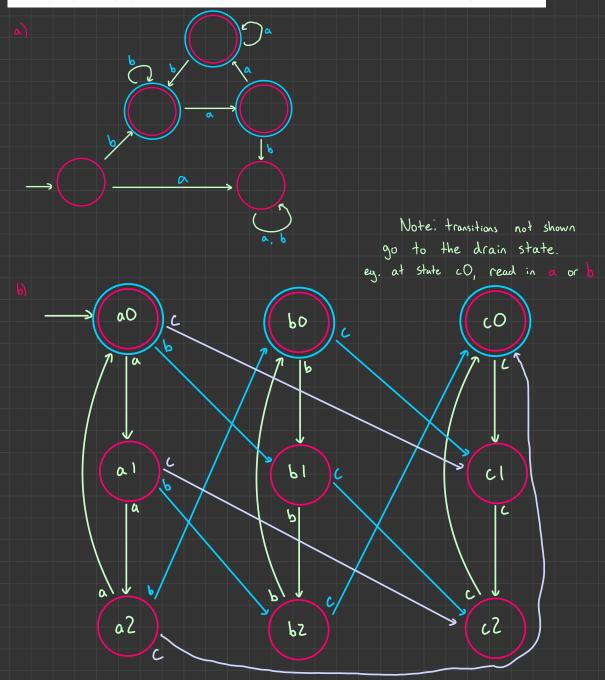
## 2FA3 - Assignment 1

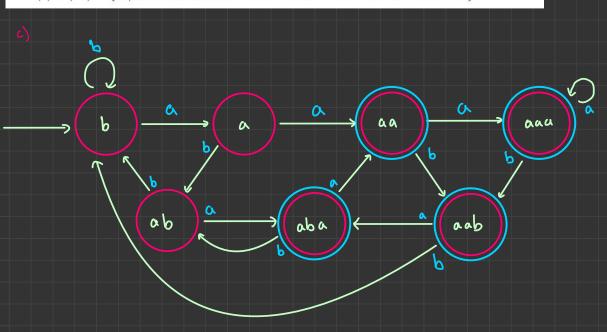
Submitted via Avenue. Due Feb 16th, 11:59pm. Note: I indicate what each question if worth by square brackets, i.e. [k].

- 1. For each statement below, state if it is true of false, and explain why. The explanation does not need to be a formal proof, but the argument should be sound.[6]
  - (a) If  $L_1$  is regular and  $|L_1| = k$  and  $L_2$  is non-regular, then  $L_1 \cap L_2$  is regular.
  - (b) If  $L_1$  is regular and  $L_2$  is non-regular, then  $L_1 \cup L_2$  is regular.
  - (c)  $\forall L_1$  such that  $L_1$  is a non-regular language,  $\exists L_2$  such that  $L_2$  is regular and  $L_1 \subseteq L_2$ .


a) True.  $L_1 \cap L_2 = L_3$  will give  $L_3 \subseteq L_1$  because of the intersection. An example of when a subset of a regular haymage is non-regular is  $(a^*b^*)_1$  the subset being  $L_2(a^*b^*)a^*b^*$ . However,  $|L_1| = k_1$ , meaning there is a fixed number of strings that are in  $L_1$ , while  $(a^*b^*)$  has an infinite set of accepted strings.

Since L, must accept a fixed number of strings, the graph of the DFA M where  $\mathcal{L}(M) = L_1$  must not contain a cycle. If  $L_2 \subseteq L_1$ , the DFA  $M_3$  such that  $\mathcal{L}(M_3) = L_3$  must be possible to create as it will contain logic from M, but any removals from the language can be dealt with by deleting paths or creating new branching paths.

b) False. If Li= { a b }, that is, it only accepts the string ab, and Li= { a^ b^ | n 203, L, U Li = { a^ b^ | n 203, which is known to be non-regular.

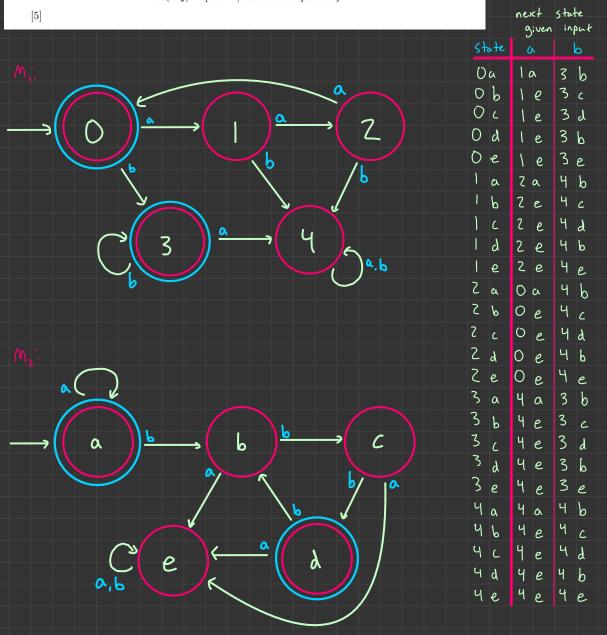

c) True. For all non-regular languages L, they can be seen as a subset of 2<sup>th</sup>. However, 2<sup>th</sup> is a regular language, and it can be moduled by a OFA which has one state, an accepting state, and loops to itself on all inputs. Thus, 2<sup>th</sup> is a regular language that is a superset for all non-negular languages. 2. Create a DFA M, such that:

