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Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.



Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.

Examples

> A typical string over the roman alphabet {‘a’,...,z"," ’}:

> u
[I33)

“hello”, “hello_world”, “strings_over alphabets”, and “”.

> A bit string is a sequence over {0, 1}:
“0011”, “1101100”, “”, and “0”.

> A DNA String is a sequence over {A, C, G, T}:
“ “AACATG”, “AGT”, and “AAACCCAAATTT".

» A Unicode string is a sequence over the unicode code points
(149 186 symbols and counting).

> A byte string is a sequence over bytes.



Operations on strings and alphabets

We assume the following basic operations:

> We can sequentially iterate over the symbols in a string.

> We can look up the i-th symbol in a string in ©(1).

(This can be hard in some practical settings: UTF-8 and UTF-16 strings do not
support this).

> We assume that each alphabet A is an ordered list L of symbols.

» For each o € A, we can determine its position in L.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].

: forallve L do

buckets[v] := buckets[v] + 1.

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto buckets[i] do
L[k] =1
k:=k+1.
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BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].
: forallve Ldo
buckets[v] := buckets[v] + 1.
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.
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BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets = [0]0<i<M-1]. pO(M)
: forallve Ldo
buckets[v] := buckets[v] + 1. odLh
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

O(M+ L)

P NP eRW



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets = [0]0<i<M-1]. pO(M)
: forallve Ldo
buckets[v] := buckets[v] + 1. odLh
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

> O(M+]L])

O(M+|L|)

P NP eRW




BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |0
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |0
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.
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Algorithm BuckeTSorT(L):
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2

3 buckets[v] := buckets[v] + 1. A: |3
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BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2
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BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3. buckets[v] := buckets[v] + 1. A: | 4
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |4
6: for all j := 0 upto buckets[i] do T: |3
7: L[k] =1

8: k:=k+1.



BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: | 4
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |5
6: for all j := 0 upto buckets[i] do T: |3
7: L[k] =1

8: k:=k+1.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets := [0 ][0 <i<M-1]. L = “AAAAATATGTAG”.
: forallve Ldo
buckets[v] := buckets[v] + 1.
: k:=0. C:
: for all do G:
for all j := 0 upto buckets[i] do T
L[k] := I
k=k+1.

P NP eRW
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BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets := [0 ][0 <i<M-1]. L = “AAAAATATGTAG”.
: forallve Ldo
buckets[v] := buckets[v] + 1. A:
: k:=0. :
: for all do G:
for all j := 0 upto buckets[i] do T
L[k] =1
k=k+1.
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BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):

1: buckets :== [0 [0 <i<M-1]. L = “AAAAGGGGGTAG”.
2: forallve ldo

3 buckets[v] := buckets[v] + 1. A: | 4

4: k:=0. C: |0

5: for all do 1S

6: for all j := 0 upto buckets[i] do T: |3

7: L[k] := I

8: k:=k+1.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):

1: buckets := [0 ][0 <i<M-1]. L = “AAAAGGGGGTTT”.
2: forallve ldo

3 buckets[v] := buckets[v] + 1. A: | 4

4: k:=0. C: |0

5: for all do G: |5

6:  forall j := 0 upto buckets[i] do 23

7: L[k] := I

8: k:=k+1.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm GBuckeTSoRrT(L, r):
1: buckets :=[[]]0<i<M=-1].

: forallve Ldo

Append v to buckets[r(v)].

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto |buckets|i]| do
L[k] := buckets[i][/].
k:=k+1.

P NP eRW

Generalization
Assume we have values that “represent” 0,..., M — 1 via some function r.



BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm GBuckeTSoRrT(L, r):
1: buckets .= [[]]0<i<M=-1].

: forallve Ldo

Append v to buckets[r(v)].

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

P NP eRW

Generalization
Assume we have values that “represent” 0,..., M — 1 via some function r.

