
1/20

Strings

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software

McMaster University

Winter 2024

2/20

Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.

Examples

▶ A typical string over the roman alphabet {‘a’, . . . , ‘z’, ‘␣’}:
“hello”, “hello␣world”, “strings␣over␣alphabets”, and “”.

▶ A bit string is a sequence over {0, 1}:
“0011”, “1101100”, “”, and “0”.

▶ A DNA String is a sequence over {A,C,G, T }:
“”, “AACATG”, “AGT”, and “AAACCCAAATTT”.

▶ A Unicode string is a sequence over the unicode code points

(149 186 symbols and counting).

▶ A byte string is a sequence over bytes.

2/20

Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.

Examples

▶ A typical string over the roman alphabet {‘a’, . . . , ‘z’, ‘␣’}:
“hello”, “hello␣world”, “strings␣over␣alphabets”, and “”.

▶ A bit string is a sequence over {0, 1}:
“0011”, “1101100”, “”, and “0”.

▶ A DNA String is a sequence over {A,C,G, T }:
“”, “AACATG”, “AGT”, and “AAACCCAAATTT”.

▶ A Unicode string is a sequence over the unicode code points

(149 186 symbols and counting).

▶ A byte string is a sequence over bytes.

3/20

Operations on strings and alphabets

We assume the following basic operations:

▶ We can sequentially iterate over the symbols in a string.

▶ We can look up the i-th symbol in a string in Θ(1).
(This can be hard in some practical settings: UTF-8 and UTF-16 strings do not

support this).

▶ We assume that each alphabet A is an ordered list L of symbols.

▶ For each 𝜎 ∈ A, we can determine its position in L.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L|

Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 0

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 0

C: 0

G: 1

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 1

C: 0

G: 1

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 1

C: 0

G: 2

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 1

C: 0

G: 3

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 2

C: 0

G: 3

T: 0

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 2

C: 0

G: 3

T: 1

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 3

C: 0

G: 3

T: 1

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 3

C: 0

G: 3

T: 2

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 3

C: 0

G: 4

T: 2

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 3

C: 0

G: 4

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 4

C: 0

G: 4

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “GAGGATATGTAG”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “AAAAATATGTAG”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “AAAAATATGTAG”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “AAAAGGGGGTAG”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm BucketSort(L):
1: buckets := [0 | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: buckets[v] := buckets[v] + 1.

4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto buckets[i] do
7: L[k] := i.

8: k := k + 1.

L = “AAAAGGGGGTTT”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm GBucketSort(L, r):
1: buckets := [[] | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: Append v to buckets[r (v)].
4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto |buckets[i] | do
7: L[k] := buckets[i] [j].
8: k := k + 1.

L = “AAAAGGGGGTTT”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

4/20

BucketSort: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0, . . . ,M − 1.

Algorithm GBucketSort(L, r):
1: buckets := [[] | 0 ≤ i ≤ M − 1].
2: for all v ∈ L do
3: Append v to buckets[r (v)].
4: k := 0.

5: for all i := 0 upto M − 1 do
6: for all j := 0 upto |buckets[i] | do
7: L[k] := buckets[i] [j].
8: k := k + 1.

L = “AAAAGGGGGTTT”.

A: 4

C: 0

G: 5

T: 3

Θ(|L|)

|L| Θ(M + |L|)

Θ(M)

Θ(M + |L|)

Generalization

Assume we have values that “represent” 0, . . . ,M − 1 via some function r .

Notice that GBucketSort is stable.

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3:

GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3:

GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|)

Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

→

L = [“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“TGGACG”,

“AGCTCT”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“TGGACG”,

“AGCTCT”]

→

L = [“ATCTAA”,

“ATTAAC”,

“GGCGCG”,

“TCACCG”,

“TGGACG”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”,

“GCGCGG”,

“TCTATG”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“ATCTAA”,

“ATTAAC”,

“GGCGCG”,

“TCACCG”,

“TGGACG”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”,

“GCGCGG”,

“TCTATG”]

→

L = [“ATTAAC”,

“TGGACG”,

“TCTATG”,

“TCACCG”,

“GCGCGG”,

“GGCGCG”,

“ATCTAA”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“ATTAAC”,

“TGGACG”,

“TCTATG”,

“TCACCG”,

“GCGCGG”,

“GGCGCG”,

“ATCTAA”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”]

→

L = [“TCACCG”,

“GGCGCG”,

“ATCTAA”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”,

“TGGACG”,

“GCGCGG”,

“ATTAAC”,

“TCTATG”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“TCACCG”,

“GGCGCG”,

“ATCTAA”,

“AGCTCT”,

“AGCTGA”,

“GTCTGC”,

“TGGACG”,

“GCGCGG”,

“ATTAAC”,

“TCTATG”]

→

L = [“TCACCG”,

“GCGCGG”,

“TCTATG”,

“GGCGCG”,

“AGCTCT”,

“AGCTGA”,

“TGGACG”,

“ATCTAA”,

“GTCTGC”,

“ATTAAC”]

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“TCACCG”,

“GCGCGG”,

“TCTATG”,

“GGCGCG”,

“AGCTCT”,

“AGCTGA”,

“TGGACG”,

“ATCTAA”,

“GTCTGC”,

“ATTAAC”]

→

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”] .

