
1/20

Searching

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software

McMaster University

Winter 2024

2/20

Recap

▶ Fundamental analysis of algorithms and data structures.

Correctness, complexity (average, amortized, expected), recurrences, recurrence trees.

▶ Basic algorithms.

LinearSearch, BinarySearch, InsertionSort, SelectionSort.

▶ Collection types.

Bag, stack, queue, double-ended queue, priority queue.

▶ Data structures.

Ring buffer, linked lists, dynamic arrays, trees and heaps.

▶ Fast data analysis algorithms.

MergeSort,Merge, QuickSort, Partition, Select, HeapSort.

3/20

Next: Sets and dictionaries

Fundamental tools in the arsenal of programmers.

Most-commonly implemented using either search trees or hash tables:

vastly different classes of data structures with vastly different properties.

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

Sets and Contains

▶ We typically write v ∈ S instead of Contains(S, v).

▶ We typically write v ∉ S instead of ¬Contains(S, v).
▶ We typically write |S | instead of Size(S).

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

Sets often also support set operations such as

Union(S1, S2) compute the set S1 ∪ S2.

Intersect(S1, S2) compute the set S1 ∩ S2.

Difference(S1, S2) compute the set S1 \ S2.

We will not focus on set operations.

4/20

Collection types: Sets

Set : collection to which values can be added and removed,

and in which one can check value membership.

Add(S, v) add value v to the set S;

Delete(S, v) remove value v from the set S;

Contains(S, v) return true if set S holds value v (if v ∈ S);

Size(S) returns the number of values in S.

In addition, one can iterate over the values in S.

Ordered Set : a set that provides ordered iteration:

one can iterate over the values in S in sorted order.

Sets often also support set operations such as

Union(S1, S2) compute the set S1 ∪ S2.

Intersect(S1, S2) compute the set S1 ∩ S2.

Difference(S1, S2) compute the set S1 \ S2.
We will not focus on set operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

not

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

not

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

not

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

not

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Example: Dedup(“a word is just a word or is it not just a word”)

words

a

word

is

just

or

it

not

Unordered.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of unique words in stream written to the output.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of unique words in stream written to the output.

N Contains operations.

U Add operations.

5/20

A use-case for sets

Algorithm Dedup(stream):
Input: stream is a sequence of words.

1: words := an empty set.

2: for all words w from stream do
3: if w ∉ words then
4: Add(words,w).
5: Output w .

Result: output each unique word in stream once.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of unique words in stream written to the output.

N Contains operations.

U Add operations.

6/20

Collection types: Dictionary (or map, symbol table, . . .)

Dictionary : collection to which (key, value)-pairs (kv-pairs) can be added and removed,

and in which one can look-up and modify values by key.

Put(D, (k ↦→ v)) add kv-pair k ↦→ v to the dictionary D;

Get(D, k) return the value v for kv-pair k ↦→ v in dictionary D;

Delete(D, k) remove the kv-pair for key k from dictionary D;

Contains(D, k) return true if dictionary D holds a kv-pair for key k;

Size(D) returns the number of kv-pairs in D.

In addition, one can iterate over the kv-pairs in D.

Ordered Dictionary : a dictionary that provides ordered iteration:

one can iterate over the kv-pairs in D in sorted order (on key).

Geting and modifying values

▶ We typically write D[k] instead of Get(D, k).

▶ We typically write D[k] := v to change the value of a kv-pair in D.

▶ We typicaly write |D | instead of Size(D).

6/20

Collection types: Dictionary (or map, symbol table, . . .)

Dictionary : collection to which (key, value)-pairs (kv-pairs) can be added and removed,

and in which one can look-up and modify values by key.

Put(D, (k ↦→ v)) add kv-pair k ↦→ v to the dictionary D;

Get(D, k) return the value v for kv-pair k ↦→ v in dictionary D;

Delete(D, k) remove the kv-pair for key k from dictionary D;

Contains(D, k) return true if dictionary D holds a kv-pair for key k;

Size(D) returns the number of kv-pairs in D.

In addition, one can iterate over the kv-pairs in D.

Ordered Dictionary : a dictionary that provides ordered iteration:

one can iterate over the kv-pairs in D in sorted order (on key).

Geting and modifying values

▶ We typically write D[k] instead of Get(D, k).

▶ We typically write D[k] := v to change the value of a kv-pair in D.

▶ We typicaly write |D | instead of Size(D).

6/20

Collection types: Dictionary (or map, symbol table, . . .)

Dictionary : collection to which (key, value)-pairs (kv-pairs) can be added and removed,

and in which one can look-up and modify values by key.