Notice that GBUCKETSORT is stable.
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Assumption. We have strings of length k over alphabet A.
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RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

}@(Wlﬂl) O(k(|L] + A1)



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L= ["acCTCT,
1: for d := k— 1 downto 0 do “ATTAAC”,
2:  Stable-sort L on the d-th string symbols. “GCGCGG,
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. “GGCGCG”,

“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSoRT(L): L = ["AcCTC
1: for d := k — 1 downto 0 do “ATTAA
2:  Stable-sort L on the d-th string symbols. “GCGCG
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. “GGCGC

“TCTAT
“TCACC
“AGCTG
“ATCTA
“GTCTG
“TGGAC

L = [“AGCTGA”,
“ATCTAN”,
“GTCTGC”,
“ATTAAC”,
“GCGCGE”,
“GGCGCE”,
“TCTATG”,
“TCACCG”,
“TGGACG”,
“AGCTCT”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L = ["AGCT
1: for d := k— 1 downto 0 do “ATCT
2:  Stable-sort L on the d-th string symbols. “GTCT
32 GBUCKETSORT(L, ryq) with rq(S) = S[d]. “ATTA

“GCGC
“GGCG
“TCTA
“TCAC
“TGGA
“AGCT

=4 & o o g o 0 O > >

—_ >

L = [“ATCTAA”,
“ATTAAC”,
“GGCGCG”,
“TCACCG”,
“TGGACG”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”,
“GCGCGE”,
“TCTATG”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["ATC
1: for d := k— 1 downto 0 do “ATT
2:  Stable-sort L on the d-th string symbols. “GGC
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. “TCA

“TGG
“AGC
“AGC
“GTC
“GCG
“TCT

AA”,
AC”,
CG”,
6",
CG”,
cT,
GA”,
GC”,
GG,
76

—

L = [“ATTAAC",
“TGGACG”,
“TCTATG”,
“TCACCG”,
“GCGCGE”,
“GGCGCE”,
“ATCTA”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["AT
1: for d := k— 1 downto 0 do ‘16
2:  Stable-sort L on the d-th string symbols. “TC
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. “TC

“GC
“GG
“AT
“AG
“AG
“GT

AAC”,
ACG”,
ATG”,
CCG”,
CGG”,
GCG”,
TAA”,
TCT?,
TGA”,
TGC”]

—

L = [“TCACCG”,
“GGCGCG”,
“ATCTAA”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”,
“TGGACG”,
“GCGCGG”,
“ATTAAC”,
“TCTATG”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["7T
1: for d := k— 1 downto 0 do ‘G
2:  Stable-sort L on the d-th string symbols. “A
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. “A

“A
“G
“T
“G
“A
“T

ACCG”, L = [“TCACCG”,
CGCG”, “HETEE,
CTAA”, “TCTATG”,
cTCT”, IR,
CTGA”, “AGCTCT”,
—
CcTGC”, “AGCTGA”,
GACG”, “TGGACG”,
GCGG”, “ATCTAA”,
TAAC”, “GTCTGC”,

TATG”] “ATTAAC”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=1
1: for d := k— 1 downto 0 do :
2:  Stable-sort L on the d-th string symbols. «
3:  GBUCKETSORT(L, ry) with rg(S) = S[d]. «

CACCG”, L = [*AGCTCT?,
CGCGG”, “AGCTGA”,
CTATG”, “ATCTAA”,
GCGCG”, “ATTAAC,
GCTCT”, “GCGCGG”,
GCTGA”, - “GGCGCG”,
GGACG”, “GTCTGC”,
TCTAA”, “TCACCG”,
TCTGC”, “TCTATG”,

TTAAC"] “TGGACG”]



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSoRT(L): L = ["AGCTCT”,
1: for d := k- 1 downto 0 do “AGCTGA”,
2:  Stable-sort L on the d-th string symbols. “ATCTAA”,
32 GBUCKETSORT(L, ryq) with rq(S) = S[d]. “ATTAAC”,

“GCGCGG”,
“GGCGCG”,
“GTCTGC”,
“TCACCG”,
“TCTATG”,
“TGGACG”].
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Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].
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Algorithm RADIXSORT(L):
1: for d := k — 1 downto 0 do

2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
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Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.
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Assumption. We have strings of length k over alphabet A.
Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do

2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.

Generalization: strings with variable lengths up-to-k



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.