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Correctness

Invariant: In L, the suffix of the last k − (d + 1) symbols is sorted .

Generalization: strings with variable lengths up-to-k

Let S be a string of length |S | < k.

Interpret S [|S |], . . . , S [k − 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort .

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Correctness

Invariant: In L, the suffix of the last k − (d + 1) symbols is sorted .

Generalization: strings with variable lengths up-to-k

Let S be a string of length |S | < k.

Interpret S [|S |], . . . , S [k − 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort .

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Correctness

Invariant: In L, the suffix of the last k − (d + 1) symbols is sorted .

Generalization: strings with variable lengths up-to-k

Let S be a string of length |S | < k.

Interpret S [|S |], . . . , S [k − 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort .

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Correctness

Invariant: In L, the suffix of the last k − (d + 1) symbols is sorted .

Generalization: strings with variable lengths up-to-k

Let S be a string of length |S | < k.

Interpret S [|S |], . . . , S [k − 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort .

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Is RadixSort worth it?

▶ Optimal sorts perform Θ(|L| log(|L|)) comparisons.

▶ Comparing two strings of length k costs at-most Θ(k).
▶ For |L| random strings, comparisons are expected to cost Θ(log

2
(|L|)).

Θ(k (|L| + |A|)) versus Θ(k |L| log(|L|)) (or Θ(|L| log2(|L|)) expected).

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Is RadixSort worth it?

▶ Optimal sorts perform Θ(|L| log(|L|)) comparisons.

▶ Comparing two strings of length k costs at-most Θ(k).

▶ For |L| random strings, comparisons are expected to cost Θ(log
2
(|L|)).

Θ(k (|L| + |A|)) versus Θ(k |L| log(|L|)) (or Θ(|L| log2(|L|)) expected).

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Is RadixSort worth it?

▶ Optimal sorts perform Θ(|L| log(|L|)) comparisons.

▶ Comparing two strings of length k costs at-most Θ(k).
▶ For |L| random strings, comparisons are expected to cost Θ(log

2
(|L|)).

Θ(k (|L| + |A|)) versus Θ(k |L| log(|L|)) (or Θ(|L| log2(|L|)) expected).

5/20

RadixSort: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RadixSort(L):
1: for d := k − 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBucketSort(L, rd) with rd (S) = S [d].

L = [“AGCTCT”,

“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”]

Θ(|L| + |A|) Θ(k (|L| + |A|))

Is RadixSort worth it?

▶ Optimal sorts perform Θ(|L| log(|L|)) comparisons.

▶ Comparing two strings of length k costs at-most Θ(k).
▶ For |L| random strings, comparisons are expected to cost Θ(log

2
(|L|)).

Θ(k (|L| + |A|)) versus Θ(k |L| log(|L|)) (or Θ(|L| log2(|L|)) expected).

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0):

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

→

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCTATG”,

“TCACCG”,

“TGGACG”] .

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0):

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

→

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCTATG”,

“TCACCG”,

“TGGACG”] .

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0):

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

→

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCTATG”,

“TCACCG”,

“TGGACG”] .

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0):

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”]

→

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCTATG”,

“TCACCG”,

“TGGACG”] .

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0).

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0).

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

6/20

Most-significant-digit string sort

RadixSort does not try to minimize the number of sorting rounds:

if k is the length of the longest string in L, then RadixSort “reorders” the list k times.

Consider GBucketSort(L, r0).

After constructing the buckets with respect to r0,

we only need to resort the individual buckets.

We will apply this idea recursively !

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: GBucketSort(L, rd) with rd (S) = S [d],

during which we further sort each

individual bucket separately.

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“ATTAAC”,

“AGCTGA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“AGCTGA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“AGCTGA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“AGCTGA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATTAAC”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATTAAC”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATCTAA”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“TCTATG”,

“TCACCG”,

“AGCTGA”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“ATCTAA”,

“GTCTGC”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TGGACG”,

“TCTATG”,

“TCACCG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

L = [“AGCTGA”,

“ATCTAA”,

“ATTAAC”,

“GCGCGG”,

“GGCGCG”,

“GTCTGC”,

“TCACCG”,

“TCTATG”,

“TGGACG”] .