Put(D, (k ↦→ v)) add kv-pair k ↦→ v to the dictionary D;

Get(D, k) return the value v for kv-pair k ↦→ v in dictionary D;

Delete(D, k) remove the kv-pair for key k from dictionary D;

Contains(D, k) return true if dictionary D holds a kv-pair for key k;

Size(D) returns the number of kv-pairs in D.

In addition, one can iterate over the kv-pairs in D.

Ordered Dictionary : a dictionary that provides ordered iteration:

one can iterate over the kv-pairs in D in sorted order (on key).

Geting and modifying values

▶ We typically write D[k] instead of Get(D, k).

▶ We typically write D[k] := v to change the value of a kv-pair in D.

▶ We typicaly write |D | instead of Size(D).

6/20

Collection types: Dictionary (or map, symbol table, . . .)

Dictionary : collection to which (key, value)-pairs (kv-pairs) can be added and removed,

and in which one can look-up and modify values by key.

Put(D, (k ↦→ v)) add kv-pair k ↦→ v to the dictionary D;

Get(D, k) return the value v for kv-pair k ↦→ v in dictionary D;

Delete(D, k) remove the kv-pair for key k from dictionary D;

Contains(D, k) return true if dictionary D holds a kv-pair for key k;

Size(D) returns the number of kv-pairs in D.

In addition, one can iterate over the kv-pairs in D.

Ordered Dictionary : a dictionary that provides ordered iteration:

one can iterate over the kv-pairs in D in sorted order (on key).

Geting and modifying values

▶ We typically write D[k] instead of Get(D, k).

▶ We typically write D[k] := v to change the value of a kv-pair in D.

▶ We typicaly write |D | instead of Size(D).

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 1)

(word ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 1)

(word ↦→ 1)

(is ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 1)

(word ↦→ 1)

(is ↦→ 1)

(just ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 1)

(is ↦→ 1)

(just ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 1)

(just ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 1)

(just ↦→ 1)

(or ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 2)

(just ↦→ 1)

(or ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 2)

(just ↦→ 1)

(or ↦→ 1)

(it ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 2)

(just ↦→ 1)

(or ↦→ 1)

(it ↦→ 1)

(not ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 2)

(word ↦→ 2)

(is ↦→ 2)

(just ↦→ 2)

(or ↦→ 1)

(it ↦→ 1)

(not ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 3)

(word ↦→ 2)

(is ↦→ 2)

(just ↦→ 2)

(or ↦→ 1)

(it ↦→ 1)

(not ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 3)

(word ↦→ 3)

(is ↦→ 2)

(just ↦→ 2)

(or ↦→ 1)

(it ↦→ 1)

(not ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Example: WordCount(“a word is just a word or is it not just a word”)

counts

(a ↦→ 3)

(word ↦→ 3)

(is ↦→ 2)

(just ↦→ 2)

(or ↦→ 1)

(it ↦→ 1)

(not ↦→ 1)

Output:

Unordered.

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of pairs written to the output.

After finding a key (e.g., Contains, Get), updating the value is typically Θ (1).

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of pairs written to the output.

After finding a key (e.g., Contains, Get), updating the value is typically Θ (1).

N Contains operations.

U Put operations.

N − U updates to values.

7/20

A use-case for dictionaries

AlgorithmWordCount(stream):
Input: stream is a sequence of words.

1: counts := an empty dictionary.

2: for all words w from stream do
3: if ¬Contains(counts,w) then
4: Put(counts, (w ↦→ 1)).
5: else
6: counts[w] := counts[w] + 1.

7: output each pair (w ↦→ counts[w]) in counts.

Result: output the number of occurances of each unique word in stream.

Runtime complexity

Let N = |stream| be the number of words in stream.

Let U = |output | be the number of pairs written to the output.

After finding a key (e.g., Contains, Get), updating the value is typically Θ (1).

N Contains operations.

U Put operations.

N − U updates to values (Θ (1), for “free”).

8/20

Dictionaries and sets

Dictionaries and sets are closely related.

Consider a data structure that can implement a set

In the implementation, we can store extra data v alongside each element k in the set

→ the pair (k, v) is a kv-pair and we end up with a dictionary!

Consider a data structure that can implement a dictionary

We can use a piece of dummy data for all values→ a set (of keys)!

To simplify presentation, we focus on the details of data structures that implement sets.

8/20

Dictionaries and sets

Dictionaries and sets are closely related.

Consider a data structure that can implement a set

In the implementation, we can store extra data v alongside each element k in the set

→ the pair (k, v) is a kv-pair and we end up with a dictionary!

Consider a data structure that can implement a dictionary

We can use a piece of dummy data for all values→ a set (of keys)!

To simplify presentation, we focus on the details of data structures that implement sets.

8/20

Dictionaries and sets

Dictionaries and sets are closely related.

