Strings
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

McMaster

+ B

University B8

Winter 2024

Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.

Strings over alphabets

An alphabet A is a finite set of distinct symbols.

A string over A is a sequence of symbols taken from A.

Examples

> A typical string over the roman alphabet {‘a’,...,z"," ’}:

> u
[I33)

“hello”, “hello_world”, “strings_over alphabets”, and “”.

> A bit string is a sequence over {0, 1}:
“0011”, “1101100”, “”, and “0”.

> A DNA String is a sequence over {A, C, G, T}:
“ “AACATG”, “AGT”, and “AAACCCAAATTT".

» A Unicode string is a sequence over the unicode code points
(149 186 symbols and counting).

> A byte string is a sequence over bytes.

Operations on strings and alphabets

We assume the following basic operations:

> We can sequentially iterate over the symbols in a string.

> We can look up the i-th symbol in a string in ©(1).

(This can be hard in some practical settings: UTF-8 and UTF-16 strings do not
support this).

> We assume that each alphabet A is an ordered list L of symbols.

» For each o € A, we can determine its position in L.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].

: forallve L do

buckets[v] := buckets[v] + 1.

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto buckets[i] do
L[k] =1
k:=k+1.

P NP eRW

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].
: forallve L do
buckets[v] := buckets[v] + 1.
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] =1
k:=k+1.

o(lLl)

P NP eRW

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].
: forallve Ldo
buckets[v] := buckets[v] + 1.
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

o(lLl)

P NP eRW

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1].
: forallve Ldo
buckets[v] := buckets[v] + 1.
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

o(lLl)

O(M+ L)

P NP eRW

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets = [0]0<i<M-1]. pO(M)
: forallve Ldo
buckets[v] := buckets[v] + 1. odLh
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

O(M+ L)

P NP eRW

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets = [0]0<i<M-1]. pO(M)
: forallve Ldo
buckets[v] := buckets[v] + 1. odLh
: k:=0.
: forall i := 0 upto M—1do
for all j := 0 upto buckets[i] do
L[k] :=i. L]
k:=k+1.

> O(M+]L])

O(M+|L|)

P NP eRW

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |0
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |0
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |0
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |1
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |1
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |1
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |1
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G:| 2
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |1
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |3
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: | 2
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |3
6: for all j := 0 upto buckets[i] do T: | 0
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |2
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |3
6. for all j := 0 upto buckets[i] do T: |1
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |3
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |3
6. for all j := 0 upto buckets[i] do T: |1
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |3
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |3
6. for all j := 0 upto buckets[i] do T: | 2
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |3
4: k:=0. C: |0
5: for all j := 0 upto M — 1do G: |4
6: for all j := 0 upto buckets[i] do T: | 2
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: |3
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |4
6. for all j := 0 upto buckets[i] do T: |3
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3. buckets[v] := buckets[v] + 1. A: | 4
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |4
6: for all j := 0 upto buckets[i] do T: |3
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort
Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets :=[0]0<i<M-1]. L = “GAGGATATGTAG”.
: forallve L do

2

3 buckets[v] := buckets[v] + 1. A: | 4
4: k:=0. C: |0
5: for all i := 0 upto M- 1do G: |5
6: for all j := 0 upto buckets[i] do T: |3
7: L[k] =1

8: k:=k+1.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets := [0][0 <i<M-1]. L = “AAAAATATGTAG”.
: forallve Ldo
buckets[v] := buckets[v] + 1.
: k:=0. C:
: for all do G:
for all j := 0 upto buckets[i] do T
L[k] := I
k=k+1.

P NP eRW
w o N

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):
1: buckets := [0][0 <i<M-1]. L = “AAAAATATGTAG”.
: forallve Ldo
buckets[v] := buckets[v] + 1. A:
: k:=0. :
: for all do G:
for all j := 0 upto buckets[i] do T
L[k] =1
k=k+1.

P NP eRW
w o N

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):

1: buckets :== [0 [0 <i<M-1]. L = “AAAAGGGGGTAG”.
2: forallve ldo

3 buckets[v] := buckets[v] + 1. A: | 4

4: k:=0. C: |0

5: for all do 1S

6: for all j := 0 upto buckets[i] do T: |3

7: L[k] := I

8: k:=k+1.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm BuckeTSorT(L):

1: buckets := [0][0 <i<M-1]. L = “AAAAGGGGGTTT”.
2: forallve ldo

3 buckets[v] := buckets[v] + 1. A: | 4

4: k:=0. C: |0

5: for all do G: |5

6: forall j := 0 upto buckets[i] do 23

7: L[k] := I

8: k:=k+1.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm GBuckeTSoRrT(L, r):
1: buckets :=[[]]0<i<M=-1].

: forallve Ldo

Append v to buckets[r(v)].

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto |buckets|i]| do
L[k] := buckets[i][/].
k:=k+1.

P NP eRW

Generalization
Assume we have values that “represent” 0,..., M — 1 via some function r.

BUCKETSORT: A special-purpose sort

Assumption We have M distinct symbols with values in the range 0,...,M — 1.

Algorithm GBuckeTSoRrT(L, r):
1: buckets .= [[]]0<i<M=-1].

: forallve Ldo

Append v to buckets[r(v)].

: k:=0.

: forall i := 0 upto M—1do

for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

P NP eRW

Generalization
Assume we have values that “represent” 0,..., M — 1 via some function r.

Notice that GBUCKETSORT is stable.

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3:

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.