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if d < k and |L| > 1 then
2: buckets := [[] | 0 ≤ i ≤ |A| − 1].
3: for all v ∈ L do
4: Append v to buckets[v [d]].
5: k := 0.

6: for all i := 0 upto |A| − 1 do
7: kstart := k.

8: for all j := 0 upto |buckets[i] | do
9: L[k] := buckets[i] [j].

10: k := k + 1.

11: MSD-Sort(L[kstart . . . k), d + 1).

Finetuning

We end up with many arrays buckets

that each hold |A| lists!

Complexity

At-most Θ(k (|L| + |A|)).

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if |L| ≤ |A| then
2: Use another algorithm to sort L.

3: else if d < k and |L| > 1 then
4: buckets := [[] | 0 ≤ i ≤ |A| − 1].
5: for all v ∈ L do
6: Append v to buckets[v [d]].
7: k := 0.

8: for all i := 0 upto |A| − 1 do
9: kstart := k.

10: for all j := 0 upto |buckets[i] | do
11: L[k] := buckets[i] [j].
12: k := k + 1.

13: MSD-Sort(L[kstart . . . k), d + 1).

Finetuning

We end up with many arrays buckets

that each hold |A| lists!

Complexity

At-most Θ(k (|L| + |A|)).

6/20

Most-significant-digit string sort

AlgorithmMSD-Sort(L, d):
1: if |L| ≤ |A| then
2: Use another algorithm to sort L.

3: else if d < k and |L| > 1 then
4: buckets := [[] | 0 ≤ i ≤ |A| − 1].
5: for all v ∈ L do
6: Append v to buckets[v [d]].
7: k := 0.

8: for all i := 0 upto |A| − 1 do
9: kstart := k.

10: for all j := 0 upto |buckets[i] | do
11: L[k] := buckets[i] [j].
12: k := k + 1.

13: MSD-Sort(L[kstart . . . k), d + 1).

Finetuning

We end up with many arrays buckets

that each hold |A| lists!

Complexity

At-most Θ(k (|L| + |A|)).

7/20

Sorting: Best practices

So which sort algorithm is the best?

Depends on the to-be-sorted input.

Often, your standard sort algorithm will be sufficient.

7/20

Sorting: Best practices

So which sort algorithm is the best?

Depends on the to-be-sorted input.

Often, your standard sort algorithm will be sufficient.

7/20

Sorting: Best practices

So which sort algorithm is the best?

Depends on the to-be-sorted input.

Often, your standard sort algorithm will be sufficient.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

▶ strings of length N can be added in Θ(N);
▶ strings of length N can be removed in Θ(N);
▶ checking whether a string of length N is in the set costs Θ(N);
▶ one can efficiently iterate over all strings in the set (in sorted order).

We have seen tries with A = {0, 1} → BSSet in Example Assignment 3.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

▶ strings of length N can be added in Θ(N);
▶ strings of length N can be removed in Θ(N);
▶ checking whether a string of length N is in the set costs Θ(N);
▶ one can efficiently iterate over all strings in the set (in sorted order).

We have seen tries with A = {0, 1} → BSSet in Example Assignment 3.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

Each node n in a trie T over A = {𝜎1, . . . , 𝜎M} has

▶ a flag n.end that is true if the node n represents a string in T ;

▶ at-most M edges to children labeled 𝜎1, . . . , 𝜎M.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

Each node n in a trie T over A = {𝜎1, . . . , 𝜎M} has

▶ a flag n.end that is true if the node n represents a string in T ;

▶ at-most M edges to children labeled 𝜎1, . . . , 𝜎M.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”

, “AC”, “AT”, “ATC”, “G”, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”

, “AT”, “ATC”, “G”, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”, “AT”

, “ATC”, “G”, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”, “AT”, “ATC”

, “G”, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”, “AT”, “ATC”, “G”

, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”, “AT”, “ATC”, “G”, “GAA”

, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

“”, “AC”, “AT”, “ATC”, “G”, “GAA”, “GAT”.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “CAT”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “CAT”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “CAT”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “CAT”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “CAT”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “GA”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Adding a string “GA”

▶ Follow-or-make a path according to the string symbols.

▶ Set n.end on the last node n on this path.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “GA”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “GA”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “GA”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Removing a string “CAT”

▶ Follow a path according to the string symbols to node n and unset n.end .

▶ Remove n if n has no children.