Consider a data structure that can implement a set

In the implementation, we can store extra data v alongside each element k in the set

→ the pair (k, v) is a kv-pair and we end up with a dictionary!

Consider a data structure that can implement a dictionary

We can use a piece of dummy data for all values→ a set (of keys)!

To simplify presentation, we focus on the details of data structures that implement sets.

8/20

Dictionaries and sets

Dictionaries and sets are closely related.

Consider a data structure that can implement a set

In the implementation, we can store extra data v alongside each element k in the set

→ the pair (k, v) is a kv-pair and we end up with a dictionary!

Consider a data structure that can implement a dictionary

We can use a piece of dummy data for all values→ a set (of keys)!

To simplify presentation, we focus on the details of data structures that implement sets.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

item: just

next: @123A

prev: @null

@C362:

item: is

next: @4FDE

prev: @null

@123A:

item: word

next: @312C

prev: @123A

@4FDE:

item: a

next: @null

prev: @4FDE

@312C:

first = @123A

first = @C362

last = @312C

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

item: just

next: @123A

prev: @null

@C362:

item: is

next: @4FDE

prev: @null

@123A:

item: word

next: @312C

prev: @123A

@4FDE:

item: a

next: @null

prev: @4FDE

@312C:

first = @123A

first = @C362

last = @312C

Contains(S, word).

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

item: just

next: @123A

prev: @null

@C362:

item: is

next: @4FDE

prev: @C362

@123A:

item: word

next: @312C

prev: @123A

@4FDE:

item: a

next: @null

prev: @4FDE

@312C:

first = @123A

first = @C362 last = @312C

Add(S, just).

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

item: just

next: @123A

prev: @null

@C362:

item: is

next: @312C

prev: @C362

@123A:

item: word

next: @312C

prev: @123A

@4FDE:

item: a

next: @null

prev: @123A

@312C:

first = @123A

first = @C362 last = @312C

Delete(S, word).

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

9/20

Implementing sets with lists

Idea: We can easily add or remove values from doubly linked lists.

Let S be a double linked list representing a set

Contains(S, v) return true if one can find a list node n in S with n.item = v .

Add(S, v) (after testing v ∉ S) PushFront(S, v).

Delete(S, v) (assuming v ∈ S) search the list node n with n.item = v and remove n.

Add in Θ (1)!
Worst-case Contains and Delete traverse the entire list: Θ (|S |).

Implementation on top of a dynamic array: similarly bad.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this)

.

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

a is word

length = 3

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this)

.

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

a is word

length = 3

Contains(S, is).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position.

(we can use the inner loop of InsertionSort for this)

.

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

a is word just

length = 4

Add(S, just).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this).

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

a is just word

length = 4

Add(S, just).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this).

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

a just word

length = 3

Delete(S, is).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this).

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

10/20

Implementing sets with BinarySearch

Idea: We can easily check value membership using BinarySearch if

we maintain the set as an ordered list.

Let S be a dynamic array representing a set

We maintain that S is ordered.

Contains(S, v) return true if BinarySearch returns a position.

Add(S, v) (after testing v ∉ S) PushBack(S, v) and move v to its in-order position

(we can use the inner loop of InsertionSort for this).

Delete(S, v) search the position p with S [p] = v , move all succeeding values one

position to the left, PopBack(S).

Contains in log
2
(|S |)!

Worst-case Add and Delete have to move all values: Θ (|S |).

If we maintain that sets are ordered:

we can use variants of Merge for union, intersection, and difference of sets.

11/20

Comparing set implementations

Complexity of Dedup(stream)

andWordCount(stream)

N Contains operations with N = |stream|.
U Add operations with U the number of unique words in stream.

Doubly-linked list Sorted dynamic array

N Contains Θ (N · U) Θ (N · logU)
U Add Θ (U) Θ

(
U
2
)

Dedup Θ (N · U) Θ
(
N · logU + U

2
)
.

Conclusion

▶ List implementation (doubly linked, dynamic array): practical only for tiny datasets.

▶ Sorted dynamic array implementation: only practical if usage of Contains dominates.

11/20

Comparing set implementations

Complexity of Dedup(stream) andWordCount(stream)

N Contains operations with N = |stream|.
U Add operations with U the number of unique words in stream.

Doubly-linked list Sorted dynamic array

N Contains Θ (N · U) Θ (N · logU)
U Add Θ (U) Θ

(
U
2
)

Dedup Θ (N · U) Θ
(
N · logU + U

2
)
.

Conclusion

▶ List implementation (doubly linked, dynamic array): practical only for tiny datasets.

▶ Sorted dynamic array implementation: only practical if usage of Contains dominates.