3: GBUCKETSORT(L, ry) with ry(S) = S[d]. }®(|L| + | Al)

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

}@(Wlﬂl) O(k(|L] + A1)

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L= ["acCTCT,
1: for d := k— 1 downto 0 do “ATTAAC”,
2: Stable-sort L on the d-th string symbols. “GCGCGG,
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. “GGCGCG”,

“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSoRT(L): L = ["AcCTC
1: for d := k — 1 downto 0 do “ATTAA
2: Stable-sort L on the d-th string symbols. “GCGCG
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. “GGCGC

“TCTAT
“TCACC
“AGCTG
“ATCTA
“GTCTG
“TGGAC

L = [“AGCTGA”,
“ATCTAN”,
“GTCTGC”,
“ATTAAC”,
“GCGCGE”,
“GGCGCE”,
“TCTATG”,
“TCACCG”,
“TGGACG”,
“AGCTCT”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L = ["AGCT
1: for d := k— 1 downto 0 do “ATCT
2: Stable-sort L on the d-th string symbols. “GTCT
32 GBUCKETSORT(L, ryq) with rq(S) = S[d]. “ATTA

“GCGC
“GGCG
“TCTA
“TCAC
“TGGA
“AGCT

=4 & o o g o 0 O > >

—_ >

L = [“ATCTAA”,
“ATTAAC”,
“GGCGCG”,
“TCACCG”,
“TGGACG”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”,
“GCGCGE”,
“TCTATG”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["ATC
1: for d := k— 1 downto 0 do “ATT
2: Stable-sort L on the d-th string symbols. “GGC
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. “TCA

“TGG
“AGC
“AGC
“GTC
“GCG
“TCT

AA”,
AC”,
CG”,
6",
CG”,
cT,
GA”,
GC”,
GG,
76

—

L = [“ATTAAC",
“TGGACG”,
“TCTATG”,
“TCACCG”,
“GCGCGE”,
“GGCGCE”,
“ATCTA”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["AT
1: for d := k— 1 downto 0 do ‘16
2: Stable-sort L on the d-th string symbols. “TC
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. “TC

“GC
“GG
“AT
“AG
“AG
“GT

AAC”,
ACG”,
ATG”,
CCG”,
CGG”,
GCG”,
TAA”,
TCT?,
TGA”,
TGC”]

—

L = [“TCACCG”,
“GGCGCG”,
“ATCTAA”,
“AGCTCT”,
“AGCTGA”,
“GTCTGC”,
“TGGACG”,
“GCGCGG”,
“ATTAAC”,
“TCTATG”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=["7T
1: for d := k— 1 downto 0 do ‘G
2: Stable-sort L on the d-th string symbols. “A
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. “A

“A
“G
“T
“G
“A
“T

ACCG”, L = [“TCACCG”,
CGCG”, “HETEE,
CTAA”, “TCTATG”,
cTCT”, IR,
CTGA”, “AGCTCT”,
—
CcTGC”, “AGCTGA”,
GACG”, “TGGACG”,
GCGG”, “ATCTAA”,
TAAC”, “GTCTGC”,

TATG”] “ATTAAC”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L): L=1
1: for d := k— 1 downto 0 do :
2: Stable-sort L on the d-th string symbols. «
3: GBUCKETSORT(L, ry) with rg(S) = S[d]. «

CACCG”, L = [*AGCTCT?,
CGCGG”, “AGCTGA”,
CTATG”, “ATCTAA”,
GCGCG”, “ATTAAC,
GCTCT”, “GCGCGG”,
GCTGA”, - “GGCGCG”,
GGACG”, “GTCTGC”,
TCTAA”, “TCACCG”,
TCTGC”, “TCTATG”,

TTAAC"] “TGGACG”]

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSoRT(L): L = ["AGCTCT”,
1: for d := k- 1 downto 0 do “AGCTGA”,
2: Stable-sort L on the d-th string symbols. “ATCTAA”,
32 GBUCKETSORT(L, ryq) with rq(S) = S[d]. “ATTAAC”,

“GCGCGG”,
“GGCGCG”,
“GTCTGC”,
“TCACCG”,
“TCTATG”,
“TGGACG”].

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.
Algorithm RADIXSORT(L):
1: for d := k — 1 downto 0 do

2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.
Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do

2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.

Generalization: strings with variable lengths up-to-k

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Correctness
Invariant: In L, the suffix of the last k — (d + 1) symbols is sorted.

Generalization: strings with variable lengths up-to-k
Let S be a string of length |S| < k.
Interpret S[|S|],. .., S[k — 1] as symbols that come before all other symbols.

The book calls this least-significant-digit string sort.

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.
Algorithm RADIXSORT(L):
1: for d := k — 1 downto 0 do

2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?
> Optimal sorts perform ©(|L|log(|L|)) comparisons.
> Comparing two strings of length k costs at-most ©(k).

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?
> Optimal sorts perform ©(|L|log(|L|)) comparisons.
> Comparing two strings of length k costs at-most ©(k).

» For |L| random strings, comparisons are expected to cost ©(log,(|L])).

RADIXSORT: A special-purpose sort for strings

Assumption. We have strings of length k over alphabet A.

Algorithm RADIXSORT(L):
1: for d := k— 1 downto 0 do
2: Stable-sort L on the d-th string symbols.
3: GBUCKETSORT(L, ry) with rg(S) = S[d].

Is RADIXSORT worth it?

> Optimal sorts perform ©(|L|log(|L|)) comparisons.

> Comparing two strings of length k costs at-most ©(k).

» For |L| random strings, comparisons are expected to cost ©(log,(|L])).
O(k(|L| +|A[)) versus O(k|L|log(|L])) (or O(|L|log®(|L])) expected).