▶ Recurse to the ancestors m: remove m if m has no children and m.end is unset.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Printing all strings in-order

Perform a pre-order traversal starting at the root. For each node n:

▶ print the path from root to node n if n.end is set;

▶ pre-order traverse all children in-order of alphabet symbols.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Printing all strings in-order with prefix W

▶ Follow a path according to the string symbols of W to node m.

▶ Perform a pre-order traversal starting at the node m.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Finetuning

▶ To deal with big alphabets:

use a dictionary with A-symbols as keys at each node to store all edges.

▶ To compress non-branching paths: nodes can represent strings of symbols.

8/20

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A

C

T

C

G

A

A

T
end

end end

end

end

end end

C

A

T

end

end

C

“CAT”end

Finetuning

▶ To deal with big alphabets:

use a dictionary with A-symbols as keys at each node to store all edges.

▶ To compress non-branching paths: nodes can represent strings of symbols.

9/20

Data compression

Input

Compressed Data

(e.g., .zip)

Compress

algorithm

Output

Extract

algorithm

Lossless compression: The input must be equivalent to the output!

9/20

Data compression

Input

Compressed Data

(e.g., .zip)

Compress

algorithm

Output

Extract

algorithm

Lossless compression: The input must be equivalent to the output!

9/20

Data compression

Input

Compressed Data

(e.g., .zip)

Compress

algorithm

Output

Extract

algorithm

Lossless compression: The input must be equivalent to the output!

9/20

Data compression

Input

Compressed Data

(e.g., .zip)

Compress

algorithm

Output

Extract

algorithm

Lossless compression: The input must be equivalent to the output!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.

Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.

Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.

Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.

Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

10/20

Limits of compression

Theorem

No algorithm A can compress every input I into compressed data A(I) with |A(I) | < |I |.

Proof

Intuituin 1 If A can compress every input , then |A(A(I)) | < |A(I) |.
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2
N

distinct values.

We need at-least 2
N

distinct outputs of A on these inputs.

▶ We can compress at-most 2
M

values to a size of M < N bits.

▶ We can compress a small fraction
2
M

2
N
= 2

M−N
of all inputs to M bits.

E.g., we can compress at-most 2
32

out of 2
64

values from 8 B to 4 B.

Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

11/20

A simple structure: Small alphabets

Consider DNA strings over the alphabet A = {A,C, T ,G}.
An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

▶ We have |A| = 4 distinct values.

▶ We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

▶ A single byte holds 8 bit.

Hence, we need at-most
8N

4
= 2Nbit.

A compression ratio of 0.25.

From bits to bytes

We can store four DNA characters in one byte. Can we store S in
2N

8
B using the above?

No! Where in the last byte would our string end?

E.g., “ACTGA” takes 10 bit (1.25 B).

12/20

A common structure: Repetition

Consider the following string of bits:

00000000000000011111110000000011111111111000000000011

15 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

00000000000000011111110000000011111111111000000000011

15 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

00000000000000011111110000000011111111111000000000011

15 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

111101111000101110100010

0s 1s 0s 1s 0s 1s

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

From 15 + 7 + 8 + 11 + 10 + 2 = 53 bit to 6 · 4 = 24 bit.

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

00000000000000000011111110000000011111111111000000000011

17 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

11110000001001111000101110100010

0s 1s 0s 1s 0s 1s 0s 1s

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

From 17 + 7 + 8 + 11 + 10 + 2 = 55 bit to 8 · 4 = 32 bit.

Run-length encoding: simple idea with good results on bitmaps.

12/20

A common structure: Repetition

Consider the following string of bits:

11110000001001111000101110100010

0s 1s 0s 1s 0s 1s 0s 1s

Number (in 4-bit binary)

15 1111
7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

13/20

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

The text uses the following 66 symbols “frequently”:

▶ Digits 0123456789: 10 symbols.

▶ Lower-case letters “a”–“z”: 26 symbols.

▶ upper-case letters “A”–“Z”: 26 symbols.

▶ Punctuation “ ”, “.”, “,”, “!”: 4 symbols.

Stored normally, each symbol occupies 1 B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

13/20

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

The text uses the following 66 symbols “frequently”:

▶ Digits 0123456789: 10 symbols.

▶ Lower-case letters “a”–“z”: 26 symbols.

▶ upper-case letters “A”–“Z”: 26 symbols.

▶ Punctuation “ ”, “.”, “,”, “!”: 4 symbols.

Stored normally, each symbol occupies 1 B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

13/20

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

The text uses the following 66 symbols “frequently”:

▶ Digits 0123456789: 10 symbols.

▶ Lower-case letters “a”–“z”: 26 symbols.

▶ upper-case letters “A”–“Z”: 26 symbols.

▶ Punctuation “ ”, “.”, “,”, “!”: 4 symbols.