11/20

Comparing set implementations

Complexity of Dedup(stream) andWordCount(stream)

N Contains operations with N = |stream|.
U Add operations with U the number of unique words in stream.

Doubly-linked list Sorted dynamic array

N Contains Θ (N · U) Θ (N · logU)
U Add Θ (U) Θ

(
U
2
)

Dedup Θ (N · U) Θ
(
N · logU + U

2
)
.

Conclusion

▶ List implementation (doubly linked, dynamic array): practical only for tiny datasets.

▶ Sorted dynamic array implementation: only practical if usage of Contains dominates.

11/20

Comparing set implementations

Complexity of Dedup(stream) andWordCount(stream)

N Contains operations with N = |stream|.
U Add operations with U the number of unique words in stream.

Doubly-linked list Sorted dynamic array

N Contains Θ (N · U) Θ (N · logU)
U Add Θ (U) Θ

(
U
2
)

Dedup Θ (N · U) Θ
(
N · logU + U

2
)
.

Conclusion

▶ List implementation (doubly linked, dynamic array): practical only for tiny datasets.

▶ Sorted dynamic array implementation: only practical if usage of Contains dominates.

12/20

Toward a better set data structure

▶ Linked lists can easily be modified due to usage of pointers.

▶ BinarySearch can quickly find values even in huge datasets.

Combining the principles of linked lists and BinarySearch

Pointer-based for ease-of-modification.

Branching at each value: we can go left (smaller values) or right (larger values).

A natural fit: a tree

For each node n, the nodes in the left subtree all have smaller values;

and

the nodes in the right subtree all have larger values.

just

is

a it

or

not word

12/20

Toward a better set data structure

▶ Linked lists can easily be modified due to usage of pointers.

▶ BinarySearch can quickly find values even in huge datasets.

Combining the principles of linked lists and BinarySearch

Pointer-based for ease-of-modification.

Branching at each value: we can go left (smaller values) or right (larger values).

A natural fit: a tree

For each node n, the nodes in the left subtree all have smaller values;

and

the nodes in the right subtree all have larger values.

just

is

a it

or

not word

12/20

Toward a better set data structure

Combining the principles of linked lists and BinarySearch

Pointer-based for ease-of-modification.

Branching at each value: we can go left (smaller values) or right (larger values).

A natural fit: a tree.

For each node n, the nodes in the left subtree all have smaller values;

and

the nodes in the right subtree all have larger values.

just

is

a it

or

not word

12/20

Toward a better set data structure

Combining the principles of linked lists and BinarySearch

Pointer-based for ease-of-modification.

Branching at each value: we can go left (smaller values) or right (larger values).

A natural fit: a tree with the binary search tree property:

For each node n, the nodes in the left subtree all have smaller values; and

the nodes in the right subtree all have larger values.

just

is

a it

or

not word

12/20

Toward a better set data structure

Combining the principles of linked lists and BinarySearch

Pointer-based for ease-of-modification.

Branching at each value: we can go left (smaller values) or right (larger values).

A natural fit: a tree with the binary search tree property:

For each node n, the nodes in the left subtree all have smaller values; and

the nodes in the right subtree all have larger values.

just

is

a it

or

not word

13/20

Intermezzo: Binary trees

Binary tree: a data structure that can hold values, each stored in a binary tree node.

Here, we consider a pointer-based variant.

All values represented by a binary tree are reachable from the root node.

Each value in a binary tree is stored in a binary tree node:

value The value held by the binary tree node.

left A pointer to the left child of the node, if any.

right A pointer to the right child of the node, if any.

just

is

a it

or

not word

@C12D

@125A

@F560 @4820

@AA10

@CB04 @1984

root

value: or

left: @CB04

right: @1984

13/20

Intermezzo: Binary trees

Binary tree: a data structure that can hold values, each stored in a binary tree node.

Here, we consider a pointer-based variant.

All values represented by a binary tree are reachable from the root node.

Each value in a binary tree is stored in a binary tree node:

value The value held by the binary tree node.

left A pointer to the left child of the node, if any.

right A pointer to the right child of the node, if any.

just

is

a it

or

not word

@C12D

@125A

@F560 @4820

@AA10

@CB04 @1984

root

value: or

left: @CB04

right: @1984

13/20

Intermezzo: Binary trees

Binary tree: a data structure that can hold values, each stored in a binary tree node.

Here, we consider a pointer-based variant.

All values represented by a binary tree are reachable from the root node.

Each value in a binary tree is stored in a binary tree node:

value The value held by the binary tree node.

left A pointer to the left child of the node, if any.

right A pointer to the right child of the node, if any.

just

is

a it

or

not word

@C12D

@125A

@F560 @4820

@AA10

@CB04 @1984

root

value: or

left: @CB04

right: @1984

13/20

Intermezzo: Binary trees

Binary tree: a data structure that can hold values, each stored in a binary tree node.