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp):

L = [“ATTAAC?, L = [“ATTAAC”,
“GCGCGG, “AGCTGA”,
“GGCGCG”, “ATCTAA”,
“TCTATG”, “GCGCGG”,
“TCACCG”, — “GGCGCG”,
“AGCTGA”, “GTCTGC”,
“ATCTAA”, “TCTATG”,
“CTCTGC”, “TCACCG”,

“TGGACG”] “TGGACG”].

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp):

L = [“ATTAAC?, L = [“ATTAAC”,
“GCGCGG, “AGCTGA”,
“GGCGCG”, “ATCTAA”,
“TCTATG”, “GCGCGG,
“TCACCG”, — “GGCGCG”,
“AGCTGA”, “GTCTGC”,
“ATCTAA”, “TCTATG”,
“CTCTGC”, “TCACCG”,

“TGGACG”] “TGGACG”].

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp):

L = [“ATTAAC?, L = [ATTAAC”,
“GCGCGG, “AGCTGA”,
“GGCGCG”, “ATCTAA”,
“TCTATG”, “GCGCGG”,
“TCACCG”, — “GGCGCG”,
“AGCTGA”, “GTCTGC”,
“ATCTAA”, “TCTATG”,
“CTCTGC”, “TCACCG”,

“TGGACG”] “TGGACG”].

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp).

After constructing the buckets with respect to ry,
we only need to resort the individual buckets.

Most-significant-digit string sort
RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp).

After constructing the buckets with respect to ry,
we only need to resort the individual buckets.

We will apply this idea recursively!

Most-significant-digit string sort

RADIXSORT does not try to minimize the number of sorting rounds:
if k is the length of the longest string in L, then RADIXSORT “reorders” the list k times.

Consider GBUCKETSORT(L, rp).

After constructing the buckets with respect to ry,
we only need to resort the individual buckets.

We will apply this idea recursively!

Algorithm MSD-SorT(L, d):
1: if d < kand |L| > 1 then
2: GBUCKETSORT(L, ryq) with rg(S) = S[d],
during which we further sort each
individual bucket separately.

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

22 buckets:=[[]|0<i<|A|l-1].

32 forallveldo

4 Append v to buckets[v[d]].

5 k:=0.

6: forall i:=0upto |A|—-1do

7 Kstart := k.

8 for all j := 0 upto |buckets[i]| do
9 L[k] := buckets[i][/].

10: k:=k+1.
11: MSD-SoRT(L[Kkstart - .- k), d + 1).

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“ATTAAC”,
“GCGCGG”,
EOREE,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“ATTAAC?,
“AGCTGA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):

1 if d < kand |L| > 1 then L=["
2. buckets = [[]]|0<i<|A|-1]. : %,
32 forallveldo “ ”
4: Append v to buckets[v[d]]. “TCTATG?,
5 k=0 TICACCE”
6: forall i:=0upto |A|—-1do . ”’
7. Kstart = k. AGCTGA”,
8: for all j := 0 upto |buckets[i]| do “ATCTAA”,
9: L[k] := buckets[i][]. “GTCTGC”,

10: k = k + 1. “TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“AGCTGA”,
“AGCTGA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L= [“AGCTGA”,
“AGCTGA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG™].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“AGCTGA”,
“AGCTGA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATTAAC”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,

“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATCTAA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,

3 i)
5

“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATCTAA”,
“ATCTAA”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart = k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATCTAA”,
“ATTAAC”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.

L = [“AGCTGA?,
“ATCTAA”,

3 2
5

“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [*AGCTGA”,
“ATCTAA”,
“ATTAAC”,
“TCTATG”,
“TCACCG”,
“AGCTGA”,
“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .. k), d + 1).

L = [“AGCTGA”,
“ATCTAN”,
“ATTAAC”,
“GCGCGG”,
“GGCGCG”,
“GTCTGC”,
“ATCTA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
=

11:

Y P Y oW

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .- k), d + 1).

L = [“AGCTGA”,
“ATCTAA”,
“ATTAAC”,

“ATCTAA”,
“GTCTGC”,
“TGGACG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):
1: if d < kand |L| > 1 then

-
4

11:

Y P ¥ 28 W

buckets :=[[] |0 < i< |A|-1].
forall ve Ldo
Append v to buckets[v[d]].
k:=0.
for all j := 0 upto |A| - 1do
kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
k:=k+1.
MSD-SoRT(L[Kkstart - .. k), d + 1).

L = [“AGCTGA”,
“ATCTAA”,
“ATTAAC”,
UEETEET,
“GGCGCG”,
“GTCTGC”,
“TGGACG?,
“TCTATG?,
“TCACCG”].

Most-significant-digit string sort

Algorithm MSD-Sort(L, d):

1 if d < kand |L| > 1 then L = ["AGCTGA”,
22 buckets:=[[]|0<i<|A|l-1]. “ATCTAA”,
3 forallveldo “ATTAAC”,
4: Append v to buckets[v[d]]. “GCGCGG?,
5 k :=0. « .
6: forall i:=0upto |A|—-1do “GGCGCG ’
7. Kstart = k. GTCTGC”,
8: for all j := 0 upto |buckets[i]| do ¢ ”,
9: L[k] := buckets[i][/]. & »

k = k+ 1 «
11: MSD-SoRT(L[Kkstart - .- k), d + 1).

-
=

Most-significant-digit string sort

Algorithm MSD-Sort(L, d): Finetuning
1: if d < kand |L| > 1 then We end up with many arrays buckets
buckets .= [[]|0< i< |A|-1]. that each hold |A| lists!
32 forallveldo
4 Append v to buckets[v[d]].
5 k:=0.
6: forall i:=0upto |A|—-1do
7
8
9

>

kstart := k.
for all j := 0 upto |buckets[i]| do
L[k] := buckets[i][/].
10: k:=k+1.
11: MSD-SoRT(L[Kkstart - .- k), d + 1).