Generalization: strings with variable lengths up-to-k
Let S be a string of length |S| < k.
Interpret S[|S|],. .., S[k — 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort.



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.
Algorithm RADIXSORT(L):
1: for d := k — 1 downto 0 do

2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?
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> Comparing two strings of length k costs at-most ©(k).



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?
> Optimal sorts perform ©(|L|log(|L|)) comparisons.
> Comparing two strings of length k costs at-most ©(k).

» For |L| random strings, comparisons are expected to cost ©(log,(|L])).



RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2:  Stable-sort L on the d-th string symbols.
3:  GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?

> Optimal sorts perform ©(|L|log(|L|)) comparisons.

> Comparing two strings of length k costs at-most ©(k).

» For |L| random strings, comparisons are expected to cost ©(log,(|L])).
O(k(|L| +|A[)) versus O(k|L|log(|L])) (or O(|L|log®(|L])) expected).



Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.
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RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp):

L = [“ATTAAC?, L = [“ATTAAC”,
“GCGCGG, “AGCTGA”,
“GGCGCG”, “ATCTAA”,
“TCTATG”, “GCGCGG”,
“TCACCG”, —  “GGCGCG”,
“AGCTGA”, “GTCTGC”,
“ATCTAA”, “TCTATG”,
“CTCTGC”, “TCACCG”,

“TGGACG”] “TGGACG”].
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Consider GBUCKETSORT(L, rp):
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Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp).

After constructing the buckets with respect to ry,
we only need to resort the individual buckets.

We will apply this idea recursively!

Algorithm MSD-SorT(L, d):
1: if d < kand |L| > 1 then
2: GBUCKETSORT(L, ryq) with rg(S) = S[d],
during which we further sort each
individual bucket separately.



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

22 buckets:=[[]|0<i<|A|l-1].

32 forallveldo

4 Append v to buckets[v[d]].

5 k:=0.

6: forall i:=0upto |A|—-1do

7 Kstart := k.

8 for all j := 0 upto |buckets[i]| do
9 L[k] := buckets[i][/].

10: k:=k+1.
11: MSD-SoRT(L[Kkstart - .- k), d + 1).



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“ATTAAC”,
“GCGCGG”,
EOREE,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“ATTAAC?,
“AGCTGA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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Algorithm MSD-Sort(L, d):

1 if d < kand |L| > 1 then L=["
2. buckets = [[]]|0<i<|A|-1]. : %,
32 forallveldo “ ”
4: Append v to buckets[v[d]]. “TCTATG?,
5 k=0 TICACCE”
6: forall i:=0upto |A|—-1do . ”’
7. Kstart = k. AGCTGA”,
8: for all j := 0 upto |buckets[i]| do “ATCTAA”,
9: L[ k] := buckets[i][]. “GTCTGC”,

10: k = k + 1. “TGGACG”].
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1: if d < kand |L| > 1then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“AGCTGA”,
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“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
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“GTCTGC”,
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Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATTAAC”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
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k:=k+1.
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L = [*AGCTGA”,
“ATCTAA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,
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“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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Algorithm MSD-Sort(L, d):
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
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k:=k+1.
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Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,
“ATCTAA”,
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“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATCTAA”,
“ATTAAC”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].
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Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then
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buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .. k), d + 1).

L = [“AGCTGA”,
“ATCTAN”,
“ATTAAC”,
“GCGCGG”,
“GGCGCG”,
“GTCTGC”,
“ATCTA”,
“GTCTGC”,
“TGGACG”].



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“AGCTGA”,
“ATCTAA”,
“ATTAAC”,

“ATCTAA”,
“GTCTGC”,
“TGGACG”].



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .. k), d + 1).

L = [“AGCTGA”,
“ATCTAA”,
“ATTAAC”,
UEETEET,
“GGCGCG”,
“GTCTGC”,
“TGGACG?,
“TCTATG?,
“TCACCG”].