Here, we consider a pointer-based variant.

All values represented by a binary tree are reachable from the root node.

Each value in a binary tree is stored in a binary tree node:

value The value held by the binary tree node.

left A pointer to the left child of the node, if any.

right A pointer to the right child of the node, if any.

just

is

a it

or

not word

@C12D

@125A

@F560 @4820

@AA10

@CB04 @1984

root

value: or

left: @CB04

right: @1984

13/20

Intermezzo: Binary trees

Binary tree: a data structure that can hold values, each stored in a binary tree node.

Here, we consider a pointer-based variant.

All values represented by a binary tree are reachable from the root node.

Each value in a binary tree is stored in a binary tree node:

value The value held by the binary tree node.

left A pointer to the left child of the node, if any.

right A pointer to the right child of the node, if any.

A binary search tree is represented by a pointer to the root node.

If the tree is empty, this pointer is @null.

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

not

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

not

or

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

not

or

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm InorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: InorderTraverse(n.left , A).

3: A(n).
4: if n.right ≠ @null then
5: InorderTraverse(n.right , A).

InorderTraverse(root, “output n.value”).

Output

a

is

it

just

not

or

word

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PreorderTraverse(n, action A):
Input: n is a pointer to a node.

1: A(n).
2: if n.left ≠ @null then
3: PreorderTraverse(n.left , A).

4: if n.right ≠ @null then
5: PreorderTraverse(n.right , A).

PreorderTraverse(root, “output n.value”).

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PreorderTraverse(n, action A):
Input: n is a pointer to a node.

1: A(n).
2: if n.left ≠ @null then
3: PreorderTraverse(n.left , A).

4: if n.right ≠ @null then
5: PreorderTraverse(n.right , A).

PreorderTraverse(root, “output n.value”).

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PreorderTraverse(n, action A):
Input: n is a pointer to a node.

1: A(n).
2: if n.left ≠ @null then
3: PreorderTraverse(n.left , A).

4: if n.right ≠ @null then
5: PreorderTraverse(n.right , A).

PreorderTraverse(root, “output n.value”).

Output

just

is

a

it

or

not

word

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PostorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: PostorderTraverse(n.left , A).

3: if n.right ≠ @null then
4: PostorderTraverse(n.right , A).

5: A(n).

PostorderTraverse(root, “output n.value”).

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PostorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: PostorderTraverse(n.left , A).

3: if n.right ≠ @null then
4: PostorderTraverse(n.right , A).

5: A(n).

PostorderTraverse(root, “output n.value”).

14/20

Intermezzo: Traversing binary trees

just

is

a it

or

not word

Algorithm PostorderTraverse(n, action A):
Input: n is a pointer to a node.

1: if n.left ≠ @null then
2: PostorderTraverse(n.left , A).

3: if n.right ≠ @null then
4: PostorderTraverse(n.right , A).

5: A(n).

PostorderTraverse(root, “output n.value”).

Output

a

it

is

not

word

or

just

14/20

Intermezzo: Traversing binary trees

+

∗

12 4

/

5 2

Let A := “output n.value”.

For readabilty, we added parentheses and commas.

▶ InorderTraverse(root, A)

→ (12 * 4) + (5 / 2).
(“daily” notation)

▶ PreorderTraverse(root, A)

→ +(*(12, 4), /(5, 2)).
(prefix notation: function calls)

▶ PostorderTraverse(root, A)

→ 12 4 * 5 2 / +.
(postfix notation)

14/20

Intermezzo: Traversing binary trees

+

∗

12 4

/

5 2

Let A := “output n.value”.

For readabilty, we added parentheses and commas.

▶ InorderTraverse(root, A)

→ (12 * 4) + (5 / 2).
(“daily” notation)

▶ PreorderTraverse(root, A)

→ +(*(12, 4), /(5, 2)).
(prefix notation: function calls)

▶ PostorderTraverse(root, A)

→ 12 4 * 5 2 / +.
(postfix notation)

14/20

Intermezzo: Traversing binary trees

+

∗

12 4

/

5 2

Let A := “output n.value”.

For readabilty, we added parentheses and commas.

▶ InorderTraverse(root, A) → (12 * 4) + (5 / 2).

(“daily” notation)

▶ PreorderTraverse(root, A) → +(*(12, 4), /(5, 2)).

(prefix notation: function calls)

▶ PostorderTraverse(root, A) → 12 4 * 5 2 / +.

(postfix notation)

14/20

Intermezzo: Traversing binary trees

+

∗

12 4

/

5 2

Let A := “output n.value”.