Stored normally, each symbol occupies 1 B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

13/20

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

The text uses the following 66 symbols “frequently”:

▶ Digits 0123456789: 10 symbols.

▶ Lower-case letters “a”–“z”: 26 symbols.

▶ upper-case letters “A”–“Z”: 26 symbols.

▶ Punctuation “ ”, “.”, “,”, “!”: 4 symbols.

Stored normally, each symbol occupies 1 B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

13/20

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

The text uses the following 66 symbols “frequently”:

▶ Digits 0123456789: 10 symbols.

▶ Lower-case letters “a”–“z”: 26 symbols.

▶ upper-case letters “A”–“Z”: 26 symbols.

▶ Punctuation “ ”, “.”, “,”, “!”: 4 symbols.

Stored normally, each symbol occupies 1 B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6

‘n’ 5

‘ ’ 4

‘c’ 3

‘s’ 1

‘!’ 1

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6

‘n’ 5

‘ ’ 4

‘c’ 3

‘s’ 1

‘!’ 1

The string has 6 distinct symbols: at-least 3 bits if all the same length.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 000
‘n’ 5 001
‘ ’ 4 010
‘c’ 3 011
‘s’ 1 100
‘!’ 1 101

The string has 6 distinct symbols: at-least 3 bits if all the same length.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

a n n a c a n s c a n a c a n !
0 1 1 0 00 01 0 1 00 10 01 0 1 00 0 00 01 0 1 11

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

a n n a c a n s c a n a c a n !
0 1 1 0 00 01 0 1 00 10 01 0 1 00 0 00 01 0 1 11

01100001010010010100000010111

← 29 bit instead of at-least 60 bit.

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111← 29 bit instead of at-least 60 bit.

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111← 29 bit instead of at-least 60 bit.

a?

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111← 29 bit instead of at-least 60 bit.

c?

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 1
‘ ’ 4 00
‘c’ 3 01
‘s’ 1 10
‘!’ 1 11

0

0 1

1

0 1
‘a’ ‘n’

‘ ’ ‘c’ ‘s’ ‘!’

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111← 29 bit instead of at-least 60 bit.

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

a n n a c a n s c a n a c a n !
0 10 10 0 110 1110 0 10 110 11110 1110 0 10 110 0 110 1110 0 10 11111

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

a n n a c a n s c a n a c a n !
0 10 10 0 110 1110 0 10 110 11110 1110 0 10 110 0 110 1110 0 10 11111

01010011011100101101111011100101100110111001011111← 50 bit.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

01010011011100101101111011100101100110111001011111← 50 bit.

a

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

01010011011100101101111011100101100110111001011111← 50 bit.

a n n a ‘ ’ c a n ‘ ’ s c a n ‘ ’ a ‘ ’ c a n ‘!

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

01010011011100101101111011100101100110111001011111← 50 bit.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Questions. How to construct the bit patterns and are these patterns optimal?

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
‘ ’ 4 110
‘c’ 3 1110
‘s’ 1 11110
‘!’ 1 11111

0 1

0 1

0 1

0 1

0 1

‘a’

‘n’

‘ ’

‘c’

‘s’ ‘!’

6

5

4

3

1 1

20

14

9

5

2

Questions. How to construct the bit patterns and are these patterns optimal?

6 · 1 + 5 · 2 + 4 · 3 + 3 · 4 + 1 · 5 + 1 · 5 = 50.

13/20

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 00
‘n’ 5 01
‘ ’ 4 10
‘c’ 3 110
‘s’ 1 1110
‘!’ 1 1111

0

0 1

1

0 1

0 1

0 1

‘a’ ‘n’ ‘ ’

‘c’

‘s’ ‘!’

6 5 4

3

1 1

20

11 9

5

2

Questions. How to construct the bit patterns and are these patterns optimal?

6 · 2 + 5 · 2 + 4 · 2 + 3 · 3 + 1 · 4 + 1 · 4 = 47.

14/20

Huffman coding

Problem

Given an alphabet A and symbol-frequencies f : A → [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more

Assuming symbols counts in S agree with f .

Algorithm HuffmanPFTrie(f):
1: Q := a min-priority queue.

2: for all 𝜎 ∈ A do
3: Make a leaf-node n labeled 𝜎 .

4: Add (n, f (𝜎)) to Q with priority f (𝜎).
5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Problem

Given an alphabet A and symbol-frequencies f : A → [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more

Assuming symbols counts in S agree with f .

Algorithm HuffmanPFTrie(f):
1: Q := a min-priority queue.

2: for all 𝜎 ∈ A do
3: Make a leaf-node n labeled 𝜎 .