Most-significant-digit string sort

Algorithm MSD-Sort(L, d):

1 if d < kand |L| > 1 then L = ["AGCTGA”,
22 buckets:=[[]|0<i<|A|l-1]. “ATCTAA”,
3 forallveldo “ATTAAC”,
4: Append v to buckets[v[d]]. “GCGCGG?,
5 k :=0. « .
6: forall i:=0upto |A|—-1do “GGCGCG ’
7. Kstart = k. GTCTGC”,
8: for all j := 0 upto |buckets[i]| do ¢ ”,
9: L[k] := buckets[i][/]. & »

k = k+ 1 «
11: MSD-SoRT(L[Kkstart - .- k), d + 1).

-
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Most-significant-digit string sort

Algorithm MSD-Sort(L, d): Finetuning
1: if d < kand |L| > 1 then We end up with many arrays buckets
buckets .= [[]|0< i< |A|-1]. that each hold |A| lists!
32 forallveldo
4 Append v to buckets[v[d]].
5 k:=0.
6: forall i:=0upto |A|—-1do
7
8
9

>

kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
10: k:=k+1.
11: MSD-SoRT(L[Kkstart - .- k), d + 1).
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Algorithm MSD-Sort(L, d): Finetuning
1: if |L| < |A| then We end up with many arrays buckets
2. Use another algorithm to sort L. that each hold |A| lists!
3: elseif d < kand |L| > 1 then
4:  buckets:=[[]]0<i<|A|l-1].
5: forallve ldo
6: Append v to buckets[v[d]].
7 k :=0.
8: forall i:=0upto |A|—-1do
9: kstart = k.
10: for all j := 0 upto |buckets[i]| do
11: L[k] := buckets[i][/].
12: k:=k+1.

13: MSD-SoRT(L[Kstart - .. k), d + 1).



Most-significant-digit string sort

Algorithm MSD-Sort(L, d): Finetuning
1: if |L| < |A| then We end up with many arrays buckets
2. Use another algorithm to sort L. that each hold |A| lists!
3: elseif d < kand |L| > 1 then
4:  buckets:=[[]]0<i<|A|l-1]. Complexity
5: forallve ldo
6: Append v to buckets[v[d]]. Attt (L) = A
7 k :=0.
8: forall i:=0upto |A|—-1do
9: kstart = k.

10: for all j := 0 upto |buckets[i]| do

11: L[k] := buckets[i][/].

12: k:=k+1.

13: MSD-SoRT(L[Kstart - .. k), d + 1).
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Sorting: Best practices

So which sort algorithm is the best?
Depends on the to-be-sorted input.

Often, your standard sort algorithm will be sufficient.



Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

>

>
>
>

strings of length N can be added in ©(N);

strings of length N can be removed in ®(N);

checking whether a string of length N is in the set costs @(N);

one can efficiently iterate over all strings in the set (in sorted order).



Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

>

>
>
>

strings of length N can be added in ©(N);

strings of length N can be removed in ®(N);

checking whether a string of length N is in the set costs @(N);

one can efficiently iterate over all strings in the set (in sorted order).

We have seen tries with A = {0, 1} — BSSET in Example Assignment 3.
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Assumption We have an alphabet A with M = |A| symbols.

Each node nin a trie T over A = {07, ...,0m} has
> aflag n.end that is true if the node n represents a string in T;
> at-most M edges to children labeled o7, .. ., opm.
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end end
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Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

C

end [[]]] end
“’9’ “AC”’ “AT”’ “ATC”
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Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

“’9’ “AC”, “AT”, “ATC”, “G”, “GAA”, “GAT”.
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Adding a string
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.
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end

Adding a string “GA”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.
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Removing a string
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.
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Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.



Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Printing all strings in-order
Perform a pre-order traversal starting at the root. For each node n:

> print the path from root to node n if n.end is set;

» pre-order traverse all children in-order of alphabet symbols.



Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Printing all strings in-order with prefix W

» Follow a path according to the string symbols of W to node m.
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Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Finetuning

» To deal with big alphabets:
use a dictionary with A-symbols as keys at each node to store all edges.

» To compress non-branching paths: nodes can represent strings of symbols.



Data compression

Input
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COMPRESS EXTRACT
algorithm algorithm

Compressed Data

gt (e.g., .zip)

Output

Lossless compression: The input must be equivalent to the output!
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Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!
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Doing so will require more-than 8 B for some other inputs.