Most-significant-digit string sort

Algorithm MSD-Sort(L, d): Finetuning
1: if |L| < |A| then We end up with many arrays buckets
2. Use another algorithm to sort L. that each hold |A| lists!
3: elseif d < kand |L| > 1 then
4: buckets:=[[]]0<i<|A|l-1].
5: forallve ldo
6: Append v to buckets[v[d]].
7 k :=0.
8: forall i:=0upto |A|—-1do
9: kstart = k.
10: for all j := 0 upto |buckets[i]| do
11: L[k] := buckets[i][/].
12: k:=k+1.

13: MSD-SoRT(L[Kstart - .. k), d + 1).

Most-significant-digit string sort

Algorithm MSD-Sort(L, d): Finetuning
1: if |L| < |A| then We end up with many arrays buckets
2. Use another algorithm to sort L. that each hold |A| lists!
3: elseif d < kand |L| > 1 then
4: buckets:=[[]]0<i<|A|l-1]. Complexity
5: forallve ldo
6: Append v to buckets[v[d]]. Attt (L) = A
7 k :=0.
8: forall i:=0upto |A|—-1do
9: kstart = k.

10: for all j := 0 upto |buckets[i]| do

11: L[k] := buckets[i][/].

12: k:=k+1.

13: MSD-SoRT(L[Kstart - .. k), d + 1).

Sorting: Best practices

So which sort algorithm is the best?

Sorting: Best practices

So which sort algorithm is the best?
Depends on the to-be-sorted input.

Sorting: Best practices

So which sort algorithm is the best?
Depends on the to-be-sorted input.

Often, your standard sort algorithm will be sufficient.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

>

>
>
>

strings of length N can be added in ©(N);

strings of length N can be removed in ®(N);

checking whether a string of length N is in the set costs @(N);

one can efficiently iterate over all strings in the set (in sorted order).

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

A Trie is a set representation that can hold strings over A such that:

>

>
>
>

strings of length N can be added in ©(N);

strings of length N can be removed in ®(N);

checking whether a string of length N is in the set costs @(N);

one can efficiently iterate over all strings in the set (in sorted order).

We have seen tries with A = {0, 1} — BSSET in Example Assignment 3.

Tries: special-purpose sets and dictionaries
Assumption We have an alphabet A with M = |A| symbols.

Each node nin a trie T over A = {07, ...,0m} has
> aflag n.end that is true if the node n represents a string in T;
> at-most M edges to children labeled o7, .. ., opm.

Tries: special-purpose sets and dictionaries
Assumption We have an alphabet A with M = |A| symbols.

Each node nin a trie T over A = {07, ...,0m} has
> aflag n.end that is true if the node n represents a string in T;
> at-most M edges to children labeled o7, .. ., opm.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

131)

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

C

end end

©wy o« .
, AC

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

C

end end

©wy o« » 9
, AC”, "AT

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

C

end [[]]] end
“’9’ “AC”’ “AT”’ “ATC”

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

€y« » 9« 9 K~
, AC”, "AT”, "ATC”, "G

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

“”, “AC”, “AT”, “ATC”, “G”, “GAA”

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

“’9’ “AC”, “AT”, “ATC”, “G”, “GAA”, “GAT”.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Adding a string
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Adding a string “CAT”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Adding a string “CAT”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Adding a string “CAT”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Adding a string “CAT”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Adding a string “CAT”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Adding a string “GA”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Adding a string “GA”
» Follow-or-make a path according to the string symbols.

» Set n.end on the last node n on this path.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “GA”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Removing a string “GA”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Removing a string “GA”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Removing a string “CAT”
» Follow a path according to the string symbols to node n and unset n.end.
» Remove nif n has no children.

» Recurse to the ancestors m: remove m if m has no children and m.end is unset.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Printing all strings in-order
Perform a pre-order traversal starting at the root. For each node n:

> print the path from root to node n if n.end is set;

» pre-order traverse all children in-order of alphabet symbols.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Printing all strings in-order with prefix W

» Follow a path according to the string symbols of W to node m.

» Perform a pre-order traversal starting at the node m.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

Finetuning

» To deal with big alphabets:
use a dictionary with A-symbols as keys at each node to store all edges.

Tries: special-purpose sets and dictionaries

Assumption We have an alphabet A with M = |A| symbols.

end

end [[]]]

Finetuning

» To deal with big alphabets:
use a dictionary with A-symbols as keys at each node to store all edges.

» To compress non-branching paths: nodes can represent strings of symbols.

Data compression

Input

Data compression

COMPRESS
algorithm

Compressed Data

gt (e.g., .zip)

9/20

Data compression

COMPRESS EXTRACT
algorithm algorithm

Compressed Data

gt (e.g., .zip)

Output

Data compression

COMPRESS EXTRACT
algorithm algorithm

Compressed Data

gt (e.g., .zip)

Output

Lossless compression: The input must be equivalent to the output!

Limits of compression

Theorem
No algorithm A can compress every input I.

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof
Intuituin 1 If A can compress every input, then |A(A(]))| < |A(])].

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].
Proof

Intuituin 1 If A can compress every input, then |A(A(]))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof

Intuituin 1 If A can compress every input, then |A(A(]))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].
Proof

Intuituin 1 If A can compress every input, then |A(A(]))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof

Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

> We can compress at-most 2M values to a size of M < N bits.

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof

Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

> We can compress at-most 2M values to a size of M < N bits.

» We can compress a small fraction é—,AVA = 2M=N of all inputs to M bits.
E.g., we can compress at-most 232 out of 2% values from 8 B to 4 B.

Limits of compression

Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].