For readabilty, we added parentheses and commas.

▶ InorderTraverse(root, A) → (12 * 4) + (5 / 2).
(“daily” notation)

▶ PreorderTraverse(root, A) → +(*(12, 4), /(5, 2)).
(prefix notation: function calls)

▶ PostorderTraverse(root, A) → 12 4 * 5 2 / +.
(postfix notation)

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

15/20

Intermezzo: Properties of binary search trees

just

is

a it

or

not word

Consider the binary search tree rooted at node n.

Minimum value Walk down via the left children.

Maximum value Walk down via the right children.

Preceding value The maximum value that is smaller than n.value (if any).

Find the maximum value in the binary search tree rooted at n.left .

Succeding value The minimum value that is larger than n.value (if any).

Find the minimum value in the binary search tree rooted at n.right .

16/20

Finding values in binary search trees

How to find a value v?

Adjust binary search to work on trees.

just

is

a it

or

not word

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

BinarySearchR(root, “it”).

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

BinarySearchR(root, “it”).

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

BinarySearchR(root, “it”).

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

BinarySearchR(root, “it”).

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

BinarySearchR(root, “it”).

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

Runtime complexity

Length of path from root to a leaf.

Challenge: Our algorithms to modify trees must assure (close to) balance.

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

Runtime complexity

Length of path from root to a leaf.

Challenge: Our algorithms to modify trees must assure (close to) balance.

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

Runtime complexity

Length of path from root to a leaf→ ⌈log
2
(N)⌉ if a tree with N nodes is “balanced”.

Balanced tree: any path from the root to a leaf has length at-most ⌈log
2
(N)⌉.

Challenge: Our algorithms to modify trees must assure (close to) balance.

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

Runtime complexity

Length of path from root to a leaf→ worst-case N .

Challenge: Our algorithms to modify trees must assure (close to) balance.

a

is

word

or

it

just

not

16/20

Finding values in binary search trees

Algorithm BSTSearchR(n, v):
Input: n points to a binary search tree node.

1: if n = @null or n.value = v then
2: return n.

3: else if n.value < v then
4: return BSTSearchR(n.right , v).

5: else
6: return BSTSearchR(n.left , v).

Result: return the node that holds v

(or @null if no such node exists).

Runtime complexity

Length of path from root to a leaf→ worst-case N .

Challenge: Our algorithms to modify trees must assure (close to) balance.

a

is

word

or

it

just

not

16/20

Finding values in binary search trees

A recursion-free BSTSearchR:

Algorithm BSTSearch(n, v):
Input: n points to a binary search tree node.

1: while n ≠ @null and n.value ≠ v do
2: if n.value < v then
3: n := n.right .

4: else
5: n := n.left .

6: return n.

Result: return the node that holds v

(or @null if no such node exists).

just

is

a it

or

not word

17/20

Adding values to binary search trees

High-level sketch: adding value v

1. Make a node m for value v .

2. Find the node that will become parent p of node m.

3. Based on p.value, add m as either the left or right child of p.

17/20

Adding values to binary search trees

Find a candidate parent p to hold a node with value v

We cannot use BSTSearch to find v : always returns @null!

Idea: keep track of parents p of nodes n visited by BSTSearch.

Algorithm (n, v):
Input: n points to a binary search tree node.

1: while n ≠ @null do
2: if n.value < v then
3: n := n.right .

4: else
5: n := n.left .

6: return n.

17/20

Adding values to binary search trees

Find a candidate parent p to hold a node with value v

We cannot use BSTSearch to find v : always returns @null!

Idea: keep track of parents p of nodes n visited by BSTSearch.

Algorithm BSTSearch(n, v):
Input: n points to a binary search tree node.

1: while n ≠ @null and n.value ≠ v do
2: if n.value < v then
3: n := n.right .

4: else
5: n := n.left .

6: return n.

17/20

Adding values to binary search trees

Find a candidate parent p to hold a node with value v

We cannot use BSTSearch to find v : always returns @null!
Idea: keep track of parents p of nodes n visited by BSTSearch.

Algorithm BSTSearch(n, v):
Input: n points to a binary search tree node.

1: while n ≠ @null and n.value ≠ v do
2: if n.value < v then
3: n := n.right .

4: else
5: n := n.left .

6: return n.

17/20

Adding values to binary search trees

Find a candidate parent p to hold a node with value v

We cannot use BSTSearch to find v : always returns @null!
Idea: keep track of parents p of nodes n visited by BSTSearch.

Algorithm BSTFindParent(n, v):
Input: n points to a binary search tree node.

1: p := @null.
2: while n ≠ @null do
3: p := n.

4: if n.value < v then
5: n := n.right .