4: Add (n, f (𝜎)) to Q with priority f (𝜎).
5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Problem

Given an alphabet A and symbol-frequencies f : A → [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more

Assuming symbols counts in S agree with f .

Algorithm HuffmanPFTrie(f):
1: Q := a min-priority queue.

2: for all 𝜎 ∈ A do
3: Make a leaf-node n labeled 𝜎 .

4: Add (n, f (𝜎)) to Q with priority f (𝜎).
5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

‘a’ ‘n’ ‘ ’ ‘c’ ‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

Algorithm HuffmanPFTrie(f):
1: Q := a min-priority queue.

2: for all 𝜎 ∈ A do
3: Make a leaf-node n labeled 𝜎 .

4: Add (n, f (𝜎)) to Q with priority f (𝜎).
5: . . .

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

‘a’ ‘n’ ‘ ’ ‘c’ ‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

‘a’ ‘n’ ‘ ’ ‘c’ ‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

0 1
‘a’ ‘n’ ‘ ’ ‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

0 1

0 1

‘a’ ‘n’ ‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

0 1

0 1

0 1

‘a’ ‘n’

‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

9

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

0 1

0 1

0 1

0 1

‘a’ ‘n’ ‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

9

20

11

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

1

0 1

0

0 1

0 1

0 1

‘a’ ‘n’‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

9

20

11

20

20

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

1

0 1

0

0 1

0 1

0 1

‘a’ ‘n’‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

9

20

11

20

20

20

Algorithm HuffmanPFTrie(f):
4: . . .

5: while |Q | ≥ 2 do
6: (n0, p0) := DelMin(Q), (n1, p1) := DelMin(Q).
7: Create a node n with children n0 labeled 0, n1 labeled 1.

8: Add node (n, p0 + p1) to Q with priority p0 + p1.

9: return n with (n, p) := DelMin(Q).

14/20

Huffman coding

Property 1

Let 𝜎 ∈ A be the symbol with lowest frequency f .

Any optimal prefix-free trie for A, f can be changed such that the path to 𝜎 is longest.

𝜎

𝜎 ′

−→
𝜎 ′

𝜎

14/20

Huffman coding

Property 1

Let 𝜎 ∈ A be the symbol with lowest frequency f .

Any optimal prefix-free trie for A, f can be changed such that the path to 𝜎 is longest.

𝜎

𝜎 ′

−→
𝜎 ′

𝜎

14/20

Huffman coding

Property 2

Let 𝜎1, 𝜎2 ∈ A be the symbols with lowest frequency f .

Any optimal prefix-free trie for A, f can be changed such that

symbols 𝜎1, 𝜎2 are children of the same node.

𝜎1

𝜎 ′ 𝜎2

−→
𝜎 ′

𝜎1 𝜎2

14/20

Huffman coding

Property 2

Let 𝜎1, 𝜎2 ∈ A be the symbols with lowest frequency f .

Any optimal prefix-free trie for A, f can be changed such that

symbols 𝜎1, 𝜎2 are children of the same node.

𝜎1

𝜎 ′ 𝜎2

−→
𝜎 ′

𝜎1 𝜎2

14/20

Huffman coding

Property 3

Let 𝜎1, 𝜎2 ∈ A be symbols represented by children n0, n1 of node n in trie T .

Let T
′

be the prefix-free trie for A′, f ′ with

▶ A′ = A \ {𝜎2};
▶ f

′ = {𝜎 ↦→ f (𝜎) | 𝜎 ∈ A \ {𝜎1, 𝜎2}} ∪ {𝜎1 ↦→ f (𝜎1) + f (𝜎2)}; and

▶ leafs n0, n1 removed from n and n made to represent 𝜎1.

The trie T is optimal for A, f if and only if T
′

is optimal for A′, f ′.

𝜎1 𝜎2

−→
𝜎1

𝜎1 𝜎2

14/20

Huffman coding

Property 3

Let 𝜎1, 𝜎2 ∈ A be symbols represented by children n0, n1 of node n in trie T .

Let T
′

be the prefix-free trie for A′, f ′ with

▶ A′ = A \ {𝜎2};
▶ f

′ = {𝜎 ↦→ f (𝜎) | 𝜎 ∈ A \ {𝜎1, 𝜎2}} ∪ {𝜎1 ↦→ f (𝜎1) + f (𝜎2)}; and

▶ leafs n0, n1 removed from n and n made to represent 𝜎1.

The trie T is optimal for A, f if and only if T
′

is optimal for A′, f ′.