Proof

Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

> We can compress at-most 2M values to a size of M < N bits.

» We can compress a small fraction é—,AVA = 2M=N of all inputs to M bits.
E.g., we can compress at-most 232 out of 2% values from 8 B to 4 B.
Doing so will require more-than 8 B for some other inputs.

Limits of compression
Theorem
No algorithm A can compress every input | into compressed data A(I) with |A(l)| < |I].
Proof

Intuituin 1 If A can compress every input, then |A(A()))| < |A(])].
Repeaded application of A on the input will eventually lead to zero bits!

Intuition 2 Consider all possible inputs of N bits: we have 2" distinct values.
We need at-least 2V distinct outputs of A on these inputs.

> We can compress at-most 2M values to a size of M < N bits.

» We can compress a small fraction é—,AVA = 2M=N of all inputs to M bits.
E.g., we can compress at-most 232 out of 2% values from 8 B to 4 B.
Doing so will require more-than 8 B for some other inputs.

Conceptually: We need structure in the input to be able to reliably compress that input!

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.

From bits to bytes
We can store four DNA characters in one byte. Can we store S in 2B using the above?

A simple structure: Small alphabets
Consider DNA strings over the alphabet A = {A, C, T, G}.

An usual DNA string S represented by N characters takes up NB = 8Nbit.

How many bytes do we need to represent S?
> We have |A| = 4 distinct values.
> We can represent 4 distinct values with 2 bit: “00”, “01”, “10”, and “11”.
> A single byte holds 8 bit.

Hence, we need at-most %V = 2Nbit.
A compression ratio of 0.25.

From bits to bytes
We can store four DNA characters in one byte. Can we store § in %B using the above?

No! Where in the last byte would our string end?
E.g., “ACTGA” takes 10 bit (1.25 B).

A common structure: Repetition
Consider the following string of bits:

00000000000000011111110000000011111111111000000000011

A common structure: Repetition
Consider the following string of bits:
00000000000000011111110000000011111111111000000000011

15 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

A common structure: Repetition
Consider the following string of bits:
00000000000000011111110000000011111111111000000000011

15 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010

2 0010

A common structure: Repetition
Consider the following string of bits:

111101111000101110100010
W/\/./\/.W

Os 1s ©0s 1s 0s 1s

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010
2 0010

From 15+ 7 + 8+ 11+ 10 + 2 = 53 bit to 6 - 4 = 24 bit.

A common structure: Repetition
Consider the following string of bits:
00000000000000000011111110000000011111111111000000000011

17 zeros 7 ones 8 zeros 11 ones 10 zeros2 ones

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010

2 0010

A common structure: Repetition
Consider the following string of bits:

11110000001001111000101110100010
MWW

Os 1s ©s 1s ©@s 1s 0@s 1s

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010
2 0010

From 17+ 7 + 8 + 11+ 10 + 2 = 55 bit to 8 - 4 = 32 bit.

A common structure: Repetition
Consider the following string of bits:

11110000001001111000101110100010
~—" "N

Os 1s ©s 1s ©@s 1s 0@s 1s

Number (in 4-bit binary)

15 1111

7 0111
8 1000
11 1011
10 1010
2 0010

Run-length encoding: simple idea with good results on bitmaps.

Another common structure: Using symbol frequencies

Consider simple text written in the English language.

Another common structure: Using symbol frequencies

Consider simple text written in the English language.
The text uses the following 66 symbols “frequently”:
> Digits 0123456789: 10 symbols.

€ _ 3 «&_9

> Lower-case letters “a”-"z": 26 symbols.
> upper-case letters “A”-“Z”: 26 symbols.
>

IR T N

Punctuation “ 7, 7, 7, “1”: 4 symbols.

Another common structure: Using symbol frequencies

Consider simple text written in the English language.
The text uses the following 66 symbols “frequently”:
> Digits 0123456789: 10 symbols.
> Lower-case letters “a”-“z”: 26 symbols.
> upper-case letters “A”-“Z”: 26 symbols.
R BTN

» Punctuation “ 7, 2, “7, “I”: 4 symbols.
Stored normally, each symbol occupies 1B = 8 bit.

Another common structure: Using symbol frequencies

Consider simple text written in the English language.
The text uses the following 66 symbols “frequently”:
> Digits 0123456789: 10 symbols.

> Lower-case letters “a”—“z”: 26 symbols.
> upper-case letters “A”— “Z” 26 symbols.
» Punctuation “”, “”, “, “1”: 4 symbols.

Stored normally, each symbol occupies 1B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Another common structure: Using symbol frequencies

Consider simple text written in the English language.
The text uses the following 66 symbols “frequently”:
> Digits 0123456789: 10 symbols.

> Lower-case letters “a”—“z”: 26 symbols.
> upper-case letters “A”— “Z” 26 symbols.
» Punctuation “”, “”, “, “1”: 4 symbols.

Stored normally, each symbol occupies 1B = 8 bit.

Even in these “frequent” symbols, some are much rarer than others: “x” versus “e”.

Idea. Use fewer bits for frequent characters, more for rare characters.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6
‘n’ 5
£ 4
‘c’ 3
‘s’ 1
‘o 1

The string has 6 distinct symbols: at-least 3 bits if all the same length.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 000
‘n’ 5 001
£ 4 010
‘c’ 3 011
‘s’ 1 100
N 1 101

The string has 6 distinct symbols: at-least 3 bits if all the same length.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

anna can S can a can !
01100001010010010100000010111

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

anna can S can a can !
01100001010010010100000010111

01100001010010010100000010111

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.
01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.
Y

a?

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)
‘n’ 5 1
£ 4 00
‘c’ 3 01
‘s’ 1 10
‘o 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.

