𝑛) + 𝑔(𝑛)) = (lim𝑛→𝑎 𝑓 (𝑛)) + (lim𝑛→𝑎 𝑔(𝑛)).

▶ lim𝑛→𝑎 (𝑓 (𝑛) · 𝑔(𝑛)) = (lim𝑛→𝑎 𝑓 (𝑛)) · (lim𝑛→𝑎 𝑔(𝑛)).

▶ lim𝑛→𝑎 (𝑐 · 𝑓 (𝑛)) = 𝑐 · (lim𝑛→𝑎 𝑓 (𝑛)) for every constant 𝑐.

▶ lim𝑛→𝑎

(
𝑓 (𝑛)
𝑔 (𝑛)

)
=

lim𝑛→𝑎 𝑓 (𝑛)
lim𝑛→𝑎 𝑔 (𝑛) .

▶ lim𝑛→𝑎 (𝑓 (𝑛))𝑐 = (lim𝑛→𝑎 𝑓 (𝑛))𝑐 for every constant 𝑐 > 0 if (lim𝑛→𝑎 𝑓 (𝑛)) > 0.

2.2 Elementary logic and sets
Propositional logic We have the values true and false and the logical connectives conjunction or and
(∧), disjunction or or (∨), negation or not (¬), implication (=⇒), and bi-implication or iff (⇐⇒). These
logical connectives are defined according to the following truth table:

𝐴 𝐵 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 ¬𝐴 𝐴 =⇒ 𝐵 𝐴 ⇐⇒ 𝐵

false false false false true true true
false true false true true true false
true false false true false false false
true true true true false true true

6

In spoken language, we often say that 𝐵 is a (logical) consequence of 𝐴, 𝐵 if 𝐴, or if 𝐴 then 𝐵 whenever
𝐴 =⇒ 𝐵 is true. Likewise, we say 𝐴 if and only if 𝐵 whenever 𝐴 ⇐⇒ 𝐵 is true.

Formally, we write 𝑓 ≡ 𝑔 to denote that logical expressions 𝑓 and 𝑔 are equivalent. We have:

▶ Implication: 𝐴 =⇒ 𝐵 ≡ ¬𝐴 ∨ 𝐵.

▶ Bi-implication: 𝐴 ⇐⇒ 𝐵 ≡ (𝐴 =⇒ 𝐵) ∧ (𝐵 =⇒ 𝐴).

▶ Double negation: ¬¬𝐴 ≡ 𝐴

▶ De Morgan’s laws: ¬(𝐴 ∨ 𝐵) ≡ ¬𝐴 ∧ ¬𝐵 and ¬(𝐴 ∧ 𝐵) ≡ ¬𝐴 ∨ ¬𝐵

▶ Contraposition: 𝐴 =⇒ 𝐵 ≡ ¬𝐵 =⇒ ¬𝐴.

Predicate logic We write “∀𝑥 𝑒 (𝑥)” with 𝑒 (𝑥) an expression dependent on 𝑥 , to express that the expression
𝑒 (𝑥) holds for all possible values of 𝑥 . Likewise, we write “∃𝑥 𝑒 (𝑥)” to express that there exists a value of 𝑥
for which the expression 𝑒 (𝑥) holds. Examples:

∀𝑛 (𝑛 ≥ 0 =⇒
√
𝑛2 = 𝑛);

∃𝑛 (𝑛 < 0 ∧ 𝑛2 = 25).

In the above examples, we see two common patterns: ∀𝑥 (𝐷 (𝑥) =⇒ 𝑒′ (𝑥)) and ∃𝑥 (𝐷 (𝑥) ∧ 𝑒′ (𝑥)). In both
cases, the expression 𝐷 (𝑥) determines the domain of the values of 𝑥 for which the expression 𝑒′ (𝑥) is evaluated.
One often encounters the following shorthand notation for these patterns:

∀𝑛 ≥ 0 (
√
𝑛2 = 𝑛);

∃𝑛 < 0 (𝑛2 = 25).

We have ¬∀𝑥 𝑒 (𝑥) ≡ ∃𝑥 ¬𝑒 (𝑥) and ¬∃𝑥 𝑒 (𝑥) ≡ ∀𝑥 ¬𝑒 (𝑥).

Sets A set is a collection of unique elements. Sets can have a finite number of elements (e.g., the set
{apple, banana}) or an infinite number of elements (e.g., the whole numbers Z). We use the notation

{element | conditions on element}

to specify a set in which every element satisfies the stated conditions. For example,

{𝑛 | (𝑛 ∈ N) ∧ (𝑛 is divisible by 2)}

to specify the set of all non-negative even numbers. We often abbreviate the above example as

{𝑛 ∈ N | 𝑛 is divisible by 2}.

If 𝑆 is a set and 𝑒 is an element, then 𝑒 ∈ 𝑆 holds if 𝑒 is part of set 𝑆. We write 𝑒 ∉ 𝑆 as a shorthand for
¬(𝑒 ∈ 𝑆). If 𝑆 is a set with exactly 𝑛 distinct elements, then we write |𝑆 | = 𝑛. We denote the empty set by ∅
(hence, |∅| = 0). The fundamental set operations union (∪), intersection (∩), and difference (\) are used to
form new sets by combining sets:

▶ 𝑉 ∪𝑊 . The set of all elements in either 𝑉 or 𝑊 : {𝑒 | (𝑒 ∈ 𝑉) ∨ (𝑒 ∈𝑊)}.

▶ 𝑉 ∩𝑊 . The set of all elements in both 𝑉 and 𝑊 : {𝑒 | (𝑒 ∈ 𝑉) ∧ (𝑒 ∈𝑊)}.

▶ 𝑉 \𝑊 . The set of all elements in 𝑉 , but not in 𝑊 : {𝑒 ∈ 𝑉 | 𝑒 ∉𝑊 }.

The standard operations to compare the content of sets are subset and strict subset (⊆ and ⊂), equality
and inequality (= and ≠), and superset and strict superset (⊇ and ⊃):

▶ 𝑉 ⊆𝑊 . Holds if every element in 𝑉 is also in 𝑊 : ∀𝑒 ∈ 𝑉 (𝑒 ∈𝑊).

7

▶ 𝑉 ⊇𝑊 . Holds if every element in 𝑊 is also in 𝑉 : 𝑊 ⊆ 𝑉 .

▶ 𝑉 =𝑊 . Holds if 𝑉 and 𝑊 hold the same elements: (𝑉 ⊆𝑊) ∧ (𝑊 ⊆ 𝑉).

▶ 𝑉 ≠𝑊 . Holds if 𝑉 and 𝑊 do not hold the same elements: ¬(𝑉 =𝑊).

▶ 𝑉 ⊂𝑊 . Holds if every element in 𝑉 is also in𝑊 , while some elements of𝑊 are not in 𝑉 : (𝑉 ⊆𝑊) ∧ (𝑉 ≠

𝑊).

▶ 𝑉 ⊃𝑊 . Holds if every element in 𝑊 is also in 𝑉 , while some elements of 𝑉 are not in 𝑊 : 𝑊 ⊂ 𝑉 .

2.3 Proofs
We expect students to be familiar with standard proof techniques such as counterexamples, proof by induction
and proof by contradiction. Next, we provide examples of each of these proof techniques. We expect familiarity
with these proof techniques: you should be able to write the skeleton of a proof without effort: in these notes,
your effort should be directed toward the hard parts of a proof.

In general, proving a statement is hard and requires a great deal of creativity. Well-written proofs hide
this complexity very well, however: in a well-written proof, every proof step is logical and makes sense. That
makes carefully-written proofs deceivingly easy-to-follow (we did our best to ensure this also applies to the
proofs in these notes). Reading and fully understanding easy-to-follow proofs does not train in writing your
own proofs, however! We recommend using the examples in these notes mainly as inspiration toward the
kinds of techniques you can utilize, and not as training in itself.
Remark 2.1. Proofs cannot magically create facts out of thin air! Any fact derived during a proof step
should follow from the facts known prior to that point. In practice, many proofs are for claims of the form “if
conditions, then fact of interest”. In such a proof, you can assume the facts given by conditions. Typically,
proofs also rely on relevant prior knowledge, e.g., in a proof involving numbers one often relies on standard
mathematical facts such as those presented in Section 2.1.

2.3.1 Counterexample
To prove that a claim does not hold, you only have to show a single instance in which the claim is false.

For example, to show that 2𝑛 < 100𝑛 does not hold, one can simply fill in 𝑛 = 10 for which 2𝑛 = 1024 and
100𝑛 = 1000. As 1024 < 1000 does not hold, 2𝑛 < 100𝑛 does not hold.

2.3.2 Proof by induction
A proof by induction for a claim 𝐶 (𝑛) has the following basic form:

▶ determine the base cases of claim 𝐶 (𝑛), e.g., the base cases are 𝐶 (0) and 𝐶 (1);

▶ prove the base cases, e.g., prove that the claims 𝐶 (0) and 𝐶 (1) hold;

▶ formulate an induction hypothesis based on claim 𝐶 (𝑛): an induction hypothesis is always of the form

“assume that your claim 𝐶 (𝑛) holds for all values of 𝑖 up-to-some value bounded by 𝑚”,

e.g., we assume that 𝐶 (𝑖) holds for all 𝑛, 0 ≤ 𝑛 < 𝑚.

▶ prove the inductive step: assume that the induction hypothesis holds, and use this fact to prove that
your claim holds for the next possible value, e.g., prove that 𝐶 (𝑚) holds. In this proof, you eventually
want to reduce the proof for claim 𝐶 (𝑚) to a preceding claim 𝐶 (𝑛), 𝑛 < 𝑚, such that the induction
hypothesis can be applied.

Alternatively, induction hypotheses can be of the form “we assume that 𝐶 (𝑛) holds for all 0 ≤ 𝑛 ≤ 𝑚”. If we
use such an induction hypothesis, then the inductive step needs to prove the case 𝐶 (𝑚 + 1). As errors with
additional terms “ + 1” are easily made, claims of the form 𝐶 (𝑚) are typically slightly easier to prove than
claims of the form 𝐶 (𝑚 + 1), however.

As a first example, we will prove a special case of the geometric series shown in Section 2.1 using induction:

8

Theorem 2.2. We have
∑𝑛

𝑖=0 2
𝑖 = 2𝑛+1 − 1.

Proof. We prove this theorem using induction. Our base case is 𝑛 = 0, in which case we have
∑0

𝑖=0 2
𝑖 = 20 = 1

and we have 20+1 − 1 = 1. Hence,
∑0

𝑖=0 2
𝑖 = 20+1 − 1 holds.

As the induction hypothesis, we assume that
∑𝑛

𝑖=0 2
𝑖 = 2𝑛+1 − 1 holds for all 0 ≤ 𝑛 < 𝑚.

Next, we prove that
∑𝑚

𝑖=0 2
𝑖 = 2𝑚+1 − 1 holds. We have

𝑚∑︁
𝑖=0

2𝑖 = 2𝑚 +
𝑚−1∑︁
𝑖=0

2𝑖 .

As 𝑚 − 1 < 𝑚, we can apply the induction hypothesis on
∑𝑚−1

𝑖=0 2𝑖 to obtain

𝑚∑︁
𝑖=0

2𝑖 = 2𝑚 + 2𝑚−1+1 − 1 = 2𝑚 + 2𝑚 − 1.

As 2𝑚 + 2𝑚 = 2 · 2𝑚 and 2 · 2𝑚 = 2𝑚+1, we conclude

𝑚∑︁
𝑖=0

2𝑖 = 2𝑚 + 2𝑚 − 1 = 2𝑚+1 − 1. □

As a second example, we will prove the formula of Gauss shown in Section 2.1 using induction:

Theorem 2.3. We have
∑𝑛

𝑖=0 𝑖 =
𝑛 (𝑛+1)

2 .

Proof. We prove this theorem using induction. Our base case is 𝑛 = 0, in which case we have
∑0

𝑖=0 𝑖 = 0 and
0(0+1)

2 = 0. Hence,
∑0

𝑖=0 𝑖 =
0(0+1)

2 holds.
As the induction hypothesis, we assume that

∑𝑛
𝑖=0 𝑖 =

𝑛 (𝑛+1)
2 holds for all 0 ≤ 𝑛 < 𝑚.

Next, we prove that
∑𝑚

𝑖=0 𝑖 =
𝑚 (𝑚+1)

2 holds. We have

𝑚∑︁
𝑖=0

𝑖 =𝑚 +
𝑚−1∑︁
𝑖=0

𝑖 .

As 𝑚 − 1 < 𝑚, we can apply the induction hypothesis on
∑𝑚−1

𝑖=0 𝑖 to obtain

𝑚∑︁
𝑖=0

𝑖 =𝑚 + (𝑚 − 1) (𝑚 − 1 + 1)
2

=𝑚 + 𝑚(𝑚 − 1)
2

.

As 𝑚 = 2𝑚
2 and 𝑚(𝑚 − 1) + 2𝑚 =𝑚(𝑚 + 1), we conclude

𝑚∑︁
𝑖=0

𝑖 =𝑚 + 𝑚(𝑚 − 1)
2

=
𝑚(𝑚 + 1)

2
. □

The complexity of many induction proofs hides in the choice of the induction hypothesis. Typically,
completing a proof by induction requires systematic trial and error: you make a best-effort guess 𝐺 (𝑖) for the
induction hypothesis, work out the proof using this guess 𝐺 (𝑖), and when you run into issues you refine or
replace guess 𝐺 (𝑖) by a better induction hypothesis.

Remark 2.4. On the one hand, induction is an extremely powerful tool. On the other hand, induction is a
blunt-force tool that does not always provide much insight. To illustrate this, we next provide an alternative
proof for Theorem 2.3.

9

Proof. Consider the sum
∑𝑛

𝑖=0 𝑖. We have
𝑛∑︁
𝑖=0

𝑖 = 0 + 1 + · · · + (𝑛 − 1) + 𝑛.

We can multiply each side by two to obtain

2 ·
(

𝑛∑︁
𝑖=0

𝑖

)
=

(
0 + 1 + · · · + (𝑛 − 1) + 𝑛

)
+

(
0 + 1 + · · · + (𝑛 − 1) + 𝑛

)
.

As addition is commutative, we can reorder the terms in 0 + 1 + · · · + (𝑛 − 1) +𝑛 to obtain 𝑛 + (𝑛 − 1) + · · · + 1 + 0:

2 ·
(

𝑛∑︁
𝑖=0

𝑖

)
=

(
0 + 1 + · · · + (𝑛 − 1) + 𝑛

)
+

(
𝑛 + (𝑛 − 1) + · · · + 1 + 0

)
.

We can further reorder the sum on the right by grouping the 𝑖-th term, 0 ≤ 𝑖 ≤ 𝑛, in (0 + 1 + · · · + (𝑛 − 1) + 𝑛)
with the 𝑖-th term in (𝑛 + (𝑛 − 1) + · · · + 1 + 0). We obtain

2 ·
(

𝑛∑︁
𝑖=0

𝑖

)
=

(
(0 + 𝑛) + (1 + (𝑛 − 1)) + · · · + ((𝑛 − 1) + 1) + (𝑛 + 0)

)
.

In the sum on the right, each grouped term is equivalent to 𝑛 and we have 𝑛 + 1 such groups. Hence,

2 ·
(

𝑛∑︁
𝑖=0

𝑖

)
= (𝑛 + 1) · 𝑛

and we conclude
𝑛∑︁
𝑖=0

𝑖 =
𝑛(𝑛 + 1)

2
. □

2.3.3 Proof by contradiction
A proof by contradiction for a claim 𝐶 has the following basic form.

▶ Assume that claim 𝐶 does not hold.