Limits of compression
Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].
Proof

Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

> We can compress at-most 2M values to a size of M < N bits.

» We can compress a small fraction é—,AVA = 2M=N of all inputs to M bits.
E.g., we can compress at-most 232 out of 2% values from 8 B to 4 B.
Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!
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An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.

From bits to bytes
We can store four DNA characters in one byte. Can we store S in 2B using the above?



A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.

From bits to bytes
We can store four DNA characters in one byte. Can we store § in %B using the above?

No! Where in the last byte would our string end?
E.g., “ACTGA” takes 10 bit (1.25 B).
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Consider the following string of bits:
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Number (in 4-bit binary)
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A common structure: Repetition
Consider the following string of bits:
00000000000000000011111110000000011111111111000000000011

17 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010

2 0010




A common structure: Repetition
Consider the following string of bits:

11110000001001111000101110100010
MWW

Os 1s ©s 1s ©@s 1s 0@s 1s

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010
2 0010

From 17+ 7 + 8 + 11+ 10 + 2 = 55 bit to 8 - 4 = 32 bit.



A common structure: Repetition
Consider the following string of bits:

11110000001001111000101110100010
~—" "N

Os 1s ©s 1s ©@s 1s 0@s 1s

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.
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Another common structure: Using symbol frequencies

Consider simple text written in the English language.
The text uses the following 66 symbols “frequently”:
> Digits 0123456789: 10 symbols.

> Lower-case letters “a”—“z”: 26 symbols.
> upper-case letters “A”— “Z” 26 symbols.
» Punctuation “”, “”, “, “1”: 4 symbols.

Stored normally, each symbol occupies 1B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.
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Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

anna can S can a can !
01100001010010010100000010111



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

anna can S can a can !
01100001010010010100000010111

01100001010010010100000010111



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.
01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.
Y

a?



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.

\/
c?



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 )

‘n’ 5 1 - .,
© 4 00 a n
(G 3 01

‘s’ 1 10 £ ‘c’ ‘s’ ‘e
‘e 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.
01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!
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Consider the string “anna can scan a can!”.

Symbol Count Bit pattern
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Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
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Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
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Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
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Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
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Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
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Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

01010011011100101101111011100101100110111001011111 «— 50 bit.
Y

a



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
01010011011100101101111011100101100110111001011111 « 50 bit.

(] (O 9

anna‘ CcC an S CcC an a CcC an



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
01010011011100101101111011100101100110111001011111 « 50 bit.
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Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ ()
‘n’ 10
< 110
‘c’ 1110
‘s’ 11110
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Questions. How to construct the bit patterns and are these patterns optimal?



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Questions. How to construct the bit patterns and are these patterns optimal?

6-1+5-2+4-3+3-4+1-5+1-5=50.



Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 00
‘n’ 5 01
£ 4 10
‘e 3 110
‘s’ 1 1110
‘o 1 1111

Questions. How to construct the bit patterns and are these patterns optimal?

6-2+5-2+4:2+3-3+1-441-4=47.
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Huffman coding

Problem
Given an alphabet A and symbol-frequencies f : A — [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more
Assuming symbols counts in S agree with f.

Algorithm HurFFMANPFTRIE(f):
1: Q :=a min-priority queue.
2: for all 0 € A do
3:  Make a leaf-node nlabeled o.
Add (n, f(0)) to Q with priority f(o).
while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled @, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).
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Huffman coding
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Algorithm HUurFMANPFTRIE(f):

1:

Q := a min-priority queue.

2: forall 0 € A do

3:

I

Make a leaf-node n labeled o.

Add (n, f(o)) to Q with priority f(o).



Huffman coding

Symbol Count Frequency T T
‘a’ 6 26—0
voos g
o : y
c 3 20
‘s’ 1 21—0
‘v 1 3%

Algorithm HUurFMANPFTRIE(f):

'v;/.hile |Q| > 2do
(no, po) := DELMIN(Q), (7, p1) := DELMIN(Q).

Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Create a node n with children ny labeled 0, n; labeled 1.