01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.

\/
c?

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6)

‘n’ 5 1 - .,
© 4 00 a n
(G 3 01

‘s’ 1 10 £ ‘c’ ‘s’ ‘e
‘e 1 11

Attempt 1. The most-frequent symbols get the shortest bit patterns.
01100001010010010100000010111 «— 29 bit instead of at-least 60 bit.

Issue. The bit pattern of one symbol (e.g., a) is a prefix of other symbols!

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

an na cC an S cC an a cC an !
0101001101110 0 10 110 11110 1110 0 10 110 0 110 1110 @ 10 11111

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

an na cC an S cC an a cC an !
0101001101110 0 10 110 11110 1110 0 10 110 0 110 1110 @ 10 11111

01010011011100101101111011100101100110111001011111 « 50 bit.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.

01010011011100101101111011100101100110111001011111 «— 50 bit.
Y

a

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
01010011011100101101111011100101100110111001011111 « 50 bit.

(] (O 9

anna‘ CcC an S CcC an a CcC an

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Attempt 2. The most-frequent symbols get the shortest prefix-free bit patterns.
01010011011100101101111011100101100110111001011111 « 50 bit.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ ()
‘n’ 10
< 110
‘c’ 1110
‘s’ 11110

v 11111

Questions. How to construct the bit patterns and are these patterns optimal?

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 0
‘n’ 5 10
£ 4 110
‘e 3 1110
‘s’ 1 11110
‘o 1 11111

Questions. How to construct the bit patterns and are these patterns optimal?

6-1+5-2+4-3+3-4+1-5+1-5=50.

Another common structure: Using symbol frequencies

Consider the string “anna can scan a can!”.

Symbol Count Bit pattern

‘a’ 6 00
‘n’ 5 01
£ 4 10
‘e 3 110
‘s’ 1 1110
‘o 1 1111

Questions. How to construct the bit patterns and are these patterns optimal?

6-2+5-2+4:2+3-3+1-441-4=47.

Huffman coding

Problem
Given an alphabet A and symbol-frequencies f : A — [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Huffman coding

Problem
Given an alphabet A and symbol-frequencies f : A — [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more
Assuming symbols counts in S agree with f.

Huffman coding

Problem
Given an alphabet A and symbol-frequencies f : A — [0, 1],
Produce prefix-free bit patterns for all symbols in A such that these patterns are optimal.

Optimal No other bit patterns will compress strings S over A more
Assuming symbols counts in S agree with f.

Algorithm HurFFMANPFTRIE(f):
1: Q :=a min-priority queue.
2: for all 0 € A do
3: Make a leaf-node nlabeled o.
Add (n, f(0)) to Q with priority f(o).
while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled @, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y R F QPP e

Huffman coding

Symbol Count Frequency

[GO I S B e)
8[-B|-8|B|~8[S]on

Algorithm HUurFMANPFTRIE(f):

1:

Q := a min-priority queue.

2: forall 0 € A do

3:

I

Make a leaf-node n labeled o.

Add (n, f(o)) to Q with priority f(o).

Huffman coding

Symbol Count Frequency T T
‘a’ 6 26—0
voos g
o : y
c 3 20
‘s’ 1 21—0
‘v 1 3%

Algorithm HUurFMANPFTRIE(f):

'v;/.hile |Q| > 2do
(no, po) := DELMIN(Q), (7, p1) := DELMIN(Q).

Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Create a node n with children ny labeled 0, n; labeled 1.

Huffman coding

Symbol Count Frequency T T
‘a’ 6 26—0
voos g
. : y
C 3 20
‘s’ 1 21—0
‘v 1 3%

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Huffman coding

Symbol Count Frequency - -, e To
¢ @ " ¢ Q 1
a 6
‘n,

‘S’ ‘!9

_ = W N U
8[-8|-BwB|~B[E]or

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Huffman coding

Symbol Count Frequency e oo
3 b ° " 0 1
a 6
‘n,

_ = W N U
8[-8|-BwB|~B[E]or

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Huffman coding

Symbol Count Frequency - -

[GO I S B e)
8[-B|-8|B|~8[S]on

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y % F @ @

Huffman coding

Symbol Count Frequency
- 0 1 0
. ; j\ j
‘n < 20 o -

_ = W N U
8[-8|-BwB|~B[E]or

Algorithm HUurFMANPFTRIE(f):

while |Q| > 2 do
= DELMIN(Q), = DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority po + p;.
return nwith (n, p) := DELMIN(Q).

Y @ F @ @

Huffman coding

Symbol Count Frequency

T 3
o 7
s 230
‘C’ 3 21—0
‘S 1 21—0
P 1 T

Algorithm HurFMANPFTRIE(f):

while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority py + p;.

return nwith (n, p) ;== DELMIN(Q).

Y R e

Huffman coding

Symbol Count Frequency

T 3
o 7
s 230
‘C’ 3 21—0
‘S 1 21—0
P 1 T

Algorithm HurFMANPFTRIE(f):

while |Q| > 2 do
(no, po) := DELMIN(Q), (1, p1) := DELMIN(Q).
Create a node n with children ny labeled 0, n; labeled 1.
Add node (n, py + p1) to Q with priority py + p;.

return n with (n, p) ;= DELMIN(Q).

Y R e

Huffman coding

Property 1
Let 0 € A be the symbol with lowest frequency f.
Any optimal prefix-free trie for A, f can be changed such that the path to o is longest.

Huffman coding

Property 1
Let 0 € A be the symbol with lowest frequency f.
Any optimal prefix-free trie for A, f can be changed such that the path to o is longest.

Huffman coding

Property 2

Let 01, 02 € A be the symbols with lowest frequency f.