▶ Use this assumption to prove a contradiction: if claim 𝐶 does not hold, then we can prove that both
statement 𝑆 and statement ¬𝑆 hold (for some statement 𝑆).

▶ As we proved a contradiction, our original assumption that 𝐶 does not hold is not a valid assumption.
Hence, by contradiction, we have proven that 𝐶 holds.

As an example, we prove the following:

Theorem 2.5. The number
√
2 is not a rational number (a number that can be written as a fraction of two

integers).

Proof. We prove this theorem using contradiction. We assume
√
2 is a rational number. Hence, there exists

two integers 𝑎 and 𝑏 such that
√
2 = 𝑎/𝑏. Without loss of generality, we can assume that 𝑎 and 𝑏 do not have

a common divisor 𝑐, as otherwise we can simplify the fraction by dividing both 𝑎 and 𝑏 by their common
divisors. Hence, without loss of generality, we assume that the fraction 𝑎/𝑏 is an irreducible fraction .
Next, we square the term

√
2 = 𝑎/𝑏 and obtain 2 = 𝑎2/𝑏2. As 2 = 𝑎2/𝑏2, we have 2𝑏2 = 𝑎2 and we conclude

that 𝑎2 is even (can be divided by two). Consequently, also 𝑎 is even. Let 𝑎 = 2 · 𝑎′ for some integer 𝑎′. We
have 𝑎2 = 4𝑎′2, 2𝑏2 = 4𝑎′2, and 𝑏2 = 2𝑎′2. Now, we can conclude that 𝑏2 is even, due to which also 𝑏 is even.
As both 𝑎 and 𝑏 are even, they have a common divisor 𝑐 = 2 > 1. Hence, 𝑎/𝑏 is not an irreducible fraction,
a contradiction. By contradiction, we conclude that

√
2 cannot be a rational number. □

10

Chapter 3

The Analysis of Algorithms

In this chapter, we introduce a formal framework that will allow us to analyze algorithms and formally answer
questions about the correctness and efficiency of algorithms. We develop this framework by example while
studying a few simple yet essential algorithms.

3.1 The Contains Algorithm
The first algorithm we look at is an algorithm to check whether a value is contained in a list. Remember
from Definition 1.1 that an algorithm is a description on how to solve a specific problem. Hence, we first
define the contains problem:

Problem 3.1. Let 𝐿 be a list and 𝑣 be a value. A solution to the contains problem for 𝐿 and 𝑣 will compute
true (‘found’) if the value 𝑣 is in list 𝐿 and will compute false (‘not found’) otherwise.

Next, we write the Contains algorithm of Figure 3.1 to solve Problem 3.1.

Algorithm Contains(𝐿, 𝑣) :
1: 𝑖, 𝑟 := 0, false.
2: while 𝑖 ≠ |𝐿 | do
3: if 𝐿[𝑖] = 𝑣 then
4: 𝑟 := true.
5: 𝑖 := 𝑖 + 1.
6: else
7: 𝑖 := 𝑖 + 1.
8: end if
9: end while

10: return 𝑟 .

Figure 3.1: The Contains algorithm.

Remark 3.2. The Contains algorithm of Figure 3.1 is not very elegant: most people with programming
experience are able to write a better and more elegant version. The version we present here is easier to
analyze than more elegant versions, however. Hence, as this is our first attempt at analyzing an algorithm,
we will use our non-elegant version.

We can now ask whether the Contains algorithms is correct and efficient.

3.1.1 Correctness of Contains
To formally determine whether any algorithm is correct, we first have to determine what the algorithm is
supposed to achieve. Hence, the first step in proving the correctness of Contains is specifying what the

11

result should be. In this case, Contains should solve the contains problem of Problem 3.1. Hence, Contains
should return true if 𝑣 ∈ 𝐿 and false otherwise. Such a predicate on the result of an algorithm is typically
referred to as the post-condition of Contains. Typically, algorithms cannot operate on any arbitrary input.
For example, Contains operates on an array 𝐿 and a value 𝑣. We call such a predicate that expresses the
initial conditions the pre-conditions of Contains. In Figure 3.2, we have modified the Contains algorithm
by including the pre-condition and post-condition.

Algorithm Contains(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
1: 𝑖, 𝑟 := 0, false.
2: while 𝑖 ≠ |𝐿 | do
3: if 𝐿[𝑖] = 𝑣 then
4: 𝑟 := true.
5: 𝑖 := 𝑖 + 1.
6: else
7: 𝑖 := 𝑖 + 1.
8: end if
9: end while

10: return 𝑟 .
Post: return true if 𝑣 ∈ 𝐿 and false otherwise.

Figure 3.2: The Contains algorithm, now with pre-conditions and post-conditions.

We start our first correctness proof by specifying the goal of the proof: we assume that the pre-condition
holds before execution of Line 1, and we have to prove that execution of Contains ends such that the
post-condition holds after execution of Line 10.

As our first proof steps, we look at the statements at Line 1 and Line 10. We have assumed that the
pre-condition holds before execution of Line 1. Hence, we can derive what should hold after execution of
Line 1. Execution of Line 1 performs a simple assignment that initializes new variables 𝑖 and 𝑟 and after
execution, we know that 𝑖 = 0 and 𝑟 = false. In addition, the pre-condition still holds as we have not changed
𝐿 or 𝑣 .

We have not yet determined what holds before execution of Line 10, but we do know that after execution
of this line the post-condition should hold. Hence, we can derive what should hold before execution of Line 10.
Execution of Line 10 returns the value 𝑟 . According to the post-condition, the returned value should be
true if 𝑣 ∈ 𝐿 and false otherwise. Hence, before execution of Line 10, we must have “𝑟 = true if 𝑣 ∈ 𝐿 and
𝑟 = false otherwise”.

Our remaining proof goal is as follows: we assume that the predicate “pre-condition, 𝑖 = 0, and 𝑟 = false”
holds before execution of the while loop at Line 2, and we have to prove that the predicate “𝑟 = true if 𝑣 ∈ 𝐿
and 𝑟 = false otherwise” holds after execution of the while loop (after Line 9). We have summarized this
goal in Figure 3.3.

The while loop can be repeated many times. After each repetition of the loop of Line 2, different predicates
will hold on the state of the program. For example, the value of 𝑖 will change each repetition of the while
loop and the value of 𝑟 can change.

We note that repetition, e.g., in the form of a while loop such as at Line 2 or in the form of recursion, is
at the center of most non-trivial algorithms. If we want to prove that a predicate holds after such repetition,
then that proof needs to be able to argue over an arbitrary number of repeated statements. In our overview
of proof methods in Section 2.3, we have only seen one proof technique that seems suitable for reasoning
about repeated steps: induction. Hence, we will use induction to reason about the while loop.

We use the basic form of inductive proofs outlined in Section 2.3.2. We claim that the predicate

𝐶 (𝑖) = “0 ≤ 𝑖 ≤ |𝐿 |, 𝑣 ∈ 𝐿[0, 𝑖) implies 𝑟 = true, and 𝑣 ∉ 𝐿[0, 𝑖) implies 𝑟 = false.”

always holds when starting execution of Line 2. As we are using induction, we have to prove a base case,
formalize an induction hypothesis, and prove the inductive step:

12

Algorithm Contains(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
1: 𝑖, 𝑟 := 0, false.

/* 𝐿 is an array, 𝑣 a value, 𝑖 = 0, and 𝑟 = false */
2: while 𝑖 ≠ |𝐿 | do
3: if 𝐿[𝑖] = 𝑣 then
4: 𝑟 := true.
5: 𝑖 := 𝑖 + 1.
6: else
7: 𝑖 := 𝑖 + 1.
8: end if
9: end while

/* 𝑟 = true if 𝑣 ∈ 𝐿 and 𝑟 = false otherwise */
10: return 𝑟 .
Post: return true if 𝑣 ∈ 𝐿 and false otherwise.

Figure 3.3: The Contains algorithm, now with pre-conditions, post-conditions, and the predicates that
should hold before and after the while loop.

▶ Base case. The base case proves that our claim holds the first time we reach Line 2. The first time
we reach Line 2 is right after execution of Line 1. At that point, we have already determined that the
predicate “𝐿 is an array, 𝑣 a value, 𝑖 = 0, and 𝑟 = false” holds. We have 𝑟 = false and we note that
the array 𝐿[0, 𝑖) = 𝐿[0, 0) is empty and, hence, does not hold any values. As such, we have 0 ≤ 𝑖 ≤ |𝐿 |,
𝑣 ∉ 𝐿[0, 𝑖) and 𝑟 = false, and we conclude 𝐶 (0) holds.

▶ Induction hypothesis. After the 𝑗-th, 𝑗 < 𝑚, repetition of the while loop, the predicate 𝐶 (𝑖) holds.

▶ Inductive step. The goal of the inductive step is to prove that the while loop maintains the induction
hypothesis: if the induction hypothesis holds when we start execution of the body of the while loop at
Line 2, then after execution of Lines 2–8 (the body of the while loop) the inductive hypothesis must
hold again.

The first step of the while loop, at Line 2, checks whether 𝑖 ≠ |𝐿 |. Hence, when we start execution of
Line 3, we know that 𝑖 ≠ |𝐿 |. As we have not yet made any changes, the induction hypothesis still holds.
By the induction hypothesis, we also know 0 ≤ 𝑖 ≤ |𝐿 | and, combined with 𝑖 ≠ |𝐿 |, we have 0 ≤ 𝑖 < |𝐿 |.
Next, we check the condition 𝐿[𝑖] = 𝑣 by executing Line 3. Based on whether the condition 𝐿[𝑖] = 𝑣
holds, we distinguish two cases:

1. The condition 𝐿[𝑖] = 𝑣 holds. The algorithm first executes Line 4 and then executes Line 5. Let
𝑖old and 𝑖new be the values of 𝑖 before and after executing these two lines.
Before the algorithm executes Line 4, we know that 0 ≤ 𝑖old < |𝐿 | and we know 𝐿[𝑖old] = 𝑣 due to
Line 3. After execution of Line 5, we additionally have 𝑟 = true due to Line 4 and 𝑖new = 𝑖old + 1
due to Line 5. Using these facts, we need to prove that the induction hypothesis holds again: we
need to prove that the predicate 𝐶 (𝑖new) holds.
From 𝐿[𝑖old] = 𝑣 , we can derive 𝑣 ∈ 𝐿[0, 𝑖old + 1). As 𝑖old + 1 = 𝑖new, we can also derive 𝑣 ∈ 𝐿[0, 𝑖new).
Finally, from 0 ≤ 𝑖old < |𝐿 | and 𝑖old +1 = 𝑖new, we can derive 0 ≤ 𝑖new ≤ |𝐿 |. Hence, as 0 ≤ 𝑖new ≤ |𝐿 |,
𝑣 ∈ 𝐿[0, 𝑖new), and 𝑟 = ‘ found’, we conclude 𝐶 (𝑖new) holds

2. The condition 𝐿[𝑖] = 𝑣 does not hold . The algorithm only executes Line 7. Let 𝑖old and 𝑖new be the
values of 𝑖 before and after executing this line.
Before the algorithm executes Line 7, we know that 0 ≤ 𝑖old < |𝐿 |, 𝐿[𝑖old] ≠ 𝑣 due to Line 3, and
𝐶 (𝑖old) holds due to the induction hypothesis. We note that only the value of 𝑖 changes: due
to Line 7, we know 𝑖old + 1 = 𝑖new. Hence, from 0 ≤ 𝑖old < |𝐿 | and 𝑖old + 1 = 𝑖new, we can derive
0 ≤ 𝑖new ≤ |𝐿 |. Based on the value of 𝑟 , we distinguish two cases:

13

(a) 𝑟 = true. By 𝐶 (𝑖old), we have 𝑣 ∈ 𝐿[0, 𝑖old). As such, we have 𝑣 ∈ 𝐿[0, 𝑖old + 1) and, hence,
𝑣 ∈ 𝐿[0, 𝑖new). We conclude 𝐶 (𝑖new) holds.

(b) 𝑟 = false. By 𝐶 (𝑖old), we have 𝑣 ∉ 𝐿[0, 𝑖old). By 𝐿[𝑖old] ≠ 𝑣 , we also have 𝑣 ∉ 𝐿[0, 𝑖old + 1) and,
hence, 𝑣 ∉ 𝐿[0, 𝑖new). We conclude 𝐶 (𝑖new) holds.

By induction, we conclude that after execution of the while loop, the predicate 𝐶 (𝑖) holds. The while
loop of Line 2 only ends if 𝑖 ≠ |𝐿 | no longer holds. Hence, after execution of the while loop, the predicate
¬(𝑖 ≠ |𝐿 |) also holds. We conclude that after Line 9, we have “𝐶 (𝑖) and ¬(𝑖 ≠ |𝐿 |)”.

What remains to prove is that the predicate “𝐶 (𝑖) and ¬(𝑖 ≠ |𝐿 |)” that holds after Line 9 implies the
predicate “𝑟 = true if 𝑣 ∈ 𝐿 and 𝑟 = false otherwise” that must hold before execution of Line 10. By
¬(𝑖 ≠ |𝐿 |), we conclude 𝑖 = |𝐿 |. Hence, 𝐶 (|𝐿 |) holds and we have “𝑣 ∈ 𝐿[0, |𝐿 |) implies 𝑟 = true and 𝑣 ∉ 𝐿[0, |𝐿 |)
implies 𝑟 = false”. As 𝐿[0, |𝐿 |) = 𝐿, the predicate “𝑟 = true if 𝑣 ∈ 𝐿 and 𝑟 = false otherwise” that must hold
before execution of Line 10 holds.
★ Remark 3.3. You might wonder why the claim 𝐶 (𝑖) includes the predicate 0 ≤ 𝑖 ≤ |𝐿 |: we do not use this
predicate after the while loop. During the while loop, we do need the fact that 𝑖 is a valid array index,
however: e.g., otherwise reading 𝐿[𝑖] at Line 3 would not make sense. The guard 𝑖 ≠ |𝐿 | of the while loop at
Line 2 strictly speaking does not guarantee this: 𝑖 ≠ |𝐿 | not only holds for valid array indices, but also for
𝑖 < 0 or 𝑖 > |𝐿 |. Hence, our proof needs to be able to establish that within the while loop, the variable 𝑖 is a
valid array index. The predicate 0 ≤ 𝑖 ≤ |𝐿 | together with the guard 𝑖 ≠ |𝐿 | allow us to do so.

In correctness proofs, the induction hypothesis used to prove the correctness of a loop is typically called
an invariant. Using this terminology, we have summarized the above proof steps in Figure 3.4.

Algorithm Contains(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
1: 𝑖, 𝑟 := 0, false.