𝜎1 𝜎2

−→
𝜎1

𝜎1 𝜎2

14/20

Huffman coding

Symbol Count Frequency

‘a’ 6
6

20

‘n’ 5
5

20

‘ ’ 4
4

20

‘c’ 3
3

20

‘s’ 1
1

20

‘!’ 1
1

20

1

0 1

0

0 1

0 1

0 1

‘a’ ‘n’‘ ’

‘c’

‘s’ ‘!’

6

20

5

20

4

20

3

20

1

20

1

20

2

20

5

20

9

20

11

20

20

20

Theorem

The HuffmanPFTrie algorithm builds an optimal prefix-free code.

Proof (sketch)

HuffmanPFTrie follows Property 1–3.

15/20

Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.

▶ We can generalize these ideas to frequent sequences of symbols.

▶ Tries can be used to efficiently manage frequency data for substrings in an input.

▶ Challenge: which substrings to consider?

E.g., fixed length, maximum length,

Many variations of this idea used in practice, e.g., .zip, .gif,

15/20

Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.

▶ We can generalize these ideas to frequent sequences of symbols.

▶ Tries can be used to efficiently manage frequency data for substrings in an input.

▶ Challenge: which substrings to consider?

E.g., fixed length, maximum length,

Many variations of this idea used in practice, e.g., .zip, .gif,

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “example”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “example”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “example”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “example”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “example”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − 1 do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

e x a m p l e

g r e a t

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if pattern P starts at S[i] then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Complexity

Θ(|P |)Θ((|S| − |P |) |P |)

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if MatchString(S, P , i) then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Complexity

Θ(|P |)Θ((|S| − |P |) |P |)

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if MatchString(S, P , i) then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Complexity

Θ(|P |)

Θ((|S| − |P |) |P |)

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if MatchString(S, P , i) then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Complexity

Θ(|P |)

Θ((|S| − |P |) |P |)

16/20

Basic substring search: Searching a needle in a haystack

Problem

Given strings S (the haystack) and P (the needle or pattern),

return the first position in S at which P occurs (if any).

Algorithm BasicStringSearch(S, P):
1: for i := 0 upto |S| − |P | do
2: if MatchString(S, P , i) then
3: return i.

AlgorithmMatchString(S, P , i):
4: for j := 0 upto |P | − 1 do
5: if S[i + j] ≠ P [j] then
6: return false.

7: return true.

Complexity

Θ(|P |)

Θ((|S| − |P |) |P |) = Θ(|S||P |)

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “string”

a s t r o n g s t r i n g“ ”

s t r i n g

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

17/20

Substring search: Room for improvement

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

A C A C G T

18/20

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with

▶ a single initial node;

▶ zero-or-more final nodes;

▶ edges labeled with symbols.

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with

▶ a single initial node;

▶ zero-or-more final nodes;

▶ edges labeled with symbols.

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

Typically, we refer to nodes as states and edges as transitions.

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with

▶ a single initial node;

▶ zero-or-more final nodes;

▶ edges labeled with symbols.

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.

For efficiency: we want a deterministic automaton: an automaton without choices!

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with

▶ a single initial node;

▶ zero-or-more final nodes;

▶ edges labeled with symbols.

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.

“ACACACACGT”.

For efficiency: we want a deterministic automaton: an automaton without choices!

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with

▶ a single initial node;

▶ zero-or-more final nodes;

▶ edges labeled with symbols.

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.

For efficiency: we want a deterministic automaton: an automaton without choices!

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

C

A

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

n1

all

n2

A

n3

C

n4

A

n5

C

n6

G

n7

T

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Searching P = “ACACGT ”

A C A C A C A C G T“ ”

18/20

Encode search patterns as an automaton

m1

m2

A

m3

CA

m4

A

m5

C

A

m6

G

A

m7

T

A

Complexity of running a deterministic finite automaton with input S
▶ Always in exactly one state.

▶ We perform at-most Θ(|S|) state transitions in the automaton.

▶ Need efficient representation of the transitions (per state): e.g., hash table.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

▶ ∅ describes ∅.
▶ 𝜎 ∈ A describes {𝜎}.

Now let e, e1, e2 be regular expressions describing sets R, R1, R2.

▶ (e) desribes R.

▶ e1e2 describes {Concatenate(S1,S2) | S1 ∈ R1 ∧ S2 ∈ R2}.
▶ e1 | e2 describes R1 ∪ R2.

▶ e
∗

describes any sequence of strings in R.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

▶ ∅ describes ∅.
▶ 𝜎 ∈ A describes {𝜎}.

Now let e, e1, e2 be regular expressions describing sets R, R1, R2.

▶ (e) desribes R.

▶ e1e2 describes {Concatenate(S1,S2) | S1 ∈ R1 ∧ S2 ∈ R2}.
▶ e1 | e2 describes R1 ∪ R2.