6: else
7: n := n.left .

8: return p.

17/20

Adding values to binary search trees

Add m as either the left or right child of p

Let p := BSTFindParent(root, v).

Let m point to a fresh binary search tree node with m.value := v .

We have three cases:

1. If p = @null: empty tree, make m the root of the tree.

2. If v < p.value: set p.left := m.

3. If v > p.value: set p.right := m.

17/20

Adding values to binary search trees

Add m as either the left or right child of p

Let p := BSTFindParent(root, v).

Let m point to a fresh binary search tree node with m.value := v .

We have three cases:

1. If p = @null: empty tree, make m the root of the tree.

2. If v < p.value: set p.left := m.

3. If v > p.value: set p.right := m.

17/20

Adding values to binary search trees

Add m as either the left or right child of p

Let p := BSTFindParent(root, v).

Let m point to a fresh binary search tree node with m.value := v .

We have three cases:

1. If p = @null: empty tree, make m the root of the tree.

2. If v < p.value: set p.left := m.

3. If v > p.value: set p.right := m.

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @null

p

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @null

p

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

p

p

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a

it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a

it

or

not word

p = @nullp

p

p

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

p

p

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not

word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not

word

p = @nullp

pp

p

p

p

17/20

Adding values to binary search trees

Adding values: Good case

We add “just”, “is”, “a”, “it”, “or”, “not”, “word”.

root

just

is

a it

or

not word

p = @nullp

pp

p

pp

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null

p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null

p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

17/20

Adding values to binary search trees

Adding values: Bad case

We add “a”, “is”, “it”, “just”, “not”, “or”, “word”.

root

a

is

it

just

not

or

word

p = @null p

p

p

p

p

p

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p.

→ Number of nodes L on the path from root to p.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

N nodes

Left subtree Right subtree

Left subtree

0 ≤ i < N nodes

Right subtree

N − (i + 1) nodes

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

N nodes

Left subtree Right subtree

Left subtree

0 ≤ i < N nodes

Right subtree

N − (i + 1) nodes

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

N nodes

Left subtree Right subtree

Left subtree

0 ≤ i < N nodes

Right subtree

N − (i + 1) nodes

We write a recurrence T (N) for the average value of L.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

N nodes

Left subtree Right subtree

Left subtree

0 ≤ i < N nodes

Right subtree

N − (i + 1) nodes

We write a recurrence T (N) for the average value of L:
▶ Either v ends up in the left subtree.

▶ Or v ends up in the right subtree.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

N nodes

Left subtree Right subtree

Left subtree

0 ≤ i < N nodes

Right subtree

N − (i + 1) nodes

We write a recurrence T (N) for the average value of L:
▶ Either v ends up in the left subtree → average length T (i) + 1.

▶ Or v ends up in the right subtree → average length T (N − (i + 1)) + 1.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

We write a recurrence T (N) for the average value of L:
▶ Either v ends up in the left subtree → average length T (i) + 1.

▶ Or v ends up in the right subtree → average length T (N − (i + 1)) + 1.

T (N) =

0 if N = 0;

1 if N = 1;

1

2N

(
N−1∑︁
i=0

T (i) + 1 + T (N − (i + 1)) + 1

)
if N > 1.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

We write a recurrence T (N) for the average value of L:
▶ Either v ends up in the left subtree → average length T (i) + 1.

▶ Or v ends up in the right subtree → average length T (N − (i + 1)) + 1.

T (N) =

0 if N = 0;

1 if N = 1;

1

2N

(
N−1∑︁
i=0

T (i) + 1 + T (N − (i + 1)) + 1

)
if N > 1.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)

≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ c log
2
(k) + d + 1 − c

2

.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ c log
2
(k) + d + 1 − c

2

.

LOG2 (i) = log
2
(i) , except LOG2 (0) = 0.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

(
k−1∑︁
i=0

c log
2
(k) + d

)
+ 1

= c log
2
(k) + d + 1. ≤ c log

2
(k) + d + 1 − c

2

.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

(
k−1∑︁
i=0

c log
2
(k) + d

)
+ 1 = c log

2
(k) + d + 1.

≤ c log
2
(k) + d + 1 − c

2

.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

(
k−1∑︁
i=0

c log
2
(k) + d

)
+ 1 = c log

2
(k) + d + 1.

≤ c log
2
(k) + d + 1 − c

2

.

Need to get rid of “+1”!

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

(
k−1∑︁
i=0

c log
2
(k) + d

)
+ 1 = c log

2
(k) + d + 1.

≤ c log
2
(k) + d + 1 − c

2

.