/* 𝐿 is an array, 𝑣 a value, 𝑖 = 0, and 𝑟 = false */
/* invariant: 𝐶 (𝑖) = “0 ≤ 𝑖 ≤ |𝐿 |, 𝑣 ∈ 𝐿[0, 𝑖) implies 𝑟 = true, and 𝑣 ∉ 𝐿[0, 𝑖) implies 𝑟 = false” */

2: while 𝑖 ≠ |𝐿 | do
/* 𝐶 (𝑖) (invariant) and 𝑖 ≠ |𝐿 | */

3: if 𝐿[𝑖] = 𝑣 then
/* 𝐶 (𝑖) (invariant), 𝑖 ≠ |𝐿 |, and 𝐿[𝑖] = 𝑣 */

4: 𝑟 := true.
/* 𝑖 ≠ |𝐿 |, 𝐿[𝑖] = 𝑣 , and 𝑟 = true */

5: 𝑖 := 𝑖 + 1.
/* 𝐶 (𝑖old) (invariant with 𝑖 replaced by 𝑖old), 𝑖old < |𝐿 |, 𝐿[𝑖old] = 𝑣 , 𝑟 = true, and 𝑖new = 𝑖old + 1 */

6: else
/* 𝐶 (𝑖) (invariant), 𝑖 ≠ |𝐿 |, and 𝐿[𝑖] ≠ 𝑣 */

7: 𝑖 := 𝑖 + 1.
/* 𝐶 (𝑖old) (invariant with 𝑖 replaced by 𝑖old), 𝑖old < |𝐿 |, 𝐿[𝑖old] ≠ 𝑣 , and 𝑖new = 𝑖old + 1 */

8: end if
/* invariant */

9: end while
/* 𝐶 (𝑖) (invariant) and ¬(𝑖 ≠ |𝐿 |) */
/* 𝑟 = true if 𝑣 ∈ 𝐿 and 𝑟 = false otherwise */

10: return 𝑟 .
Post: return true if 𝑣 ∈ 𝐿 and false otherwise.

Figure 3.4: The Contains algorithm, now with pre-conditions, post-conditions, invariants, and the predicates
that should hold at every step.

At this point, it is a good idea to take a step back and ask whether we are finished with our proof: did we
prove that the Contains algorithm is correct? We did certainly prove that the post-condition holds whenever
the algorithm finishes. We overlooked one small detail, however: we never proved that the algorithm will ever
finish: it is easy to make mistakes in an algorithm and write an infinite loop that never finishes.

14

Hence, as the last step of our proof, we will have to show that the while loop terminates. To prove that a
while loop terminates, we typically show that we can define a bound function on the state of the algorithm
that satisfies the following two conditions:

▶ the output of the bound function is a natural number (0, 1, 2, . . .);

▶ the output of the bound function strictly decreases after each iteration of the loop body.

If these two conditions hold on the bound function, then they imply that the loop-body can only be executed
a bounded number of times: the output of the bound function can only strictly decrease a bounded number
of times before it hits zero.

In this case, we can use the bound function |𝐿 | − 𝑖. The output of the function |𝐿 | − 𝑖 is a natural number.
The value |𝐿 | − 𝑖 strictly decreases every iteration of the while loop, as the value 𝑖 strictly increases due to
Lines 5 and 7. Finally, due to the condition 𝑖 ≠ |𝐿 | at Line 2, the while loop terminates when |𝐿 | − 𝑖 = 0.

We can finally conclude that the Contains algorithm is correct.

Theorem 3.4. The Contains algorithm of Figure 3.1 is correct and solves Problem 3.1.

★ Remark 3.5. Technically, the above correctness proof sweeps some details under the rug. Consider the
EvilContains algorithm of Figure 3.5. This algorithm has the same pre-condition and post-condition as
Contains but, clearly, does not solve the contains problem of Problem 3.1.

Algorithm EvilContains(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
1: 𝐿 := [].
2: return false.

Post: return true if 𝑣 ∈ 𝐿 and false otherwise.

Figure 3.5: The EvilContains algorithm.

Hence, technically EvilContains is a solution to the contains problem of Problem 3.1. The technicality
used by EvilContains is simple to see: EvilContains changes the input array 𝐿 and we have never
specified in Problem 3.1 that one is not allowed to change 𝐿.

We can fix Problem 3.1 by simply specifying that the problem should be solved with respect to the original
inputs 𝐿 and 𝑣 and that the algorithm is not allowed to change the inputs. With this fix, Contains still
solves the find problem, whereas EvilContains does not.

To not overburden the remainder of these notes with technicalities, we shall often simply assume that
algorithms “do not change their inputs” unless clearly required by the problem being solved.

Exercise 3.1. We wrote the Contains algorithm in such a way to simplify the proof of correctness. Our
version is not very typical, however. Indeed, an experienced programmer is much more likely to write the
ContainsFast algorithm of Figure 3.6 instead.

Algorithm ContainsFast(𝐿, 𝑣) :
1: 𝑖 := 0.
2: while 𝑖 ≠ |𝐿 | do
3: if 𝐿[𝑖] = 𝑣 then
4: return true.
5: end if
6: 𝑖 := 𝑖 + 1.
7: end while
8: return false.

Figure 3.6: The ContainsFast algorithm.

Is the ContainsFast algorithm correct? Can we reuse the correctness proof for Contains?

15

3.1.2 ★ Formalizing proof obligations
In the previous section, we provided a formal proof of the correctness of Contains. We did so by showing that
whenever the pre-condition holds, then execution of Contains results in the post-condition. The approach
taken to prove the correctness of Contains can be fully formalized by formalizing the proof obligations that
are imposed by each type of statement 𝑆 one can have in an algorithm. Next, we shall introduce such a
formalization for a minimal set of statement types.

In a correctness proof, any predicate 𝑄 that holds after execution of a statement 𝑆 stems from the predicate
𝑃 that holds right before executing 𝑆 and the operations performed by 𝑆.

Definition 3.6. A Hoare triple is a triple /* 𝑃 */ 𝑆 /* 𝑄 */ that expresses the predicates 𝑃 that hold
before execution of statements 𝑆 and the predicates 𝑄 that should hold after execution of statements 𝑆. A
Hoare triple is valid if one can prove that predicates 𝑄 holds after execution of statements 𝑆, assuming that
predicates 𝑃 held before execution of statements 𝑆.

In this terminology, proving the correctness of a program reduces to proving that the program terminates
and that the triple /* pre-condition */ program body /* post-conditions */ is a valid Hoare triple.

Next, we formalize the proof obligations for Hoare triples of the basic building blocks in an algorithm:
assignment statements, concatenations of two statements, if-statements, and while loop statements. These
four types of statements cover the main types of statements used in algorithms.
Remark 3.7. For brevity, we will only formalize these four types of statements. Throughout these notes,
we will use several alternative types of statements, e.g., the for loop statement. Close inspection of these
alternative statements will show that each of them is a shorthand for a construction that can be expressed in
terms of the four types of statements we formalize here. We leave it as an exercise to the reader to determine
the proof obligations for such shorthand notations.

The assignment. An assignment statement has the following form:

/* 𝑃 */
1: 𝑣1, . . . , 𝑣𝑛 := 𝑒1, . . . , 𝑒𝑛.

/* 𝑄 */.

Remark 3.8. In these notes, the assignment is a multi-assignment. First, all expressions 𝑒1, . . . , 𝑒𝑛 are evaluated
to their resulting values, after which these resulting values are assigned to 𝑣1, . . . , 𝑣𝑛. Hence, the assignment
𝑣,𝑤 := 𝑤, 𝑣 will properly swap the values of 𝑣 and 𝑤 .

Let 𝑣1,old, . . . , 𝑣𝑛,old and 𝑣1,new, . . . , 𝑣𝑛,new be the values of 𝑣1, . . . , 𝑣𝑛 before and after execution of the
assignment. After execution of the assignment, the following predicates hold:

1. The predicate 𝑃old obtained from 𝑃 by replacing each usage of 𝑣1, . . . , 𝑣𝑛 by 𝑣1,old, . . . , 𝑣𝑛,old.

2. The predicates 𝐴𝑖 of the form “𝑣𝑖,new = 𝑒𝑖,old”, 1 ≤ 𝑖 ≤ 𝑛, in which 𝑒𝑖,old is obtained from 𝑒𝑖 by replacing
each usage of 𝑣1, . . . , 𝑣𝑛 by 𝑣1,old, . . . , 𝑣𝑛,old.

Let 𝑄new be the predicate obtained from 𝑄 by replacing each usage of 𝑣1, . . . , 𝑣𝑛 by 𝑣1,new, . . . , 𝑣𝑛,new. To
prove that the Hoare triple is valid, we need to prove that (𝑃old ∧𝐴1 ∧ · · · ∧𝐴𝑛) =⇒ 𝑄new holds.
Example 3.9. Consider the following Hoare triple

/* 𝑃 : 𝑣 > 10,𝑤 < 20 */
1: 𝑣,𝑤 := 2 ·𝑤, 3 · 𝑣 .

/* 𝑄: 𝑤 > 30, 𝑣 < 40 */

After the assignment, the predicates

𝑃old = “𝑣old > 10,𝑤old < 20”; 𝐴1 = “𝑣new = 2 ·𝑤old”; 𝐴2 = “𝑤new = 3 · 𝑣old”,

hold. To prove that the Hoare triple is valid, we must prove that 𝑄new = “𝑤new > 30, 𝑣new < 40” also holds.
By 𝑣old > 10 and 𝑤new = 3 · 𝑣old, we conclude 𝑤new > 30. By 𝑤old < 20 and 𝑣new = 2 · 𝑤old, we conclude
𝑣new < 40. Hence, 𝑄new holds.

16

The concatenation of two statements. A concatenation has the following form:

/* 𝑃 */
1: first statement.

/* ? */
2: second statement.

/* 𝑄 */

To prove that the Hoare triple /* 𝑃 */ first statement; second statement /* 𝑄 */ is valid, one has to find a
predicate 𝑅 such that the Hoare triples /* 𝑃 */ first statement /* 𝑅 */ and /* 𝑅 */ second statement /* 𝑄 */
are both valid Hoare triples.
Example 3.10. Consider the following Hoare triple

/* 𝑃 : 𝑚,𝑛 are two integers */
1: 𝑣 :=𝑚 · 𝑛.

/* 𝑅 */
2: 𝑤 := 𝑣 · 𝑣 .

/* 𝑄: 𝑤 =𝑚2 · 𝑛2 */

To prove that the above concatenation forms a valid Hoare triple, we choose the predicate 𝑅 = “𝑣 =𝑚 · 𝑛”.
Next, one can prove that /* 𝑃 */ 𝑣 :=𝑚 · 𝑛 /* 𝑅 */ and /* 𝑅 */ 𝑤 := 𝑣 · 𝑣 /* 𝑄 */ are valid Hoare triples by
following the rules for proving an assignment.

The if-statement. An if-statement has the following form:

/* 𝑃 */
1: if condition then

/* 𝑃 and condition */
2: if body.

/* 𝑄 */
3: else

/* 𝑃 and ¬condition */
4: else body.

/* 𝑄 */
5: end if

/* 𝑄 */

To prove that the Hoare triple /* 𝑃 */ if statement /* 𝑄 */ is valid, we need to prove that

1. /* 𝑃 and condition */ if body /* 𝑄 */ is a valid Hoare triple; and

2. /* 𝑃 and ¬condition */ else body /* 𝑄 */ is a valid Hoare triple.

By doing so, we prove that /* 𝑄 */ holds after execution of the if-statement via a simple case distinction
based on the condition condition.
Example 3.11. Consider the following Hoare triple

/* 𝑃 : 𝑚,𝑛 are two integers */
1: if 𝑚 > 𝑛 then
2: 𝑣 :=𝑚.
3: else
4: 𝑣 := 𝑛.
5: end if

/* 𝑄: 𝑣 = max(𝑚,𝑛) */

To prove that this Hoare triple is valid, we must prove that

1. /* 𝑃 and 𝑚 > 𝑛 */ 𝑣 :=𝑚 /* Q */ is a valid Hoare triple. After execution of 𝑣 :=𝑚, we have 𝑣 =𝑚 and
𝑚 > 𝑛. As 𝑚 > 𝑛, 𝑚 = max(𝑚,𝑛). As 𝑣 =𝑚, we conclude 𝑣 = max(𝑚,𝑛).

17

2. /* 𝑃 and ¬(𝑚 > 𝑛) */ 𝑣 := 𝑛 /* Q */ is a valid Hoare triple. After execution of 𝑣 := 𝑛, we have 𝑣 = 𝑛
and ¬(𝑚 > 𝑛). As ¬(𝑚 > 𝑛), we have𝑚 ≤ 𝑛. Hence, 𝑛 = max(𝑚,𝑛). As 𝑣 = 𝑛, we conclude 𝑣 = max(𝑚,𝑛).

The while-statement. A while-statement has the following form:

/* 𝑃 */
/* invariant: 𝐼 , bound function: 𝑓 */

1: while guard do
/* 𝐼 and guard */

2: loop body.
/* 𝐼 */

3: end while
/* 𝐼 and ¬guard */
/* 𝑄 */

In Section 3.1.1, we already provided a detailed description of the proof obligations for a while-statement.
Here, we only provide a summary. To prove that the Hoare triple /* 𝑃 */ while statement /* 𝑄 */ is valid,
we need to prove two properties of the statement:

1. First, we need to prove that the while loop maintains an invariant 𝐼 :

(a) Initially, invariant 𝐼 must hold: we need to prove 𝑃 =⇒ 𝐼 .

(b) After execution of the loop body, the invariant 𝐼 must hold (the loop body maintains invariant 𝐼):
we need to prove that /* 𝐼 and guard */ loop body /* 𝐼 */ is a valid Hoare triple.

(c) After termination of the while loop, 𝑄 must hold: we need to prove (𝐼 ∧ ¬guard) =⇒ 𝑄.

2. Second, we need to prove that the while loop terminates by providing a valid bound function 𝑓 .

Finding an invariant typically starts with an educated guess based on the information already available,
e.g., one can try to first derive the predicates that hold right before the while loop (working top-down) and
the predicates one needs right after the while loop (working bottom-up), this based on the remainder of the
program.

Remark 3.12. In practice, finding the right invariants to make a correctness proof work is the most challenging
part of the proof. In complex programs, you often end up with an initial guess for an invariant that does not
provide all the information necessary during your proof. In such cases, you can always try to strengthen the
invariant by adding additional predicates to it.

Exercise 3.2. Prove that the ArraySum algorithm of Figure 1.1 is correct. What are the pre-conditions,
post-conditions, invariant, and bound function?

Exercise 3.3. Consider the FastPower algorithm of Figure 3.7. Why does the pre-condition introduce
terms 𝑋 and 𝑌 (that are not used in the program itself)? Is the algorithm correct? If so, prove that the
FastPower algorithm is correct. Otherwise, show how to fix the algorithm.

3.1.3 Efficiency of Contains
Next, we will look at the efficiency of the Contains algorithm. When studying the efficiency of an algorithm,
we are mainly interested in the scalability of that algorithm: how do the costs (e.g., runtime or memory
consumption) of the algorithm increase when increasing the size of the input. Next, we will focus on studying
the runtime cost of the Contains algorithm. To do so, we want to make a scientific model of the runtime of
Contains that allows us to easily make accurate predictions on the runtime.

Example 3.13. Assume that the runtime of Contains on my laptop with a list 𝐿 with 𝑁 = |𝐿 | = 1000 values
is 12 µs. We want to be able to predict the runtime of Contains when we increase the size of list 𝐿, e.g.,
what is the runtime of Contains if we double the size of list 𝐿? What if we triple the size of list 𝐿?

18

Algorithm FastPower(𝑥 , 𝑦) :
Pre: 𝑦 ∈ N, 𝑋 = 𝑥 , and 𝑌 = 𝑦.
1: 𝑟, 𝑡, 𝑛 := 1, 𝑥,𝑦.
2: while 𝑛 ≠ 0 do
3: if 𝑛 is even then
4: 𝑡, 𝑛 := 𝑡 · 𝑡, 𝑛/2.
5: else
6: 𝑟, 𝑛 := 𝑟 · 𝑡, 𝑛 − 1.
7: end if
8: end while
9: return 𝑟 .