▶ e
∗

describes any sequence of strings in R.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

▶ ∅ describes ∅.
▶ 𝜎 ∈ A describes {𝜎}.

Now let e, e1, e2 be regular expressions describing sets R, R1, R2.

▶ (e) desribes R.

▶ e1e2 describes {Concatenate(S1,S2) | S1 ∈ R1 ∧ S2 ∈ R2}.
▶ e1 | e2 describes R1 ∪ R2.

▶ e
∗

describes any sequence of strings in R.

Examples

moose | mouse

sub
∗
section

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

▶ ∅ describes ∅.
▶ 𝜎 ∈ A describes {𝜎}.

Now let e, e1, e2 be regular expressions describing sets R, R1, R2.

▶ (e) desribes R.

▶ e1e2 describes {Concatenate(S1,S2) | S1 ∈ R1 ∧ S2 ∈ R2}.
▶ e1 | e2 describes R1 ∪ R2.

▶ e
∗

describes any sequence of strings in R.

Examples

moose | mouse

sub
∗
section

Claim: Every regular expression is equivalent to a deterministic finite automaton

See SFWRENG 2FA3: Discrete Mathematics with Applications II.

m
o

o

u
s e

m

m
m

m

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton

See SFWRENG 2FA3: Discrete Mathematics with Applications II.

m
o

o

u
s e

m

m
m

m

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton

See SFWRENG 2FA3: Discrete Mathematics with Applications II.

m
o

o

u
s e

m

m
m

m

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton

See SFWRENG 2FA3: Discrete Mathematics with Applications II.

m
o

o

u
s e

m

m
m

m

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

Lower costs to construct the automaton, higher costs to run them.

all

s u

b

s

s e c t i o n

Searching P = “sub
∗
section”

a s u b s t r i n g i n a s u b s e c t i o n“ ”

Idea. Keep track of the set of states we can be in while walking to the string.

(A powerset construction guided by the string one is searching in).

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

▶ Running an N-state deterministic finite automaton on S can be done in Θ(|S|).
▶ Running an N-state nondeterministic finite automaton on S can be done in Θ(N |S|).

▶ For single words, a deterministic finite automaton can be easily constructed:

see the Knuth-Morris-Pratt algorithm in the book.

▶ Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

▶ Many RegExp libraries are regular expression like: they support non-regular features.

Consequently, many such libraries use shamefully slow backtracking algorithms:

Worst-case exponential complexity, even when searching for simple patterns.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

▶ Running an N-state deterministic finite automaton on S can be done in Θ(|S|).
▶ Running an N-state nondeterministic finite automaton on S can be done in Θ(N |S|).
▶ For single words, a deterministic finite automaton can be easily constructed:

see the Knuth-Morris-Pratt algorithm in the book.

▶ Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

▶ Many RegExp libraries are regular expression like: they support non-regular features.

Consequently, many such libraries use shamefully slow backtracking algorithms:

Worst-case exponential complexity, even when searching for simple patterns.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

▶ Running an N-state deterministic finite automaton on S can be done in Θ(|S|).
▶ Running an N-state nondeterministic finite automaton on S can be done in Θ(N |S|).
▶ For single words, a deterministic finite automaton can be easily constructed:

see the Knuth-Morris-Pratt algorithm in the book.

▶ Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

▶ Many RegExp libraries are regular expression like: they support non-regular features.

Consequently, many such libraries use shamefully slow backtracking algorithms:

Worst-case exponential complexity, even when searching for simple patterns.

19/20

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

▶ Running an N-state deterministic finite automaton on S can be done in Θ(|S|).
▶ Running an N-state nondeterministic finite automaton on S can be done in Θ(N |S|).
▶ For single words, a deterministic finite automaton can be easily constructed:

see the Knuth-Morris-Pratt algorithm in the book.

▶ Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

▶ Many RegExp libraries are regular expression like: they support non-regular features.

Consequently, many such libraries use shamefully slow backtracking algorithms:

Worst-case exponential complexity, even when searching for simple patterns.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).

▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S [i + |P | − 1], then

▶ We see a symbol that is not even in P : P cannot occur in S [i . . . i + |P |).
▶ We see a symbol that is in P : P could have started somewhere in S [i . . . i + |P |).

Based on the symbol, decide where to start looking.

▶ If the symbols match (never in this example): we might have found pattern P .

Inspect from the end-of-P to the begin to check.

When it does not matches: another opportunity to jump!

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

20/20

Substring search in less-than Θ(|S|) steps

Searching P = “great”

a n e x a m p l e o f w o r d s“ ”

g r e a t

How can I skip checking most letters in S?

With some preprocessing on P one can precompute how to jump around optimally:

the Boyer-Moore algorithm.