Huffman coding

Symbol Count Frequency T T
‘a’ 6 26—0
voos g
. : y
C 3 20
‘s’ 1 21—0
‘v 1 3%

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @
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Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).
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Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @
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Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @
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Symbol Count Frequency
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Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y @ F @ @
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Algorithm HurFMANPFTRIE(f):

while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority py + p;.

return nwith (n, p) ;== DELMIN(Q).
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Huffman coding

Symbol Count Frequency

T 3
o 7
s 230
‘C’ 3 21—0
‘S 1 21—0
P 1 T

Algorithm HurFMANPFTRIE(f):

while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority py + p;.

return n with (n, p) ;= DELMIN(Q).

Y R e
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Any optimal prefix-free trie for A, f can be changed such that the path to o is longest.
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Let 01, 02 € A be the symbols with lowest frequency f.

Any optimal prefix-free trie for A, f can be changed such that
symbols a4, o, are children of the same node.




Huffman coding

Property 2

Let 01, 02 € A be the symbols with lowest frequency f.

Any optimal prefix-free trie for A, f can be changed such that
symbols a4, o, are children of the same node.
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Huffman coding

Property 3
Let 01, 03 € A be symbols represented by children ny, n; of node nin trie T.
Let T’ be the prefix-free trie for A’, f" with

> A=A\ {02}

> f={o f(o) |0 € A\{o1,02}} U{o1 > f(o1) + f(02)}; and

» leafs ny, n; removed from n and n made to represent oy.

The trie T is optimal for A, f if and only if T is optimal for A’, f’.

01 02



Huffman coding

Property 3
Let 01, 03 € A be symbols represented by children ny, n; of node nin trie T.
Let T’ be the prefix-free trie for A’, f" with

> A=A\ {02}

> f={o f(o) |0 € A\{o1,02}} U{o1 > f(o1) + f(02)}; and

» leafs ny, n; removed from n and n made to represent oy.

The trie T is optimal for A, f if and only if T is optimal for A’, f’.

01 02



Huffman coding

Symbol Count Frequency

) 6

o a3

S Z

o 3 3

o :

S ]

! 1 T
Theorem e P
The HUFFMANPFTRIE algorithm builds an optimal prefix-free code.
Proof (sketch)

HuUFFMANPFTRIE follows Property 1-3.



Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.
> We can generalize these ideas to frequent sequences of symbols.

> Tries can be used to efficiently manage frequency data for substrings in an input.
» Challenge: which substrings to consider?
E.g., fixed length, maximum length, ....



Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.
> We can generalize these ideas to frequent sequences of symbols.

> Tries can be used to efficiently manage frequency data for substrings in an input.
» Challenge: which substrings to consider?
E.g., fixed length, maximum length, ....

Many variations of this idea used in practice, e.g., .zip, .gif,....



Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).
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Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.



Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43
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Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:= 0 upto |S| - |P| do
2 if MATCHSTRING(S, P, i) then } @((|S| - |P])|P]) = ©(|S||P|)
3: return .

Complexity
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Encode search patterns as an automaton
Finite automata
A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.
For efficiency: we want a deterministic automaton: an automaton without choices!
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Encode search patterns as an automaton

Complexity of running a deterministic finite automaton with input S
> Always in exactly one state.
> We perform at-most ©(|S|) state transitions in the automaton.

> Need efficient representation of the transitions (per state): e.g., hash table.
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A regular expression describes a set of strings.
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More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

>

>

>

Running an N-state deterministic finite automaton on S can be done in O(|S]).
Running an N-state nondeterministic finite automaton on S can be done in ©(N|S)).

For single words, a deterministic finite automaton can be easily constructed:
see the Knuth-Morris-Pratt algorithm in the book.

Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

Many RegExp libraries are regular expression like: they support non-regular features.
Consequently, many such libraries use shamefully slow backtracking algorithms:
Worst-case exponential complexity, even when searching for simple patterns.
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How can I skip checking most letters in §?
Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then

> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).

Based on the , decide where to start looking.

> If the symbols match (never in this example): we might have found pattern P.

Inspect from the end-of-P to the begin to check.
When it does not matches: another opportunity to jump!
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How can I skip checking most letters in §?
With some preprocessing on P one can precompute how to jump around optimally:
the Boyer-Moore algorithm.