Post: returns 𝑋𝑌 .

Figure 3.7: The FastPower algorithm that computes 𝑥𝑦 .

The Contains algorithm itself is a bad model for its runtime: this model does not enable us to make
predictions without first implementing Contains and measuring its performance. As a first attempt toward
a better model, we can try to count how many instructions are performed by a processor that is executing
the algorithm. Counting instructions is easier said than done, however: the exact count will depend on the
programming language in which we implement Contains, the compiler that turned the source code into an
executable, the settings of the compiler, the type of processor on which we will run the executable, and so on.

Next, we will perform a best-effort estimation. At Line 1, we perform two assignment operations (2
instructions). At Line 2, we first perform the comparison 𝑖 ≠ 𝑁 and then make a decision to either enter the
loop or jump to Line 10 (2 instructions). At Line 3, we first read the value 𝐿[𝑖], then perform the comparison
𝐿[𝑖] = 𝑣 , and then make a decision to either execute Line 4 or Line 7 (3 instructions). At Line 4, we perform
a single assignment (1 instruction). At Lines 5 and 7, we first compute 𝑖 + 1 and then perform an assignment
(2 instructions). Finally, at Line 10, we return a value (1 instruction). We have summarized this best-effort
estimation in Figure 3.8.

Line in Contains Number of instructions

Line 1 2
Line 2 2
Line 3 3
Line 4 1
Line 5 2
Line 7 2
Line 10 1

Figure 3.8: Counting the operations performed by the Contains algorithm.

Lines 2, Line 3, Line 4, Line 5, and Line 7 are part of the body of the while loop at Lines 2–9. Hence, each
of these lines is repeated at-most once per value in list 𝐿 (except for Line 2, which in addition is done once at
the end of the loop). As such, execution of Contains takes at-most 5 + 10 · 𝑁 instructions. We counted both
the if case of Lines 4–5 and the else case of Line 7, even though only one of these cases is executed per value
in 𝐿. A closer look reveals that we execute Lines 4–5 only for those values 𝑤 ∈ 𝐿 that are equivalent to 𝑣.
Hence, if there are 𝑚 copies of the value 𝑣 in 𝐿, then execution of Contains takes exactly

NumInstr(𝑁) = 5 + 8 ·𝑚 + 7 · (𝑁 −𝑚) = 5 + 7 · 𝑁 +𝑚 instructions,

assuming our estimate of the number of instructions for each line of the algorithm is correct.
The above model NumInstr is a bit hard to use: we need to know whether 𝑣 is in 𝐿 to use the model. For

now, we assume that value 𝑣 is not in list. Hence, we can simplify the above model to NumInstrOE(𝑁) =
5 + 7 · 𝑁 + 0 = 5 + 7 · 𝑁 instructions.

19

Next, we will use the model NumInstrOE to make predictions. Assume that the runtime of Contains
on my laptop with a list 𝐿 with |𝐿 | = 1000 values is 12 µs. Hence, NumInstrOE(1000) = 7005 instructions
take 12 µs. If we double the size of 𝐿 to |𝐿 | = 2000, then Contains performs NumInstrOE(2000) = 14 005
instructions, which would take 14005

7005 · 12µs ≈ 2 · 12µs = 24 µs. Hence, we predict that doubling the input size
will double the runtime. Likewise, we predict that increasing the size of 𝐿 by a factor 𝑥 will increase the
runtime by a factor of 𝑥 .

To verify whether our above predictions are correct, we can implement Contains and compare our
predictions to measurements on our implementation. Next, we detail a C++ implementation of Contains
together with a function to generate lists and a function to measure the performance of Contains.

#include <chrono>
#include <cstddef>
#include <iostream>
#include <vector>

bool find(const std::vector<int>& list, int value)
{

bool found = false;
std::size_t i = 0;
while (i != list.size()) {

if (list[i] == value) {
found = true;
++i;

}
else {

++i;
}

}
return found;

}

std::vector<int> generate_list(std::size_t size)
{

std::vector<int> table;
while (table.size() != size) {

table.emplace_back(table.size());
}
return table;

}

void measure_find(std::size_t size)
{

using namespace std::chrono;
auto list = generate_list(size);
auto value = size; /* not in list. */

auto start = steady_clock::now();
find(list, value);
auto end = steady_clock::now();
auto measurement = duration_cast<microseconds>(end - start);

/* Nicely print output. */
std::cout << size << ’\t’ << measurement.count() << ’\n’;

}

20

int main(int argc, char* argv[])
{

for (std::size_t size = 0; size <= 1024 * 1024 * 256; size += 4 * 1024 * 1024) {
measure_find(size);

}
}

We store this source code in a file find.cpp and we compiled the source code with the g++ compiler (gcc
version 13.1.0) using the command g++ find.cpp -std=c++23 -O3 (here, -std=c++23 specifies the version
of C++ we are using and -O3 instructs the compiler to fully optimize the code). In Figure 3.9, we visualized
the measurements taken on a laptop.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0.0

1.0

2.0

3.0

4.0

5.0

Size of list 𝐿 (|𝐿 |)

R
un

ti
m

e
(µ
s)

Figure 3.9: The measured performance of the Contains algorithm implementation.

Based on Figure 3.9, our model and, hence, our predictions seem wrong. Indeed, according to the
measurements, the runtime of Contains is 0µs independent of the size of the input. We are clearly doing
something wrong!

The only two explanations for this are either that our Contains implementation is so fast that we cannot
measure it or that our Contains implementation is not executed at all. To figure out which of the two it is,
we instructed the compiler to generate a human-readable version of the executable instructions it produces
(the assembly output). Below is the relevant part of this output:

call _ZNSt6chrono3_V212steady_clock3nowEv
movq %rax, %rsi
call _ZNSt6chrono3_V212steady_clock3nowEv

This output indicates that function std::chrono::steady_clock::now() is executed twice (to obtain the
values start and end). In between, we only move a value from one part of the processor to another (movq is
a move instruction). Hence, we essentially do not do anything and the implementation definitely does not
execute Contains.

We stumbled upon a common pitfall when measuring the performance of an algorithm in isolation: we
are not measuring the algorithm in the way it is used in practice. Hence, our measurement results might not
line up with practical performance.

In this case, the implementation is simple enough due to which the compiler (which we instructed to fully
optimize the code) can determine that some parts of the code effectively do not do anything (they do not

21

have side effects). This is the case for our usage of Contains: we never use the output of Contains and,
hence, the compiler decides we do not need Contains and removed it from our code.

Remark 3.14. Always make sure that performance measurements of your programs are performed in a way
that reflects the actual usage of your program. Otherwise, your measurement results might not line up with
the performance seen when using your program.

When comparing algorithms, special care needs to be taken to assure that the inputs of the algorithm
reflect practical workloads. Furthermore, special care needs to be taken to assure that each measurement is
performed in a fair and equal manner. For example, measuring the performance of two algorithms that both
operate on a big list 𝐿 (to figure out which one is faster) might give the second algorithm we measure an
unfair advantage: the first algorithm already read values from 𝐿 due to which these values might still be
readily available to the processor (via caches) when measuring the performance of the second algorithm.

To deal with our measurement issue, we make a small change to the source code: we simply use the result
of Contains by printing out whether the call to Contains found a value:

void measure_find(std::size_t size)
{

using namespace std::chrono;
auto list = generate_list(size);
auto value = size; /* not in list. */

auto start = steady_clock::now();
auto found = find(list, value);
auto end = steady_clock::now();
auto measurement = duration_cast<microseconds>(end - start);

/* Nicely print output. */
std::cout << size << ’\t’ << measurement.count() << ’\t’ << found << ’\n’;

}

In Figure 3.10, we visualized the measurements taken on a laptop using this updated version of the
function measure_find.

The measurements of Figure 3.10 do show some irregularities, e.g., the peak labeled 𝐴. These peaks are
likely caused by the operating system deciding to run a quick background task (e.g., checking for updates or
running a virus scanner). Practically, we could and should improve our measurements by repeating them
multiple times, removing any outlying measurements, and then presenting the average. Such an improved
statistical analysis of the measurements is outside the scope of these notes: the current measurements are
good enough to validate whether our model made accurate predictions. In Figure 3.11, we have detailed the
four data points 𝐵, 𝐶, 𝐷, and 𝐸.

As is clear from Figure 3.11, the predictive value of the model NumInstrOE is great: our measurements
essentially match the predictions exactly.

With the above experiment, we have proven the worth of the NumInstrOE model. Hence, one might be
inclined to think that the NumInstrOE model is a good model. This is not the case, however: a much simpler
model exists that makes exactly the same predictions, namely the model

ContainsRuntime(𝑁) = 𝑁 .

Even though the model ContainsRuntime is a very simple function-of-𝑁 , ContainsRuntime still models exactly
the same runtime behavior as the models NumInstr or NumInstrOE.

Remark 3.15. Besides the existence of ContainsRuntime, a simpler model that makes exactly the same
predictions as NumInstrOE, the model NumInstrOE is also fundamentally flawed in itself. With NumInstrOE,
we set out to model the exact number of instructions performed by Contains and use this number as a
predictor of the runtime. This approach is wrong in two ways:

22

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

·108

0.0

0.5

1.0

1.5

·105

𝐴

𝐵

𝐶

𝐷

𝐸

≈ 2× ≈ 3× ≈ 4×

Size of list 𝐿 (|𝐿 |)

R
un

ti
m

e
(µ
s)

Measured runtime of Contains

Figure 3.10: The measured performance of the updated Contains algorithm implementation.

Data point Size of list 𝐿 (|𝐿 |) Runtime (µs)

𝐵 58 720 256 40 559µs
𝐶 117 440 512 (2×) 82 730µs (≈ 2.04×)
𝐷 176 160 768 (3×) 122 391µs (≈ 3.02×)
𝐸 234 881 024 (4×) 162 682µs (≈ 4.01×)

Figure 3.11: Details on four data points taken from Figure 3.10.

1. First, the exact number of instructions used to execute Contains depends on many system-specific
details. For example, our estimate of two instructions for Line 5 (the statement “𝑖 := 𝑖 + 1” is wrong on
most types of processors, as most processors have a dedicated increment-by-one instruction.

2. Second, we cannot simply translate an exact count of the number of instructions into a running time.
In practice, not all instructions are equally expensive: some instructions can take orders-of-magnitudes
longer than others to execute.

For example, it is very likely that an implementation of Contains will keep the variables 𝑖, 𝑟 , and 𝑣 in
processor registers (small pieces of extremely fast memory in the processor itself) and any instructions
that only operate on these variables will be exceptionally fast. As a consequence, the one-instruction
difference between either executing Lines 4–5 or executing Line 7 is irrelevant.

At the same time, the instruction 𝐿[𝑖] on Line 3 of Contains reads the 𝑖-th value from array 𝐿. As
array 𝐿 can have many millions or even billions of values, one cannot store this array directly in the
processor. Hence, the instruction 𝐿[𝑖] needs to read a value from main memory. On the laptop we used
to measure the performance of Contains, reading a 4 byte integer from main memory takes roughly
11 ns, whereas the fastest instructions (e.g., those on Lines 4, 5, and 7) finish in less than 0.3 ns. Hence,
our model should mainly be concerned with how often we execute the instruction 𝐿[𝑖].

Furthermore, the models NumInstr and NumInstrOE take into account the cost of Lines 1 and 10. These lines
are only executed once and perform a handful of instructions. When Contains operates on large lists, the
cost of these lines is irrelevant and only overcomplicates the model.

Taking Remark 3.15 into account, it is very reasonable to remove all unnecessary details from models

23

NumInstr and NumInstrOE, after which we end up with our preferred model ContainsRuntime. We conclude:

Proposition 3.16. The runtime complexity of the Contains algorithm of Figure 3.1 on lists 𝐿 of size
𝑁 = |𝐿 | is modelled by ContainsRuntime(𝑁) = 𝑁 .

Up till now, we have only considered the runtime complexity of Contains. We can also model the other
costs of algorithms, e.g., the memory usage by the algorithm as a function of the size of the input. The
Contains algorithm only uses a constant amount of memory besides the memory holding the input and
output, namely memory to hold the variable 𝑖. We conclude:

Proposition 3.17. The memory complexity of the Contains algorithm of Figure 3.1 on lists 𝐿 of size
𝑁 = |𝐿 | is modelled by ContainsMemory(𝑁) = 1.

Exercise 3.4. Make a model of the number of instructions executed by the ArraySum algorithm of
Figure 1.1. Next, make a model of the runtime and memory usage of ArraySum.

3.1.4 Formalization of complexity
In the previous section, we constructed a model for the runtime of the Contains algorithm: we determined
that the runtime of Contains is modelled by the model ContainsRuntime(𝑁) = 𝑁 with 𝑁 = |𝐿 | the size of
the list 𝐿 used as input of Contains. The ContainsRuntime model allowed us to make accurate predictions
about the runtime of Contains, e.g., doubling the size of the input of Contains doubles the runtime. We
have also seen that other models exist for Contains that model the same behavior (they allow us to make
exactly the same predictions about the runtime of Contains), e.g., the models NumInstr and NumInstrOE.

Now consider we have an another algorithm AltC that also solves the Contains problem of Problem 3.1
and that the runtime of AltC is modelled by some model AltCRuntime. It is only natural to compare the
runtime of Contains and AltC, e.g., to determine which algorithm is more efficient.

As we argued at the start of Section 3.1.3, we are mainly interested in scalability of algorithms: on small
inputs, many algorithms are practically fast enough, but it takes effort to assure algorithms remain fast on
huge inputs. We can use the models ContainsRuntime and AltCRuntime to predict how Contains and
AltC will behave with larger inputs.

Example 3.18. We want to compare the algorithms Contains and AltC. We have ContainsRuntime(𝑁) =
𝑁 and we assume that the runtime of Contains on a list 𝐿 with 𝑁 = |𝐿 | = 1000 values is 12 µs. For this
example, consider AltCRuntime(𝑁) = 𝑁 2 and the runtime of AltC on a list 𝐿 with 𝑁 = |𝐿 | = 1000 values is
3 µs. Hence, AltC is significantly faster than Contains by a factor of 12µs

3µs = 4×.
Using the above information, we can predict the runtime of both algorithms when we double the input to

a list with |𝐿 | = 2000 values. As determined in Section 3.1.3, we predict a runtime of 24µs for Contains. To
predict the runtime of AltC, we note that AltCRuntime(2000) = 20002 = 22 · 10002 = 4 · AltCRuntime(1000).
Hence, for AltC, we predict a runtime of 12 µs. As one can see, AltC is still faster than Contains, but now
only by a factor of 24µs

12µs = 2×. In Figure 3.12, we have visualized the predicted runtimes for both Contains
and AltC.

Even though AltC is faster than Contains on small lists, we predict that Contains will quickly outper-
form AltC when we increase the size of the input. This is easily explained by the models ContainsRuntime
and AltCRuntime. The AltCRuntime model predicts a faster growth of the runtime than the ContainsRuntime
model: e.g., doubling the input size only doubles the runtime of Contains, while it quadruples the runtime
of AltC.

Consider two models 𝑓 (𝑁) and 𝑔(𝑁) representing the runtime of algorithms AlgoF and AlgoG as a
function of the size of the input 𝑁 . In a similar way as illustrated in Example 3.18, we can compare AlgoF
and AlgoG to determine which algorithm is more efficient (faster, has a lower runtime) on large inputs. As
seen in Example 3.18, the conclusion of such a comparison is determined by the order of growth of 𝑓 (𝑁) and
𝑔(𝑁): the algorithm whose model predicts a slower growth of the runtime will be the faster algorithm on
large inputs.