Need to get rid of “+1”!Extreme upper bound.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

((
k div 2∑︁
i=0

c log
2

(
k

2

))
+

(
k−1∑︁

i=k div 2+1
c log

2
(k)

))
+ d + 1

≤ c log
2
(k) + d + 1 − c

2

.

18/20

Average cost of adding values

We write a recurrence T (N) for the average value of L.

T (N) = 1

N

(
N−1∑︁
i=0

T (i)
)
+ 1.

Show that T (N) = Θ (log
2
(N)) using induction

Induction hypothesis For some c, d , T (N) ≤ c log
2
(N) + d for all 2 ≤ N < k.

Induction step Prove T (k) ≤ c log
2
(k) + d .

T (k) = 1

k

(
k−1∑︁
i=0

T (i)
)
≤ 1

k

(
k−1∑︁
i=0

c LOG2(i) + d

)
+ 1

≤ 1

k

((
k div 2∑︁
i=0

c log
2

(
k

2

))
+

(
k−1∑︁

i=k div 2+1
c log

2
(k)

))
+ d + 1 ≤ c log

2
(k) + d + 1 − c

2

.

18/20

Average cost of adding values

Assume we build a binary search tree of random values by adding values v one at a time.

Cost of adding N-th value v : finding the parent p

→ Number of nodes L on the path from root to p.

We write a recurrence T (N) for the average value of L.

T (N) = Θ (log
2
(N)) .

19/20

Removing values from binary search trees

We have already seen how

▶ to traverse a binary search tree;

▶ to search for values in a binary search tree;

▶ to add values to a binary search tree;

▶ to find the minimum and maximum values in a binary search tree; and

▶ to find the preceding and succeding values of values in a binary search tree.

19/20

Removing values from binary search trees

We have already seen how

▶ to traverse a binary search tree;

▶ to search for values in a binary search tree;

▶ to add values to a binary search tree;

▶ to find the minimum and maximum values in a binary search tree; and

▶ to find the preceding and succeding values of values in a binary search tree.

We have not yet seen how to remove values.

19/20

Removing values from binary search trees

parent of n

(or n is root)

v

n

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

19/20

Removing values from binary search trees

parent of n

(or n is root)

v

n

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

19/20

Removing values from binary search trees

parent of n

(or n is root)

v

n

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

1. n has zero children.

Easy: Just remove node n from the parent p, then remove n.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

1. n has zero children.

Easy: Just remove node n from the parent p, then remove n.

19/20

Removing values from binary search trees

parent of n

(or n is root)

v

n

Left subtree of n

Right subtree of n

c

c1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

2. n has one child c.

Easy: Just replace node n in the parent p by c, then remove n.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n

Right subtree of n

c

c1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

2. n has one child c.

Easy: Just replace node n in the parent p by c, then remove n.

19/20

Removing values from binary search trees

parent of n

(or n is root)

v

n

Left subtree of n Right subtree of n

c

c1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children? Make a new parent n
′
for c1, c2.

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n Right subtree of n

c

c1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children?

Make a new parent n
′
for c1, c2.

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children? Make a new parent n
′
for c1, c2.

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children? Make a new parent n
′
for c1, c2.

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

19/20

Removing values from binary search trees

parent of n

(or n is root)

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children? Make a new parent n
′
for c1, c2.

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

19/20

Removing values from binary search trees

parent of n

(or n is root)

n
′
w

Left subtree of n Right subtree of n

cc1 c2

Say we want to remove the node n holding v from the tree.

Based on the number of children of n, we have three cases to consider:

3. n has two children c1, c2.

Hard: What to do with the children? Make a new parent n
′
for c1, c2 with value w .

▶ The subtree of c2 has a node m that holds the succeding value w of v .

▶ Node m either has no children or has a right child: easy to remove.

20/20

Binary search trees

Consider a binary search tree with N values.

Runtime complexity

Adding, searching, or removing values:

worst-case: number of nodes on the path from the root to a leaf.

Worst-case: N . Expected-case: Θ (log
2
(N)) if random values are added and removed.

Practical limitation

A lot of data sets are not random: e.g., partially-sorted inputs.

20/20

Binary search trees

Consider a binary search tree with N values.

Runtime complexity

Adding, searching, or removing values:

worst-case: number of nodes on the path from the root to a leaf.

Worst-case: N . Expected-case: Θ (log
2
(N)) if random values are added and removed.

Practical limitation

A lot of data sets are not random: e.g., partially-sorted inputs.

20/20

Binary search trees

Consider a binary search tree with N values.

Runtime complexity

Adding, searching, or removing values:

worst-case: number of nodes on the path from the root to a leaf.

Worst-case: N . Expected-case: Θ (log
2
(N)) if random values are added and removed.

Practical limitation

A lot of data sets are not random: e.g., partially-sorted inputs.