Any optimal prefix-free trie for A, f can be changed such that
symbols a4, o, are children of the same node.

Huffman coding

Property 2

Let 01, 02 € A be the symbols with lowest frequency f.

Any optimal prefix-free trie for A, f can be changed such that
symbols a4, o, are children of the same node.

O 09y 01 07

Huffman coding

Property 3
Let 01, 03 € A be symbols represented by children ny, n; of node nin trie T.
Let T’ be the prefix-free trie for A’, f" with

> A=A\ {02}

> f={o f(o) |0 € A\{o1,02}} U{o1 > f(o1) + f(02)}; and

» leafs ny, n; removed from n and n made to represent oy.

The trie T is optimal for A, f if and only if T is optimal for A’, f’.

01 02

Huffman coding

Property 3
Let 01, 03 € A be symbols represented by children ny, n; of node nin trie T.
Let T’ be the prefix-free trie for A’, f" with

> A=A\ {02}

> f={o f(o) |0 € A\{o1,02}} U{o1 > f(o1) + f(02)}; and

» leafs ny, n; removed from n and n made to represent oy.

The trie T is optimal for A, f if and only if T is optimal for A’, f’.

01 02

Huffman coding

Symbol Count Frequency

) 6

o a3

S Z

o 3 3

o :

S]

! 1 T
Theorem e P
The HUFFMANPFTRIE algorithm builds an optimal prefix-free code.
Proof (sketch)

HuUFFMANPFTRIE follows Property 1-3.

Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.
> We can generalize these ideas to frequent sequences of symbols.

> Tries can be used to efficiently manage frequency data for substrings in an input.
» Challenge: which substrings to consider?
E.g., fixed length, maximum length,

Beyond Huffman: Frequent strings

Huffman looks at frequent symbols from an alphabet.
> We can generalize these ideas to frequent sequences of symbols.

> Tries can be used to efficiently manage frequency data for substrings in an input.
» Challenge: which substrings to consider?
E.g., fixed length, maximum length,

Many variations of this idea used in practice, e.g., .zip, .gif,....

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43

an example o f words
example

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43

an example o f words
example

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43

an example o f words
example

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43

an example o f words
example

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BAsICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “example”

43

an example o f words
example

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43 ”»

an example o f words
great

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
great

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
great

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
g rea

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
gre

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:=0upto |S|-1do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
gr

”»

Basic substring search: Searching a needle in a haystack
Problem

Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BAsICSTRINGSEARCH(S, P):

1: for i := 0 upto do
2. if pattern P starts at S[/] then
3: return i.

Searching P = “great”

43

an example o f words
gr

”»

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BAsICSTRINGSEARCH(S, P):
1: for i:= 0 upto |S| - |P| do
2. if pattern P starts at S[/] then
3: return i.

Complexity

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BAsICSTRINGSEARCH(S, P): Algorithm MATCHSTRING(S, P, i):
1: for i:= 0 upto |S| - |P| do 4: for j := 0 upto |P| - 1do
2. if MATCHSTRING(S, P, /) then 5. if S[i+j] # P[j] then
3: return 1. 6: return false.
7: return true.

Complexity

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BAsICSTRINGSEARCH(S, P): Algorithm MATCHSTRING(S, P, i):
1: for i:= 0 upto |S| - |P| do 4: for j := 0 upto |P| - 1do
2. if MATCHSTRING(S, P, /) then 5. if S[i+j] # P[j] then
3: return 1. 6: return false. e(7D)
7: return true.

Complexity

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:= 0 upto |S| - |P| do
2 if MATCHSTRING(S, P, i) then } @((|S| - |P])|P])
3: return .

Complexity

Basic substring search: Searching a needle in a haystack

Problem
Given strings S (the haystack) and P (the needle or pattern),
return the first position in S at which P occurs (if any).

Algorithm BASICSTRINGSEARCH(S, P):
1: for i:= 0 upto |S| - |P| do
2 if MATCHSTRING(S, P, i) then } @((|S| - |P])|P]) = ©(|S||P|)
3: return .

Complexity

Substring search: Room for improvement

Searching P = “string”

143

a strong string?’

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
string

Substring search: Room for improvement

Searching P = “string”

a strong string?’
string

Substring search: Room for improvement

Searching P = “string”

a strong string?’
string

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
tring

Substring search: Room for improvement

Searching P = “string”

a strong string?’
string

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
CACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Substring search: Room for improvement

Searching P = “ACACGT”
“ACACACACGT?”
ACACGT

Encode search patterns as an automaton
Finite automata
A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Typically, we refer to nodes as states and edges as transitions.

Encode search patterns as an automaton
Finite automata
A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Running a finite automaton
We can use a string as input to the automaton to decide which path to follow.

Encode search patterns as an automaton

Finite automata

A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.

“ ACACGT”.

Encode search patterns as an automaton
Finite automata
A finite automaton is a graph with
> asingle initial node;
» zero-or-more final nodes;

> edges labeled with symbols.

Running a finite automaton

We can use a string as input to the automaton to decide which path to follow.
For efficiency: we want a deterministic automaton: an automaton without choices!

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

143

CACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

143

A ACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

143

AC CACACGT?”

Encode search patterns as an automaton

ACA ACACGT?

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACGT?”

Encode search patterns as an automaton

Searching P = “ACACGT”

“ACACACACG

2

Encode search patterns as an automaton

Complexity of running a deterministic finite automaton with input S
> Always in exactly one state.
> We perform at-most ©(|S|) state transitions in the automaton.

> Need efficient representation of the transitions (per state): e.g., hash table.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

More general search patterns: Regular expressions
A regular expression describes a set of strings.