Definition 3.19. Consider the functions 𝑓 and 𝑔 of 𝑛. We informally say the following:

24

0.2 0.4 0.6 0.8 1.0

·104

0

50

100

150

200

250

300

Size of list 𝐿 (|𝐿 |)

R
un

ti
m

e
(µ
s)

Contains
AltC

0.0 0.2 0.4 0.6 0.8 1.0

·106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

·106

Size of list 𝐿 (|𝐿 |)

Contains
AltC

Input size 1000 2000 (2×) 4000 (4×) 8000 (8×) 1 000 000 (1000×)

Runtime Contains 12 µs 24 µs (2×) 48 µs (4×) 96 µs (8×) 12ms (1000×)
Runtime AltC 3µs 12 µs (4×) 48 µs (16×) 192 µs (64×) 3000ms (1 000 000×)

Speed up 4× 2× 1× 0.5× 0.004×

Figure 3.12: A comparison of the predicted runtime of algorithms Contains and AltC as a function of the size
of the input using the known runtimes for lists with 1000 values and using the models ContainsRuntime(𝑁) =
𝑁 and AltCRuntime(𝑁) = 𝑁 2. Top, a visualization for a range of input sizes and bottom, the details for a
few input sizes.

1. The order of growth of function 𝑓 is upper bounded by 𝑔, denoted by 𝑓 (𝑛) = O(𝑔(𝑛)), if 𝑓 “scales better”
than 𝑔(𝑛): any increase in the runtime predicted by 𝑓 as a consequence of increasing the input size 𝑛 is
at-most the increase predicted by 𝑔(𝑛).
For example, due to Example 3.18, we know that the order of growth for the model ContainsRuntime(𝑁) =
𝑁 is upper bounded by the model AltCRuntime(𝑁) = 𝑁 2.

2. The order of growth of function 𝑓 is lower bounded by 𝑔, denoted by 𝑓 (𝑛) = Ω(𝑔(𝑛)), if 𝑓 “scales worse”
than 𝑔(𝑛): any increase in the runtime predicted by 𝑓 as a consequence of increasing the input size 𝑛 is
at-least the increase predicted by 𝑔(𝑛).
For example, due to Example 3.18, we know that the order of growth for the model AltCRuntime(𝑁) = 𝑁 2

is lower bounded by the model ContainsRuntime(𝑁) = 𝑁 .

3. The order of growth of function 𝑓 is equivalent to 𝑔, denoted by 𝑓 (𝑛) = Θ(𝑔(𝑛)), if 𝑓 “scales the same”
as 𝑔(𝑛): any increase in the runtime predicted by 𝑓 as a consequence of increasing the input size 𝑛 is
equivalent to the increase predicted by 𝑔(𝑛). In this case, we also say that 𝑓 (𝑛) is strictly bounded by
𝑔(𝑛).
For example, as argued in Section 3.18, we know that the order of growth for the model NumInstrOE(𝑁) =
3 + 7 · 𝑁 is equivalent to the order of growth of models ContainsRuntime(𝑁) = 𝑁 .

With the terminology of Definition 3.21, we can rephrase Proposition 3.17:

Theorem 3.20. The runtime complexity of the Contains algorithm on lists of length 𝑁 is Θ(𝑁). The
memory complexity of the Contains algorithm on lists of length 𝑁 is Θ(1).

25

−1 0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

𝑛 ≥ 3: 3 + 7 · 𝑛 ≤ 8 · 𝑛

𝑛 ≥ 0: 1 · 𝑛 ≤ 3 + 7 · 𝑛

n

f(
n)

3 + 7 · 𝑛
8 · 𝑛
1 · 𝑛

Figure 3.13: Visualization of the proof for 3 + 7 · 𝑛 = Θ(𝑛). We refer to Example 3.22 for details.

Definition 3.19 is rather informal, making it hard to apply the definition in practice. Next, we formalize
the notions introduced in Definition 3.19:

Definition 3.21. Consider the functions 𝑓 and 𝑔 of 𝑛. We have

1. 𝑓 (𝑛) = O(𝑔(𝑛)) if there exists constants 𝑛0, 𝑐 > 0 such that, for all 𝑛 ≥ 𝑛0, 0 ≤ 𝑓 (𝑛) ≤ 𝑐 · 𝑔(𝑛);

2. 𝑓 (𝑛) = Ω(𝑔(𝑛)) if there exists constants 𝑛0, 𝑐 > 0 such that, for all 𝑛 ≥ 𝑛0, 0 ≤ 𝑐 · 𝑔(𝑛) ≤ 𝑓 (𝑛);

3. 𝑓 (𝑛) = Θ(𝑔(𝑛)) if there exists constants 𝑛0, 𝑐lb, 𝑐ub > 0 such that, for all 𝑛 ≥ 𝑛0, 0 ≤ 𝑐lb · 𝑔(𝑛) ≤ 𝑓 (𝑛) ≤
𝑐ub · 𝑔(𝑛).

Example 3.22. Next, we shall show that 3+7 ·𝑛 = Θ(𝑛) by showing 3+7 ·𝑛 = O(𝑛) and by showing 3+7 ·𝑛 = Ω(𝑛).

▶ 3 + 7 · 𝑛 = O(𝑛). Choose 𝑛0 = 3 and 𝑐 = 8. The statement

for all 𝑛 ≥ 3, 0 ≤ 3 + 7 · 𝑛 ≤ 8 · 𝑛

is true, completing the proof.

▶ 3 + 7 · 𝑛 = Ω(𝑛). Choose 𝑛0 = 0 and 𝑐 = 1. The statement

for all 𝑛 ≥ 0, 0 ≤ 1 · 𝑛 ≤ 3 + 7 · 𝑛

is true, completing the proof.

We have visualized the details of this proof in Figure 3.13.

Remark 3.23. It is always a good idea to reflect on formal definitions to make sure we understand the
definition and we understand what each part of the definition represents. We do so for the definition of
𝑓 (𝑁) = O(𝑔(𝑁)). According to Definition 3.21, we have

“ 𝑓 (𝑛) = O(𝑔(𝑛)) if there exists constants 𝑛0, 𝑐 > 0 such that, for all 𝑛 ≥ 𝑛0, 0 ≤ 𝑓 (𝑛) ≤ 𝑐 · 𝑔(𝑛)”.

This definition introduces constants 𝑛0 and 𝑐. What is the conceptual meaning of these constants?
Assume 𝑓 and 𝑔 are models for the runtime of algorithms AlgoF and AlgoG respectively. In this setting,

we use 𝑛 to represent the size of the input. Hence, the constant 𝑛0 restricts the input sizes we consider in
our comparison of the functions 𝑓 and 𝑔: we are looking at the behavior of 𝑓 and 𝑔 with respect to large

26

inputs, as we do not look at small inputs (those smaller than 𝑛0). To understand why the definition does
this, it is important to remember that we are mainly interested in the scalability of AlgoF and AlgoG.
As illustrated in Example 3.18 and Figure 3.12, models with a slow growth predict better scalability than
models with a high growth: ContainsRuntime predicted better scalability than AltCRuntime. Models
with a slow growth do not necessary predict lower runtimes, however: they only do so if we make the input
sufficiently large.

The constant 𝑛0 also simplifies the definition of a model: some functions behave weird for small inputs,
e.g., 1

𝑛
and log2 (𝑛) are not defined for 𝑛 := 0. We do not have to consider such inputs by choosing 𝑛0 > 0.

The role of constant 𝑐 has already been illustrated in Section 3.1.3, where we saw that the models
ContainsRuntime(𝑁) = 𝑁 and NumInstrOE(𝑁) = 3 + 7 · 𝑁 made exactly the same predictions: the constant 𝑐
allows us to compare models that are different due to non-essential factors (e.g., a different way in which the
number of instructions are accounted for).

From straightforward application of Definition 3.21, we can derive the following technical results:

Lemma 3.24. We have 𝑓 (𝑛) = O(𝑔(𝑛)) if and only if 𝑔(𝑛) = Ω(𝑓 (𝑛)) and we have 𝑓 (𝑛) = Θ(𝑔(𝑛)) if and only
if 𝑓 (𝑛) = O(𝑔(𝑛)) and 𝑓 (𝑛) = Ω(𝑔(𝑛)).

Determining how the order of growth of 𝑓 (𝑛) relates to the order of growth of 𝑔(𝑛) is, fundamentally, a
question that can be answered by mathematics. For example:

Theorem 3.25. Let 𝑓 and 𝑔 be functions of 𝑛 with non-negative ranges. If

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) is defined and is

∞ then 𝑓 (𝑛) = Ω(𝑔(𝑛));
𝑐, with 𝑐 > 0 a constant then 𝑓 (𝑛) = Θ(𝑔(𝑛));
0 then 𝑓 (𝑛) = O(𝑔(𝑛)).

Using Theorem 3.25, we derive key results to help us compare the order of growth of common functions.

Example 3.26. We have lim𝑛→∞
5·𝑛
𝑛

= 5. Hence, 5 · 𝑛 = Θ(𝑛) More generally, for every constant 𝑐 > 0, we have

lim
𝑛→∞

𝑐 · 𝑓 (𝑛)
𝑓 (𝑛) = 𝑐 ·

(
lim
𝑛→∞

𝑓 (𝑛)
𝑓 (𝑛)

)
= 𝑐. Hence, 𝑐 · 𝑓 (𝑛) = Θ(𝑓 (𝑛)) .

As log𝑎 (𝑛) =
log𝑏 (𝑛)
log𝑏 (𝑎) =

1
log𝑏 (𝑎) · log𝑏 (𝑛) and 1

log𝑏 (𝑎) is a constant, we have log𝑎 (𝑛) = Θ(log𝑏 (𝑛)) .

We have lim𝑛→∞
𝑛2

𝑛
= lim𝑛→∞ 𝑛 = ∞ and we have lim𝑛→∞

𝑛
𝑛2 = 0. Hence, 𝑛2 = Ω(𝑛) and 𝑛 = O(𝑛2). More

generally, for every constant 𝑐, 𝑑 > 0 we have

lim
𝑛→∞

𝑛𝑐

𝑛𝑐+𝑑
= lim

𝑛→∞
1

𝑛𝑑
= 0. Hence, 𝑛𝑐 = O(𝑛𝑐+𝑑) .

We have lim𝑛→∞
log2 (𝑛)100√

𝑛
= 0. Hence, log2 (𝑛)100 = O(

√
𝑛). More generally, for any constants 𝑐 > 0, 𝑑 > 0,

we have
lim
𝑛→∞

log2 (𝑛)𝑐

𝑛𝑑
= 0. Hence, log2 (𝑛)𝑐 = O(𝑛𝑑) .

We have lim𝑛→∞
𝑛100

1.1𝑛 = 0. Hence, 𝑛100 = O(1.1𝑛). More generally, for any constants 𝑐 > 0, 𝑑 > 1, we have

lim
𝑛→∞

𝑛𝑐

𝑑𝑛
= 0. Hence, 𝑛𝑐 = O(𝑑𝑛) .

We have lim𝑛→∞
2𝑛

3𝑛 = 0 and lim𝑛→∞
2𝑛/2

2𝑛 = 0. Hence, 2𝑛 = O(3𝑛) and 2𝑛/2 = O(2𝑛). More generally, for
any constants 𝑐 ≥ 𝑑 ≥ 1, 𝑢 ≥ 𝑣 ≥ 1, we have

lim
𝑛→∞

𝑑𝑛/𝑢

𝑐𝑛/𝑣
= 0. Hence, 𝑑𝑛/𝑢 = O(𝑐𝑛/𝑣) .

27

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

n

f(
n)

log2 (𝑛)√
𝑛

𝑛

𝑛 log2 (𝑛)
𝑛2

𝑛2 log2 (𝑛)
𝑛3

2𝑛

Figure 3.14: Typical complexity functions of 𝑛 that we could encounter in these notes. Although not clear
from this figure, 2𝑛 will eventually overtake 𝑛3 (namely for 𝑛 = 10, we have 210 = 1024 and 𝑛3 = 1000).

Finally, we have lim𝑛→∞
3·𝑛2+7·𝑛

𝑛2 = 3 · (lim𝑛→∞
𝑛2

𝑛2) + 7(lim𝑛→∞
𝑛
𝑛2) = 3 + 0 = 3. Hence, 3 · 𝑛2 + 7 · 𝑛 = Θ(𝑛2).

More generally, consider a polynomial of the form 𝑐1 ·𝑛𝑑1 + · · · +𝑐𝑚 ·𝑛𝑑𝑚 with constants 𝑐1, . . . , 𝑐𝑚, 𝑑1, . . . , 𝑑𝑚 > 0.
We have

lim
𝑛→∞

𝑐1 · 𝑛𝑑1 + · · · + 𝑐𝑚 · 𝑛𝑑𝑚
𝑛𝑑𝑖

= 𝑐𝑖 with 𝑑𝑖 = max(𝑑1, . . . , 𝑑𝑚). Hence, 𝑐1 · 𝑛𝑑1 + · · · + 𝑐𝑚 · 𝑛𝑑𝑚 = Θ(𝑛𝑑𝑖) .

Assume 𝑓 (𝑛) = O(𝑔(𝑛)). We also have

lim
𝑛→∞

𝑓 (𝑛) + 𝑔(𝑛)
𝑔(𝑛) =

(
lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛)

)
+

(
lim
𝑛→∞

𝑔(𝑛)
𝑔(𝑛)

)
= 0 + 1 = 1. Hence, 𝑓 (𝑛) + 𝑔(𝑛) = Θ(𝑔(𝑛)) .

Similarly, if 𝑓 (𝑛) = O(𝑔(𝑛)), then we have

lim
𝑛→∞

ℎ(𝑛) · 𝑓 (𝑛)
ℎ(𝑛) · 𝑔(𝑛) =

(
lim
𝑛→∞

ℎ(𝑛)
ℎ(𝑛)

)
·
(
lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛)

)
=

(
lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛)

)
= 0. Hence, ℎ(𝑛) · 𝑓 (𝑛) = O(ℎ(𝑛) · 𝑔(𝑛)) .

For example, 𝑛2 log2 (𝑛) = O(𝑛3) because log2 (𝑛) = O(𝑛).
In these notes, we will often apply the rules of thumb highlighted in Example 3.26 without further

explanation. We do not require further knowledge of limits in these notes. Sufficient familiarity with limits
can help with deriving rules of thumb for such as the one introduced in Example 3.26 for functions we did
not highlight in the example, however.

Typical functions used to model runtime complexity use logarithms, polynomials, exponential functions,
and combinations of these. The rules of thumbs of Example 3.26 are sufficient to determine the relationship
between the order of growth of such functions. In Figure 3.14, we have sketched the typical complexity
functions that we will frequently encounter in these notes.

Exercise 3.5. What is the runtime complexity of the ArraySum algorithm of Figure 1.1?

Exercise 3.6. Order the following functions of 𝑛 on increasing growth rates and group functions with
identical growth rates. Explain your answers.

ln(𝑛3) 𝑛 𝑛2 log2 (𝑛) 4log2 (𝑛) log2 (
√
𝑛) 2𝑛 log2 (𝑛)

𝑛 + log2 (𝑛4) 2log2 (16) 𝑛−1 16 𝑛log2 (4) log2 (𝑛𝑛)

28

3.2 The Linear Search Algorithm
In Section 3.1, we introduced the Contains algorithm, proved it to be correct, and showed that it had a
runtime complexity of Θ(|𝐿 |). Given these facts, we might be inclined to believe that Contains is a good
algorithm. From an algorithm design perspective, this is not entirely true: the contains problem (Problem 3.1)
is too specialized due to which we cannot use Contains for anything besides solving the contains problem.

As a more-flexible alternative to the contains problem, we next consider the search problem:

Problem 3.27. Let 𝐿 be a list, 𝑣 be a value, and 𝑜, 0 ≤ 𝑜 < |𝐿 |, be an offset in list 𝐿. A solution to the
search problem for 𝐿, 𝑣, and 𝑜 will compute the first offset 𝑟 , 𝑜 ≤ 𝑟 < |𝐿 |, with 𝐿[𝑟] = 𝑣 or, if no such offset
exists, 𝑟 = |𝐿 |.

The search problem can be solved with the LinearSearch algorithm of Figure 3.15.

Algorithm LinearSearch(𝐿, 𝑣 , 𝑜) :
Pre: 𝐿 is an array, 𝑣 a value, 0 ≤ 𝑜 ≤ |𝐿 |.
1: 𝑟 := 𝑜.

/* invariant: “𝑜 ≤ 𝑟 ≤ |𝐿 | and 𝑣 ∉ 𝐿[𝑜, 𝑟)”, bound function: |𝐿 | − 𝑟 */
2: while 𝑟 ≠ |𝐿 | and also 𝐿[𝑟] ≠ 𝑣 do
3: 𝑟 := 𝑟 + 1.
4: end while
5: return 𝑟 .

Post: return the first offset 𝑟 , 𝑜 ≤ 𝑟 < |𝐿 |, with 𝐿[𝑟] = 𝑣 or, if no such offset exists, 𝑟 = |𝐿 |.

Figure 3.15: The LinearSearch algorithm.

The LinearSearch algorithm is not too different from a simplified version of the Contains algorithm of
Figure 3.1: the biggest change being that we can now start our inspection of list 𝐿 at any offset 𝑜 (instead of
always starting at the first value 𝐿[0]). We leave it as an exercise to the reader to prove the following:

Theorem 3.28. The LinearSearch algorithm of Figure 3.15 is correct and solves Problem 3.27. The
complexity of the LinearSearch algorithm is O(|𝐿 |).

The LinearSearch algorithm is flexible: we can easily use it as a building block in other algorithms. For
example, we can solve the contains problem with the single-line algorithm LSContains of Figure 3.16, top,
that only returns the value LinearSearch(𝐿, 𝑣, 0) ≠ |𝐿 |. Likewise, we can use the LinearSearch algorithm
to count the number of occurrences of a value 𝑣 in a list 𝐿, e.g., the Count algorithm that can be found in
Figure 3.16, bottom.

We now have two algorithms for solving the contains problem of Problem 3.1: the Contains algorithm
studied in Section 3.1 and the LSContains algorithm of Figure 3.16. We already know that the runtime
complexity of Contains is Θ(|𝐿 |). Next, we will look at the complexity of LSContains. Obviously, the
runtime complexity of LSContains is determined entirely by the runtime complexity of LinearSearch.

According to Theorem 3.28, the runtime complexity of LinearSearch is O(|𝐿 |). This upper bound is a
simplification of reality, however: for many inputs of LinearSearch, the runtime complexity will be low.
Hence, it makes sense to refine our analysis of LinearSearch. In a first attempt to do so, we will look at
the best case, average case, and worst case complexity of LinearSearch.

Definition 3.29. Let Algo be an algorithm.

1. We say that the best case runtime complexity of Algo, as a function of the input size 𝑛, is modelled
by Θ(𝑓 (𝑛)) if, for every 𝑛, there are inputs of Algo such that the runtime complexity of Algo with
respect to only these inputs is Θ(𝑓 (𝑛)).

2. We say that the worst case runtime complexity of Algo, as a function of the input size 𝑛, is Θ(𝑓 (𝑛)) if,
for every 𝑛, there are inputs of Algo such that the runtime complexity of Algo with respect to only
these inputs is Θ(𝑓 (𝑛)).

29

Algorithm LSContains(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
1: return LinearSearch(𝐿, 𝑣, 0) ≠ |𝐿 |.

Post: return true if 𝑣 ∈ 𝐿 and false otherwise.

Algorithm Count(𝐿, 𝑣) :
Pre: 𝐿 is an array, 𝑣 a value.
2: 𝑐, 𝑖 := 0, 0.

/* invariant: 𝑐 is the count of 𝑣 in 𝐿[0, 𝑖), bound function: |𝐿 | − 𝑖 */
3: while true do
4: 𝑖 := LinearSearch(𝐿, 𝑣, 𝑖).
5: if 𝑖 = |𝐾 | then
6: return 𝑐.
7: else
8: 𝑐, 𝑖 := 𝑐 + 1, 𝑖 + 1.
9: end if

10: end while
Post: return the number of copies of 𝑣 in 𝐿.

Figure 3.16: The LSContains and Count algorithms that are both written in terms of the LinearSearch
algorithm of Figure 3.15.

3. We say that the average case runtime complexity of Algo, as a function of the input size 𝑛, is modelled
by Θ(𝑓 (𝑛)) if the runtime complexity of Algo is Θ(𝑓 (𝑛)) when averaged out over all possible inputs of
size 𝑛 of Algo.

Besides talking about strict bounds Θ(𝑓 (𝑛)), we can also talk about best case, worst case, and average case
lower bounds and about best case, worst case, and average case upper bounds.

For every size |𝐿 | of list 𝐿, the best case of LinearSearch is searching for a value 𝑣 that is at the offset 𝑜
of 𝐿 (searching for the value 𝑣 := 𝐿[𝑜]). In this case, the LinearSearch algorithm will always perform only
a handful of instructions. Hence, the best case runtime complexity of LinearSearch is Θ(1).

For every size |𝐿 | of list 𝐿, the worst case of LinearSearch is searching for a value 𝑣 that is not in 𝐿

starting at offset 𝑜 = 0. In this case, the LinearSearch algorithm will inspect every possible value in 𝐿.
Hence, the worst case runtime complexity of LinearSearch is Θ(|𝐿 |).
Remark 3.30. For many algorithms, the best case, worst case, and average case complexity are identical, e.g.,
the Contains algorithm of Figure 3.1. To emphasize that these three cases have the same complexity, we
sometimes refer to the all case complexity in these notes.

For other algorithms, finding the best case or worst case complexity might be easy, while finding the
average case complexity is often hard. For example, there is no clear way to average out the unbounded
number of inputs for which LinearSearch shows the best case behavior with the unbounded number of
inputs for which LinearSearch shows the worst case behavior.

The best case and worst case runtime complexity of LinearSearch are rather different. This is indicative
of a limitation of our runtime model: we are modeling the runtime of LinearSearch only in terms of the
size of list 𝐿. As we have seen, the size of list 𝐿 not always has influence on the runtime of LinearSearch.
Hence, we can do better by modelling the runtime of LinearSearch in terms of other variables: if we
are looking for the 𝑖-th value in list 𝐿[𝑜, |𝐿 |) , then the all case complexity of LinearSearch will be Θ(𝑖).
Unfortunately, we cannot express 𝑖 solely in terms of 𝐿 (or in terms of the other inputs 𝑣 and 𝑜). We can
express 𝑖 in terms of the input 𝑜 and output 𝑟 := LinearSearch(𝐿, 𝑣, 𝑜), however: an exact model for the
complexity of LinearSearch is Θ(𝑟 − 𝑜).
Remark 3.31. Exact models of the runtime of an algorithm are often hard to obtain. Hence, it is much
more common to provide a worst case upper bound on the runtime of algorithms. Furthermore, the runtime

30

complexity is not always modelled in terms of the input: in these notes, we will see several practical data
processing algorithms whose complexity is mainly determined by the output size (and not by the input size).

Based on our analysis of LinearSearch, we can conclude that LSContains will perform less work than
Contains whenever 𝑣 ∈ 𝐿. Otherwise, when 𝑣 ∉ 𝐿, the two algorithms behave similar.

Next, we look at the Count algorithm. If we assume that LinearSearch is correct, then that will
greatly simplify the proof of correctness for Count. This is a good thing: the correctness of LinearSearch
is independent of the Count. Hence, we can prove the correctness of LinearSearch without considering
Count: we only need to prove the correctness of LinearSearch once and we can reuse that correctness
result in all algorithms that utilize LinearSearch. This reuse is an important consequence of proper modular
software design.
Remark 3.32. When designing software, it is a good idea to strive for modularity : one should always strive to
break up complex problems into a set of smaller subproblems. Typically, these subproblems are easier to
analyze, easier to solve on themselves, and easier to debug on themselves. After ensuring each subproblem
is solved very well by dedicated functions, solving the original complex problem can be done by simply
combining these subproblem-solving functions. Furthermore, an independent function that solves one of these
smaller subproblems might, on its own, provide useful functionality that you can reuse elsewhere in your code.

Now lets look at the complexity of Count. The variable 𝑖 is increased by at-least one at each iteration of
the loop. Hence, Count will call LinearSearch (Line 4) at-most |𝐿 | times. By Theorem 3.28, the cost of
the call to LinearSearch is O(|𝐿 |). Hence, the complexity of Count is upper-bounded by O(|𝐿 |2). With a
bit more effort, we can provide a much better analysis of the runtime complexity of Count, however. In
Count, consecutive calls to LinearSearch (Line 4) will inspect consecutive parts of the list 𝐿. Hence, the
complexity of Count is Θ(|𝐿 |).
★ Remark 3.33. The LinearSearch algorithm can be further generalized: what if we want to search for the
first value that is smaller-than-𝑣 , larger-than-𝑣 , a multiple-of-𝑣 , or an odd number (not divisible by two). The
pseudo-code for such search algorithms is almost identical to the LinearSearch algorithm in Figure 3.15:
only the condition “𝐿[𝑟] ≠ 𝑣” in the while loop at Line 2 needs to change. Many programming languages
allow one to write a general recipe for all these search algorithms by providing the ability to pass as argument
a search predicate function that returns true for the values one is searching for. In Figure 3.17, we have
illustrated this approach as an algorithm.

Algorithm LinearPredSearch(𝐿, 𝑃 , 𝑜) :
Pre: 𝐿 is an array, 0 ≤ 𝑜 ≤ |𝐿 |, and 𝑃 is a predicate on values.
1: 𝑟 := 𝑜.

/* invariant: “𝑜 ≤ 𝑟 ≤ |𝐿 | and ¬(𝑃 (𝑣)) for all 𝑣 ∈ 𝐿[𝑜, 𝑟)”, bound function: |𝐿 | − 𝑟 */
2: while 𝑟 ≠ |𝐿 | and also ¬(𝑃 (𝐿[𝑟])) do
3: 𝑟 := 𝑟 + 1.
4: end while
5: return 𝑟 .

Post: return the first offset 𝑟 , 𝑜 ≤ 𝑟 < |𝐿 |, with 𝑃 (𝐿[𝑟]) or, if no such offset exists, 𝑟 = |𝐿 |.

Algorithm LinearSearch(𝐿, 𝑣 , 𝑜) :
6: 𝑃 (𝑥) returns true if and only if 𝑥 = 𝑣 .
7: return LinearPredSearch(𝐿, 𝑃 , 𝑜).

Algorithm SearchFirstMultipleOf(𝐿, 𝑣 , 𝑜) :
8: 𝑃 (𝑥) returns true if and only if 𝑥 is a multiple of 𝑣 .
9: return LinearPredSearch(𝐿, 𝑃 , 𝑜).

Figure 3.17: The LinearPredicateSearch algorithm and its usage.

Exercise 3.7. Assume that the LinearSearch algorithm of Figure 3.15 is correct. Prove that the
LSContains algorithm of Figure 3.16 is correct.

31

Algorithm LowerBoundRec(𝐿, 𝑣 , begin, end) :
Pre: 𝐿 is an ordered array, 𝑣 a value, and 0 ≤ begin ≤ end ≤ |𝐿 |.
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if 𝐿[mid] < 𝑣 then
6: return LowerBoundRec(𝐿, 𝑣,mid + 1, end).
7: else {𝐿[mid] ≥ 𝑣}
8: return LowerBoundRec(𝐿, 𝑣, begin,mid).
9: end if

10: end if
Post: return the first offset 𝑟, begin ≤ 𝑟 < end , with 𝑣 ≤ 𝐿[𝑟] or, if no such offset exists, 𝑟 = end .

Figure 3.18: The LowerBoundRec algorithm that uses binary searching to find the first position 𝑝 in 𝐿

with 𝑣 ≤ 𝐿[𝑝].

Exercise 3.8. Prove that the LinearSearch algorithm of Figure 3.15 is correct.

Exercise 3.9. Assume that the LinearSearch algorithm of Figure 3.15 is correct. Prove that the Count
algorithm of Figure 3.16 is correct.

Exercise 3.10. Assume that the LinearSearch algorithm is only used with inputs 𝐿 and 𝑣 such that 𝑣 ∈ 𝐿.
Hence, LinearSearch is only used to find the offset of values 𝑣 that are in 𝐿. What is the average case
complexity of LinearSearch under this assumption?

3.3 Binary Searching
The LinearSearch algorithm is a versatile algorithm for finding a value in any list. Unfortunately, it is also
rather slow: if we often want to check whether a value is in a list 𝐿, then LinearSearch will do so at a
potentially-high cost. We cannot easily do better, however: if we do not know anything about what is in a
list 𝐿, then the only way to determine whether 𝑣 ∈ 𝐿 is to inspect each element. Hence, if we often have to
search in a list, then it would be helpful if we know more about the list before we start searching.

Fortunately, many datasets have implicit or explicit structures embedded in them. Take, for example, a
list of all students enrolled for a course: if we maintain that list by always adding newly enrolled students to
the end of the list, then the list of enrolled students is automatically ordered on increasing enrollment date.

Next, we will take a look at how to answer the search problem assuming that the input is ordered. Let 𝐿
be an ordered list and assume we are looking for a value 𝑣. If we compare the value 𝐿[𝑖], 0 ≤ 𝑖 < |𝐿 |, with
value 𝑣 , then we have three possible outcomes:

1. 𝐿[𝑖] < 𝑣: as the list 𝐿 is ordered, we know that every value in the list 𝐿[0, 𝑖] is smaller than 𝑣. Hence,
𝑣 ∈ 𝐿 if and only if 𝑣 ∈ 𝐿[𝑖 + 1, |𝐿 |).

2. 𝐿[𝑖] = 𝑣 : we have found the value 𝑣 .

3. 𝐿[𝑖] > 𝑣: as the list 𝐿 is ordered, we know that every value in the list 𝐿[𝑖, |𝐿 |) is larger than than 𝑣.
Hence, 𝑣 ∈ 𝐿 if and only if 𝑣 ∈ 𝐿[0, 𝑖).

Hence, if 𝐿 is ordered, then a single comparison can help us to exclude a large part of the list. To maximize
the part of the list we can exclude following a comparison, we can always opt to inspect the middle of the list
and then perform the next comparison on the remainder of the list. This process is called binary searching.
We refer to Figure 3.18 for the LowerBoundRec algorithm, a variant of binary searching that always
returns the first position 𝑝 in list 𝐿 with 𝑣 ≤ 𝐿[𝑝].