> () describes 0.
> o € A describes {o}.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

> () describes 0.
> o € A describes {o}.

Now let e, ey, e; be regular expressions describing sets R, Ry, R;.
(e) desribes R.

ere; describes { CONCATENATE(S1,Sy) | S1€ R A S, € Ry}
e1 | e describes Ry U R,.

€* describes any sequence of strings in R.

v

vvyy

More general search patterns: Regular expressions

A regular expression describes a set of strings.

> () describes 0.
> o € A describes {o}.

Now let e, ey, e; be regular expressions describing sets R, Ry, R;.

> (e) desribes R.
> ee describes {CONCATENATE(S1,32) | S1 € R A Sz S Rz}
> ¢ | e, describes Ry U R,.
» ¢* describes any sequence of strings in R.
Examples

moose | mouse

sub®section

More general search patterns: Regular expressions
A regular expression describes a set of strings.
» () describes 0.
> o € A describes {c}.

Now let e, ey, e; be regular expressions describing sets R, Ry, R;.
> (e) desribes R.
> eje; describes {CONCATENATE(S1,Sy) | S1€ R A S, € Ry}
> ¢ | e, describes Ry U R,.
» ¢* describes any sequence of strings in R.

Examples

moose | mouse

sub®section

Claim: Every regular expression is equivalent to a deterministic finite automaton
See SFWRENG 2FA3: Discrete Mathematics with Applications II.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton
See SFWRENG 2FA3: Discrete Mathematics with Applications II.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton
See SFWRENG 2FA3: Discrete Mathematics with Applications II.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Claim: Every regular expression is equivalent to a deterministic finite automaton
See SFWRENG 2FA3: Discrete Mathematics with Applications II.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

More general search patterns: Regular expressions
A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

SHetede oS

Searching P = “sub®section”
43

a substring in a subsection?”

More general search patterns: Regular expressions
A regular expression describes a set of strings.

Deterministic finite automata can grow very large

Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

t i 0 n
C-O-O-CO-0+
Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

« 12

a substring in a subsection

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

Setede e

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHeteTe oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetede oS

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetedeles

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Deterministic finite automata can grow very large
Alternatively, you can run a nondeterminstic finite automaton: an automaton with choices!
Lower costs to construct the automaton, higher costs to run them.

all

SHetedeles

Searching P = “sub®section”

«

a substring in a subsection?”

Idea. Keep track of the set of states we can be in while walking to the string.
(A powerset construction guided by the string one is searching in).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions
> Running an N-state deterministic finite automaton on S can be done in ©(|S)).

> Running an N-state nondeterministic finite automaton on S can be done in ©(N|S)).

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions
> Running an N-state deterministic finite automaton on S can be done in ©(|S)).
> Running an N-state nondeterministic finite automaton on S can be done in ©(N|S)).

» For single words, a deterministic finite automaton can be easily constructed:
see the Knuth-Morris-Pratt algorithm in the book.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

>

>

>

Running an N-state deterministic finite automaton on S can be done in O(|S]).
Running an N-state nondeterministic finite automaton on S can be done in ©(N|S)).

For single words, a deterministic finite automaton can be easily constructed:
see the Knuth-Morris-Pratt algorithm in the book.

Automata-based searching in string can be very fast:
core component in lexers, parsers, and compilers.

More general search patterns: Regular expressions

A regular expression describes a set of strings.

Final remarks on regular expressions

>

>

>

Running an N-state deterministic finite automaton on S can be done in O(|S]).
Running an N-state nondeterministic finite automaton on S can be done in ©(N|S)).

For single words, a deterministic finite automaton can be easily constructed:
see the Knuth-Morris-Pratt algorithm in the book.

Automata-based searching in string can be very fast:

core component in lexers, parsers, and compilers.

Many RegExp libraries are regular expression like: they support non-regular features.
Consequently, many such libraries use shamefully slow backtracking algorithms:
Worst-case exponential complexity, even when searching for simple patterns.

Substring search in less-than ©(|S]) steps

Searching P = “great”

143

an example o}
great

How can | skip checking most letters in S?

.F

words

£

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an example o f words
great

How can I skip checking most letters in §?
Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then

> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an example o f words
great

How can I skip checking most letters in §?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then
> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an exampl o f words
gr at

How can I skip checking most letters in §?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then
> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).
Based on the , decide where to start looking.

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an example o f words
great

How can I skip checking most letters in §?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then
> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).
Based on the , decide where to start looking.

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an example o f words
g e at

How can I skip checking most letters in §?

Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then
> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).
Based on the , decide where to start looking.

Substring search in less-than ©(|S]) steps

Searching P = “great”

143

an example of words?’

great

How can I skip checking most letters in §?
Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then

> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).

Based on the , decide where to start looking.

> If the symbols match (never in this example): we might have found pattern P.

Inspect from the end-of-P to the begin to check.

Substring search in less-than ©(|S]) steps

Searching P = “great”

143

an example of words?’

great

How can I skip checking most letters in §?
Assume we checked up-till position i.

Observation. If we compare the last symbol from our pattern with S[i+ |P| — 1], then

> We see a symbol that is not even in P: P cannot occur in S[i...i+ |P|).

> We see a symbol that is in P: P could have started somewhere in S[i...i+ |P]).

Based on the , decide where to start looking.

> If the symbols match (never in this example): we might have found pattern P.

Inspect from the end-of-P to the begin to check.
When it does not matches: another opportunity to jump!

Substring search in less-than ©(|S]) steps

Searching P = “great”

143 £

an example o f words
great

How can I skip checking most letters in §?
With some preprocessing on P one can precompute how to jump around optimally:
the Boyer-Moore algorithm.