32

The LowerBoundRec algorithm is the first recursive algorithm in these notes. Hence, we have not
yet seen how to analyze recursive algorithms (e.g., prove their correctness and determine their runtime and
memory complexity).

Recursion is typically used to repeat an algorithm many times, this similar to the purpose of a while loop.
Hence, as with correctness proofs involving while loops, the proof technique that seems most suitable for
reasoning about recursion is induction. In specific, we will perform induction on the size of the part of the
list we are inspecting, hence, on (end − begin).

As we are using induction, we have to prove a base case, formalize an induction hypothesis, and prove the
inductive step:

▶ Base case. The base case of a recursive algorithm are those cases in which execution of the algorithm
does not perform recursive calls. Hence, the base case of LowerBoundRec is the case in which we are
done inspecting all parts of the list (end − begin = 0). In this case, we only execute Lines 1–2 and we
return begin which, in this case, is equivalent to end . As no offset 𝑟 can exist with begin ≤ 𝑟 < end and
we return the value end , the post-condition holds.

▶ Induction hypothesis. For any list 𝐿′, any value 𝑣 ′, and any offsets 0 ≤ begin ′ ≤ end ′ ≤ |𝐿′ | with
𝑗 = end ′ − begin ′, 0 ≤ 𝑗 < 𝑚, the call LowerBoundRec(𝐿′, 𝑣 ′, begin ′, end ′) returns a result 𝑟 that
satisfies the post-condition.

▶ Inductive step. The inductive step of a recursive algorithm are those cases in which execution of
the algorithm performs recursive calls. Hence, the inductive step of LowerBoundRec are calls
LowerBoundRec(𝐿, 𝑣 , begin, end) with 0 < 𝑚 = end − begin. In this case, we are not done inspecting
the list and we execute Lines 3–10. As 0 < end − begin, we have begin ≤ mid < end after Line 4.

We assume that the induction hypothesis holds: for recursive calls to LowerBoundRec that inspect
less-than 𝑚 values in list 𝐿, we expect the correct result. Based on the if-statement on Line 5, we
distinguish two cases:

1. The condition 𝐿[mid] < 𝑣 holds . As 𝐿 is ordered, the result must be an offset 𝑟 with mid < 𝑟 ≤ end .
In this case, we perform the recursive call LowerBoundRec(𝐿, 𝑣,mid + 1, end) at Line 6. As
we have begin ≤ mid < end , we can conclude (end − (mid + 1)) < 𝑚. Hence, by the induction
hypothesis, the call LowerBoundRec(𝐿, 𝑣,mid + 1, end) will return the correct offset 𝑟 and the
post-condition holds.

2. The condition 𝐿[mid] < 𝑣 does not hold . Hence 𝑣 ≤ 𝐿[mid]. As 𝐿 is ordered, the result must be an
offset 𝑟 with begin ≤ 𝑟 ≤ mid . In this case, we perform the recursive call LowerBoundRec(𝐿, 𝑣,
begin,mid) at Line 8. As we have begin ≤ mid < end , we can conclude (mid − begin) < 𝑚. Hence,
by the induction hypothesis, the call LowerBoundRec(𝐿, 𝑣, begin,mid) will return the correct
offset 𝑟 and the post-condition holds.

As with while loops, we have to prove that the recursion eventually terminates by reaching a base case.
The above proof already did so: each recursive calls will inspect a smaller portion of the list. Hence, eventually,
we will reach an empty portion of the list (the base case, which does no further recursive calls).

Proposition 3.34. The LowerBoundRec algorithm of Figure 3.18 is correct.

Next, we shall work toward determining the runtime complexity of LowerBoundRec such that we can
determine whether LowerBoundRec is an improvement over LinearSearch.

The complexity of most recursive algorithms is determined by four factors:

1. the amount of work the algorithm performs in the base cases;

2. the amount of work the algorithm performs in the recursive cases (excluding the work done by recursive
calls);

3. the number of recursive calls performed during a single execution of a recursive case; and

4. the size of the input for these recursive calls.

33

One can typically summarize these factors using a recurrence of the form

𝑇 (𝑛) =
{
𝑓1 (𝑛) if 𝑛 ≤ 𝑀 (base cases);
𝑐 ·𝑇 (𝑔(𝑛)) + 𝑓2 (𝑛) if 𝑛 > 𝑀 (recursive cases),

in which 𝑛 is the size of the input, 𝑀 is the maximum size of inputs handled by the base cases, 𝑓1 (𝑛) is a
model for the amount of work performed in the base case, 𝑓2 (𝑛) is the amount of work performed in the
recursive cases, 𝑐 is the number of recursive calls performed during a single execution of a recursive case of
the algorithm, and 𝑔(𝑛) is a function that provides the size of the input of these recursive calls.

Example 3.35. Consider a call LowerBoundRec(𝐿, 𝑣 , begin, end) of the LowerBoundRec algorithm. Let
𝑛 = (end − begin) be the size of the part of the list 𝐿 inspected by this call.

In any call of LowerBoundRec, both the base case and the recursive case perform a constant amount of
work (testing the condition of if-statements and, in the recursive case, computing mid). Hence 𝑓1 (𝑛) = 1 and
𝑓2 (𝑛) = 1. Furthermore, in the recursive case of LowerBoundRec, the algorithm performs one recursive
call (either at Line 6 or at Line 8). Hence, 𝑐 = 1. The size of these recursive calls is at-most-half the size of
the original input. Hence, 𝑔(𝑛) =

⌊
𝑛
2

⌋
. We conclude that the runtime complexity of LowerBoundRec is

modelled by the recurrence

𝑇 (𝑛) =
{
1 if 𝑛 = 0;

1 ·𝑇
(⌊

𝑛
2

⌋)
+ 1 if 𝑛 ≥ 1,

in which 𝑛 = (end − begin) is the size of the part of the list 𝐿 inspected by LowerBoundRec.

In most cases, the amount of work performed in the base cases is upper bounded by some constant
(𝑓1 (𝑛) = Θ(1)). To simplify the notation, one often omits the base cases for such recurrences.

Example 3.36. The runtime complexity of LowerBoundRec is modelled by the recurrence

𝑇 (𝑛) = 1 ·𝑇
(⌊𝑛
2

⌋)
+ 1.

A recurrence 𝑇 (𝑛) can be viewed as a very high-level abstraction of a recursive algorithm that only
contains the information relevant for determining the runtime complexity. The next step is to simplify the
recurrence to an equivalent closed form: by finding a ‘normal function’ ℎ(𝑛) of 𝑛 (e.g., functions such as
ℎ(𝑛) = log(𝑛), ℎ(𝑛) = 𝑛 log𝑛, or ℎ(𝑛) = 𝑛2) that is equivalent to 𝑇 (𝑛).

One typically uses induction to prove that ℎ(𝑛) is the closed form of a recurrence 𝑇 (𝑛). Induction does
not help you find ℎ(𝑛), however: you can only try to prove that 𝑇 (𝑛) = ℎ(𝑛) using induction after you guessed
𝑇 (𝑛) = ℎ(𝑛), as the function ℎ(𝑛) will be a crucial part of the induction hypothesis.

Luckily, several methods exist to obtain the closed form of a recurrence without resorting to an inductive
proof. Here, we will look at one such method: a recursion tree.

Definition 3.37. Let Algo be a recursive algorithm. The structure of the recursion tree T(𝑛) for the
runtime complexity of Algo with input size 𝑛 is as follows:

1. Each node represents a call to Algo and is labeled with the input size of that call.

2. The root of the recursion tree T(𝑛) represents the call to Algo with input size 𝑛.

3. If a node 𝑢 ∈ T(𝑛) has no children, then 𝑢 represents a base case of Algo.

4. If a node 𝑢 ∈ T(𝑛) has children, then 𝑢 represents a recursive case of Algo and the children of 𝑢
represent all the recursive calls performed during the single execution of the recursive case represented
by node 𝑢.

In the recursion tree T(𝑛), each node 𝑢 ∈ T(𝑛) is annotated with the amount of work work(𝑢) done by the
call to Algo represented by that node (excluding the work done by recursive calls).

To obtain the total amount of work done by Algo, one simply computes the sum
∑

𝑢∈T (𝑛) work(𝑢). If the
recursion tree is sufficiently simple, one can compute the sum

∑
𝑢∈T (𝑛) work(𝑢) by determining:

34

𝑛 = 2𝑥
work = 1

𝑛
2 = 2𝑥−1

work = 1

𝑛
4 = 2𝑥−2

work = 1

1 = 2𝑥−𝑥
work = 1

0
work = 1

total work (per level)

1node/level · 1work/node = 1work/level

1node/level · 1work/node = 1work/level

1node/level · 1work/node = 1work/level

1node/level · 1work/node = 1work/level

1node/level · 1work/node = 1work/level

𝑥 + 2 = log2 (𝑛) + 2 levels

+

1work/level · (log2 (𝑛) + 1)level = (log2 (𝑛) + 2)work

Figure 3.19: The recursion tree for LowerBoundRec together with a per-level summation of the amount of
work done by LowerBoundRec when inspecting a list of 𝑛 = 2𝑥 values.

1. How much work is done per level of the tree, this by determining:

(a) how many nodes there are on that level of the tree, and

(b) how much work is represented by each node at that level;

2. How many levels the tree has.

Example 3.38. Consider a call to LowerBoundRec. We will determine an upper bound on the amount of
work done by LowerBoundRec by drawing a recursion tree. To simplify our recursion tree, we assume that
the size (end − begin) of the part of list 𝐿 we are inspecting is a power-of-two: 𝑛 = 2𝑥 for some 𝑥 ≥ 0. We
have drawn the recursion tree of LowerBoundRec together with a per-level summation of the amount of
work done in Figure 3.19.

From the recursion tree, we obtain that the complexity of LowerBoundRec is modelled by LBModel(𝑛) =
log2 (𝑛) + 2 if the size 𝑛 of the part of the list inspected by LowerBoundRec is a power-of-two. To obtain
a strict complexity bound for LowerBoundRec for all 𝑛, we observe that the complexity of a call to
LowerBoundRec that inspects a part of a list of size 𝑛, 2𝑥−1 < 𝑛 ≤ 2𝑥 , is lower bounded by 𝑥+1 = ⌈log2 (𝑛)⌉+1
(the complexity of a call to LowerBoundRec with size 2𝑥−1 < 𝑛) and is upper bounded by 𝑥+2 = ⌈log2 (𝑛)⌉+2
(the complexity of a call to LowerBoundRec with size 𝑛 ≤ 2𝑥). Hence, we conclude that the runtime
complexity of LowerBoundRec is Θ(log2 (𝑛)).

We can also model the memory complexity of recursive algorithms. When doing so, it is important to
keep in mind that every function call requires some memory (e.g., to store the local variables of the that call
to the function, to keep track of where the function was called, and so on).

Example 3.39. Each recursive call of LowerBoundRec uses a constant amount of memory. Hence, we
conclude that the memory complexity of LowerBoundRec is modelled by the recurrence

𝑇 (𝑛) = 1 ·𝑇
(⌊𝑛
2

⌋)
+ 1

and we conclude that the memory complexity of LowerBoundRec is Θ(log2 (𝑛)).

Proposition 3.40. The runtime and memory complexity of LowerBoundRec is Θ(log2 (𝑛)) with 𝑛 the size
of the part of the list inspected by LowerBoundRec.

35

Algorithm LowerBound(𝐿, 𝑣 , begin, end) :
Pre: 𝐿 is an ordered array, 𝑣 a value, and 0 ≤ begin ≤ end ≤ |𝐿 |.
1: while begin ≠ end do
2: mid := (begin + end) div 2.
3: if 𝐿[mid] < 𝑣 then
4: begin := mid + 1.
5: else
6: end := mid .
7: end if
8: end while
9: return begin.

Post: return the first offset 𝑟, begin ≤ 𝑟 < end , with 𝑣 ≤ 𝐿[𝑟] or, if no such offset exists, 𝑟 = end .

Figure 3.20: The LowerBound algorithm that uses binary searching to find the first position 𝑝 in 𝐿 with
𝑣 ≤ 𝐿[𝑝].

The runtime complexity Θ(log2 (𝑛)) of LowerBoundRec is significantly better than the worst case
runtime complexity of Θ(|𝐿 |) of LinearSearch. This improved runtime complexity is enabled entirely by
the restrictions placed on the input list 𝐿 by LowerBoundRec.

Remark 3.41. Often, more efficient solutions to a problem can be obtained by placing restrictions on the
input such that the input guarantees a useful structure that simplifies solving our problem.

The LowerBoundRec is a very simple recursive algorithm. In this case, we can even eliminate the
recursion altogether. By doing so, we obtain the LowerBound algorithm of Figure 3.20.

Theorem 3.42. The LowerBound algorithm of Figure 3.20 is correct. The runtime complexity of
LowerBound is Θ(log2 (𝑛)), with 𝑛 the size of the part of the list inspected by LowerBound, and the
memory complexity of LowerBound is Θ(1).

In theory, the algorithms LowerBoundRec and LowerBound have the same runtime complexity. In
practice, the LowerBound algorithm is preferred, however, as a while loop has less overhead than a function
call (e.g., LowerBound uses less memory).

★ Remark 3.43. Some compilers can optimize away recursion when it is not necessary. Such compilers are
able to automatically translate LowerBoundRec into LowerBound, in which case there is no practical
difference between the two.

Exercise 3.11. Consider the algorithm LowerBoundV of Figure 3.21, a variant of the LowerBound
algorithm. Is this algorithm correct? How do the best case complexity and worst case complexity of
LowerBoundV compare with LowerBound? Which of these algorithms is best-suited when solving the
contains problem of Problem 3.1 on ordered lists?

Exercise 3.12. What is the runtime complexity of the FastPower algorithm of Figure 3.7?

Exercise 3.13. Assume that the LowerBoundV algorithm of Figure 3.21 is only used with inputs 𝐿 and 𝑣
such that 𝑣 ∈ 𝐿. Hence, LowerBoundV is only used to find the offset of values 𝑣 that are in 𝐿. What is the
average case complexity of LowerBoundV under this assumption?

Exercise 3.14. Assume 𝑛 is an exact power of 2 (𝑛 = 2𝑗 for some natural number 𝑗) and consider the
recurrence

𝑇 (𝑛) =
{
5 if 𝑛 = 1;

4𝑇
(
𝑛
2

)
+ 7𝑛 if 𝑛 > 1.

Use induction to prove that 𝑇 (𝑛) = 𝑓 (𝑛) with 𝑓 (𝑛) = 5𝑛2 + 7𝑛(𝑛 − 1).

36

Algorithm LowerBoundV(𝐿, 𝑣 , begin, end) :
Pre: 𝐿 is an ordered array, 𝑣 a value, and 0 ≤ begin ≤ end ≤ |𝐿 |.
1: while begin ≠ end do
2: mid := (begin + end) div 2.
3: if 𝐿[mid] < 𝑣 then
4: begin := mid + 1.
5: else if 𝐿[mid] = 𝑣 then
6: return mid .
7: else
8: end := mid .
9: end if

10: end while
11: return begin.
Post: return an offset 𝑟, begin ≤ 𝑟 < end , with 𝑣 ≤ 𝐿[𝑟] or, if no such offset exists, 𝑟 = end .

Figure 3.21: The LowerBoundV algorithm, a variant of the LowerBound algorithm, that uses binary
searching to find any position 𝑝 in 𝐿 with 𝑣 ≤ 𝐿[𝑝].

3.3.1 ★ Solving Problems using Binary Search
Binary search, as discussed in Section 3.3, is typically used to search for some value 𝑣 in an ordered list 𝐿.
The fundamental working of binary search is based on two main principles:

1. we are operating on an ordered list 𝐿 of values; and

2. inspecting a value 𝐿[𝑖], 0 ≤ 𝑖 < |𝐿 |, tells us whether the outcome we are looking for is found at 𝐿[𝑖], can
be found before the value 𝐿[𝑖] (in list 𝐿[0, 𝑖)), or can be found after the value 𝐿[𝑖] (in list 𝐿[𝑖, |𝐿 |)).

These principles apply to many problems, including problems that have little in common with searching in a
list. Variants of the binary search algorithm can be applied to solve such problems. Next, we look at one
such a problem: the problem of finding the length of a list of unknown length.

Problem 3.44. Let 𝐿 be list of values of unknown length and assume we have an efficient inspect-function
Inspect(𝐿, 𝑖) that returns true if the list has an 𝑖-th value and returns false otherwise. The list-length
problem is the problem of finding the length of list 𝐿.

Example 3.45. Consider the list 𝐿 = [‘apple’, ‘pear’, ‘orange’] with value ‘apple’ as the 0-th value, ‘pear’ as
the 1-st value, and ‘orange’ as the 2-nd value. Hence,

Inspect(𝐿, 0) = true Inspect(𝐿, 1) = true Inspect(𝐿, 2) = true Inspect(𝐿, 3) = false.

The list 𝐿 has length 3, which is reflected by the fact that 𝑖 = 3 is the smallest value for which Inspect(𝐿, 𝑖)
is false.

The algorithm ListLength of Figure 3.22 applies the linear search-style strategy of the above example
to solve the list-length problem of Problem 3.44.

Proposition 3.46. The ListLength algorithm is correct and has a runtime complexity of Θ(|𝐿 |).

Next, we will look at solving the list-length problem more efficiently using the principles of binary search.
To do so, we first identify how these principles apply to the list-length problem. We observe that:

1. we are operating on an ordered list 0, 1, . . . of possible lengths of lists;

2. inspecting a list length 𝑖 using Inspect(L, i) tells us whether the list has length at-most 𝑖 (Inspect(𝐿, 𝑖) =
false) or whether the list has a length of more than 𝑖 (Inspect(𝐿, 𝑖) = true).

37

Algorithm ListLength(𝐿) :
Pre: 𝐿 is an array of unknown length.
1: len := 0.
2: while Inspect(𝐿, len) do
3: len := len + 1.
4: end while
5: return len.

Post: return the length |𝐿 | of array 𝐿.

Figure 3.22: The ListLength algorithm.

Algorithm LBListLength(𝐿, 𝑁) :
Pre: 𝐿 is an array of unknown length |𝐿 | ≤ 𝑁 .
1: begin, end := 0, 𝑁 .
2: while begin ≠ end do
3: mid := (begin + end) div 2.
4: if Inspect(𝐿,mid) then
5: begin := mid + 1.
6: else
7: end := mid .
8: end if
9: end while

10: return begin.
Post: return the length |𝐿 | of array 𝐿.

Algorithm ListLengthUB(𝐿) :
Pre: 𝐿 is an array of unknown length.
11: 𝑛 := 1.
12: while Inspect(𝐿, 𝑛) do
13: 𝑛 := 2 · 𝑛.
14: end while
15: return 𝑛.
Post: return 𝑁 , |𝐿 | ≤ 𝑁 = 1 or |𝐿 | ≤ 𝑁 < 2|𝐿 |.

Figure 3.23: The LBListLength algorithm to find the length of a list 𝐿 using binary search. The
LBListLength algorithm requires an upper bound 𝑁 , |𝐿 | ≤ 𝑁 , on the length of list 𝐿. The ListLengthUB
algorithm can be used to efficiently compute such an upper bound 𝑁 with |𝐿 | ≤ 𝑁 < 2|𝐿 |.

These observations indicate that a variant of binary search can be used.
We cannot simply use the above observations: we are searching a potential list-length in an unbounded

list of lengths 0, 1, . . . , whereas binary search requires an end-point for the search. For now, we assume that
we can efficiently derive an upper bound 𝑁 , |𝐿 | ≤ 𝑁 ≤ 2|𝐿 |, on the length of list 𝐿. Using the upper bound
𝑁 and the above observations, we derive the LBListLength algorithm of Figure 3.23, a variant of the
LowerBound algorithm, to solve the list-length problem.

We cannot simply use the LBListLength algorithm, however: we also need to determine the upper
bound 𝑁 efficiently. To compute 𝑁 , we can use the ListLengthUB algorithm, which uses exponential
backoff to compute 𝑁 in a few steps. We have:

Theorem 3.47. LBListLength(𝐿, ListLengthUB(𝐿)) computes the length of list 𝐿 and has a runtime
complexity of Θ(log2 (|𝐿 |)).

Exercise 3.15. Prove that the LBListLength and ListLengthUB algorithms of Figure 3.23 are correct.

38

Algorithm RangeQuery(𝐿, [𝑣,𝑤]) :
Pre: 𝐿 is an ordered array, 𝑣,𝑤 are values, and 𝑣 ≤ 𝑤 .
1: i := LowerBound(𝐿, 𝑣, 0, |𝐿 |).
2: j := i .
3: while j ≤ |𝐿 | and also 𝐿[j] ≤ 𝑤 do
4: j := j + 1.
5: end while
6: return 𝐿[i , j).

Post: return the list 𝐿[𝑚,𝑛), 0 ≤ 𝑚 ≤ 𝑛 ≤ |𝐿 |, such that 𝐿[𝑚,𝑛) is the list of all values 𝑒 ∈ 𝐿 with 𝑣 ≤ 𝑒 ≤ 𝑤 .

Figure 3.24: The RangeQuery algorithm.

Exercise 3.16. Argue that the ListLengthUB algorithm of Figure 3.23 has a runtime complexity of
Θ(log2 (|𝐿 |)). Assuming that ListLengthUB has a runtime complexity of Θ(log2 (|𝐿 |)), argue that LB-
ListLength(𝐿, ListLengthUB(𝐿)) has a runtime complexity of Θ(log2 (|𝐿 |)).

3.3.2 Range Queries
Binary search already showed that the assumption that a list is ordered can speed up basic list operations
significantly: LowerBound can find the first occurrence of a value 𝑣 in an ordered list 𝐿 in Θ(log2 (|𝐿 |)),
whereas LinearSearch will do so in worst case Θ(|𝐿 |).

As the assumption that data is ordered is very powerful, this assumption is often explicitly maintained by
software that manages large collections of data (e.g., database management systems). As we have argued
before, software can even maintain an order for free for many forms of data:

Example 3.48. Consider the relation enrolled(dept, code, sid , date) that models a list of all students (identified
by the student identifier sid) enrolled for a course (identified by the department dept and course code code)
together with the enrollment date of the student for the course (identified by date).

If we add new enrollment data to enrolled by always adding newly enrolled students to the end of the list,
then this relation of enrolled students is automatically ordered on increasing enrollment date.

We can use the LowerBound algorithm not only for finding a specific value, but also for answering
range queries.

Problem 3.49. Let 𝐿 be a list and [𝑣,𝑤] be a range query with 𝑣 ≤ 𝑤 . The solution of the range query
problem for 𝐿 and [𝑣,𝑤] is the list of all values 𝑒 ∈ 𝐿 with 𝑣 ≤ 𝑒 ≤ 𝑤 .

The RangeQuery algorithm of Figure 3.24 solves the range query problem of Problem 3.49.

Example 3.50. Assume we have the relation enrolled(dept, code, sid , date) of Example 3.48. This relation
models a list of enrollment data ordered by the enrollment date of the student. To obtain the list of all
students enrolled for a course in 2023, we simply call

RangeQuery(enrolled, [(‘’, ‘’,−1, 2023), (‘’, ‘’,−1, 2024)]),

in which the empty strings ‘’ is used as a minimum value for the attributes dept and code and −1 as a value
smaller than any valid student identifier (attribute sid).

Next, we will consider the runtime complexity of the RangeQuery algorithm. At Line 1, we call the
LowerBound algorithm. By Theorem 3.42, the runtime complexity of this call is Θ(log2 (|𝐿 |)). Next, the
while loop at Line 3 will, in the worst case, inspect every value 𝐿[𝑖], 0 ≤ 𝑖 ≤ |𝐿 |. Hence, the worst case
complexity of the while loop of RangeQuery is Θ(|𝐿 |) and we conclude that the worst case complexity of
the RangeQuery algorithm is Θ(log2 (|𝐿 |) + |𝐿 |) = Θ(|𝐿 |). This is a discouraging result: in the worst case,
RangeQuery is as efficient as a simple loop that checks every value in list 𝐿!

Luckily the runtime of the RangeQuery algorithm will only see the worst case complexity if all values
in list 𝐿 are returned. Indeed, RangeQuery has a best case complexity of Θ(log2 (|𝐿 |)) whenever no values
are returned. Hence, the best case and worst case complexity of RangeQuery are rather different.

39

As with the LinearSearch algorithm studied in Section 3.2, the difference between best case and worst
case complexity of RangeQuery are indicative of a limitation of our runtime model: we are modeling the
runtime of RangeQuery only in terms of the size of list 𝐿. Close inspection of RangeQuery shows that
the size |result | of the query result computed by RangeQuery also plays a significant role: the while loop at
Line 3 inspects exactly |result | + 1 consecutive values in 𝐿. Hence, the all case complexity of RangeQuery
is Θ(log2 (|𝐿 |) + |result |).

Theorem 3.51. The RangeQuery algorithm of Figure 3.24 is correct. The runtime complexity of Range-
Query is Θ(log2 (|𝐿 |) + |result |) and the memory complexity of RangeQuery is Θ(1).

Exercise 3.17. Prove that the RangeQuery algorithms of Figure 3.24 is correct.

3.3.3 Optimizing Joins using Range Queries
A join of two-or-more lists 𝐿1, . . . , 𝐿𝑛 of values computes a single new list in which each list value is computed
from a combination of values 𝑣1 ∈ 𝐿1, . . . , 𝑣𝑛 ∈ 𝐿𝑛 according to some join condition.

Consider the relation products(name, category) that models a product listing in which each product has a
name name and main category category and the relation categories(category, related) that relates category
category to a related category related . We refer to Figure 3.25, left, for an example of these relations.

Next, we shall look at the join of products and categories that computes the list of pairs (name, related)
that relates each product name with the categories the product is related to. We refer to Figure 3.25, right,
for an example of the result of this join. A simple nested-loop algorithm can compute this join, e.g., the
NestedLoopPC algorithm of Figure 3.26.

The NestedLoopPC algorithm is obviously correct. To determine the complexity of NestedLoopPC,
we notice that every combination of a product listing in products and a related category listing in categories is
inspected exactly once. Specifically, each category listing in categories is inspected once during the for loop at
Line 3. The for loop at Line 3 is executed once for every product listing that is inspected by the for loop at
Line 2. Hence, we conclude:

Proposition 3.52. The NestedLoopPC algorithm is correct and has a runtime complexity of Θ(|𝑝𝑟𝑜𝑑𝑢𝑐𝑡 | ·
|𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 |).

Given a product listing (𝑝.𝑛, 𝑝.𝑐) ∈ products, the for loop at Line 3 of the NestedLoopPC algorithm will
visit every category listing in the categories relation, even if the category 𝑝.𝑐 of the product listing under
consideration is only related to a few other categories. As one can expect that each category is only related
to a handful of other categories, this means that NestedLoopPC is inefficient.

As the categories do not change often in practice, one can choose to maintain the relation categories in an
ordered manner (even though this increases the cost of adding category listings to categories). If categories
is ordered, then we can use LowerBound to search in categories only those category listings related to
the category 𝑝.𝑐 instead of inspecting every category listing. By incorporating these changes, we obtain the
NestedBinaryPC algorithm of Figure 3.27.

We note that Lines 3–7 essentially perform a range query that searches for all categories in categories
related to the category 𝑝.𝑐 (hence, all rows of the form (𝑝.𝑐, ?)). Hence, using the same argument as used in

products
name category

Apple Fruit
Bok choy Vegetable
Canelé Pastry
Donut Pastry

categories
category related

Fruit Food
Fruit Produce

Pastry Food
Vegetable Food
Vegetable Produce

Join Result
name related

Apple Food
Apple Produce

Bok choy Food
Bok choy Produce
Canelé Food
Donut Food

Figure 3.25: An example of the relations products and category on the left and an example of a relation
derived from the combination of these relations on the right.

40

Algorithm NestedLoopPC(products, categories) :
Pre: relations products(name, category) and categories(category, related).
1: output := ∅.
2: for (𝑝.𝑛, 𝑝.𝑐) ∈ products do
3: for (𝑐.𝑐, 𝑐 .𝑟) ∈ categories do
4: if 𝑝.𝑐 = 𝑐.𝑐 then
5: add (𝑝.𝑛, 𝑐 .𝑟) to output .
6: end if
7: end for
8: end for

Post: return {(𝑝.𝑛, 𝑝.𝑐) | ((𝑝.𝑛, 𝑝.𝑐) ∈ products) ∧ ((𝑐.𝑐, 𝑐 .𝑟) ∈ categories)}.

Figure 3.26: Computing a join of products and categories using a nested-loop algorithm.

our analysis of the RangeQuery algorithm (see Section 3.3.2), we conclude that the complexity of Lines 3–7
is Θ(log2 (|𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 |) +𝑤) with 𝑤 the number of values written to output at Line 5. We conclude:

Theorem 3.53. The NestedBinaryPC algorithm is correct and has a runtime complexity of Θ(|𝑝𝑟𝑜𝑑𝑢𝑐𝑡 | ·
log2 (|𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 |) + |result |).

3.4 Chapter Notes
Most standard programming libraries, e.g., for C++ and Java, provide ready-to-use implementations of the
search algorithms presented in this chapter. We refer to the overview in Figure 3.28.

Algorithm NestedBinaryPC(products, categories) :
Pre: relations products(name, category) and categories(category, related), relation categories ordered.
1: output := ∅.
2: for (𝑝.𝑛, 𝑝.𝑐) ∈ products do
3: 𝑖 := LowerBound(categories, (𝑝.𝑐, ‘’), 0, |categories|).
4: while 𝑖 < |categories| and also categories[𝑖] .category = 𝑝.𝑐 do
5: add (𝑝.𝑛, categories[𝑖] .related) to output .
6: 𝑖 := 𝑖 + 1.
7: end while
8: end for

Post: return {(𝑝.𝑛, 𝑝.𝑐) | ((𝑝.𝑛, 𝑝.𝑐) ∈ products) ∧ ((𝑐.𝑐, 𝑐 .𝑟) ∈ categories)}.

Figure 3.27: Computing a join of products and categories using a binary search to find related categories.

41

Algorithm C++ Java

Contains std::ranges::contains collection.containsa

LinearSearch std::find collection.indexOfa

LinearPredSearch std::find_if java.util.stream::filterb

LowerBound std::lower_bound java.util.Arrays::binarySearchc

std::upper_boundd

Related libraries <algorithm>, <ranges> java.util.Arrays, java.util.ArrayList, . . .

aHere, collection is a standard Java data collection such as java.util.ArrayList.
bUsing the stream library supported by standard Java data collections.
cDoes not guarantee to return the offset of the first occurrence of a value.
dReturns the offset of the first element in the list that is strictly larger than the searched-for value.

Figure 3.28: Overview of existing implementations of the main algorithms studied in this chapter in the
standard programming libraries of C++ and Java.

42