- (a) M accepts all strings which begin with b but do not contain the substring bab. [2]
- (b)  $\mathcal{L}(M) = \{a^i b^j c^k \mid i+j+k \text{ is a multiple of } 3\}, \Sigma = \{a, b, c\}$  [3]
- (c)  $\mathcal{L}(M) = \{x \mid \text{There are at least two a's in the last three characters of } x\}$



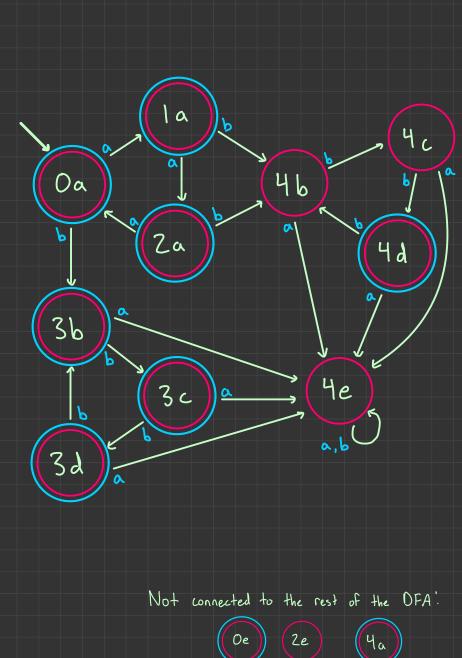
2. Create a DFA M, such that:

(c)  $\mathcal{L}(M) = \{x \mid \text{There are at least two a's in the last three characters of } x\}$ 




3. Via product construction, create a DFA M, such that

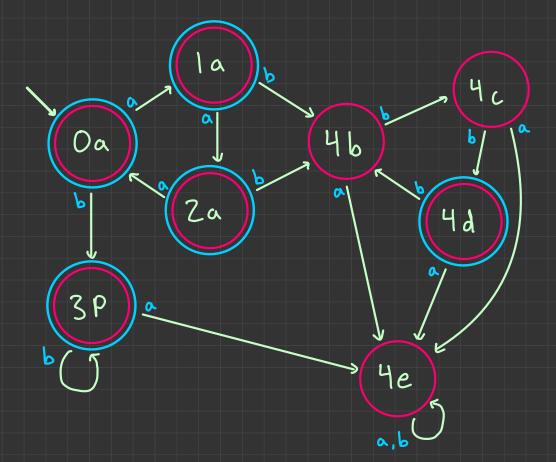
 $\mathcal{L}(M) = \{a^n b^m \mid n \text{ or } m \text{ is a multiple of } 3\}$ 

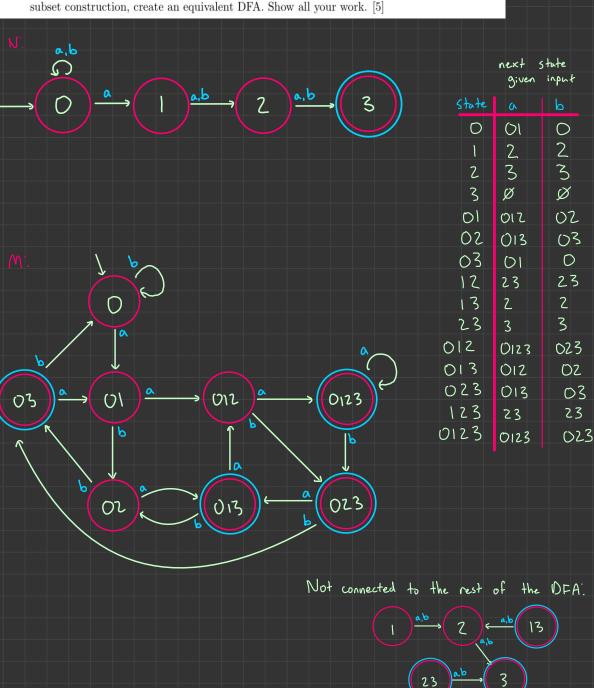

First create two machine: one where n is a multiple and one where m is a multiple of three. Then create the "union" machine. When I say create two machines, I mean an  $M_1$  and  $M_2$  such

 $\mathcal{L}(M_1) = \{a^n b^m \mid n \text{ is a multiple of } 3\}$  $\mathcal{L}(M_2) = \{a^n b^m \mid m \text{ is a multiple of } 3\}$ 



| states                                                                                                                                                                             | 5 W                                                  | rhic | h                                                                                                                                                                                              | are                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| reached                                                                                                                                                                            | a                                                    | e c  | los                                                                                                                                                                                            | sed                        |
|                                                                                                                                                                                    | next                                                 |      | state<br>input<br>3 3 3 6<br>3 3 6<br>3 6<br>3 6<br>3 6<br>4 4 4 6<br>6<br>6<br>7<br>3 6<br>6<br>7<br>3 6<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |                            |
|                                                                                                                                                                                    | given                                                |      | input                                                                                                                                                                                          |                            |
| State                                                                                                                                                                              | Ŵ                                                    |      | b                                                                                                                                                                                              |                            |
|                                                                                                                                                                                    | 1 a<br>1 a<br>1 a<br>1 a<br>1 a<br>1 a<br>1 a<br>1 a |      | 3                                                                                                                                                                                              | b                          |
| 06                                                                                                                                                                                 | +                                                    | e    | 3                                                                                                                                                                                              | <del>.</del>               |
| $\Theta_{c}$                                                                                                                                                                       | 1                                                    | e    | 3                                                                                                                                                                                              | <del>ک</del>               |
| <del>0 d</del>                                                                                                                                                                     | t                                                    | e    | 3                                                                                                                                                                                              | 6                          |
| 0 e                                                                                                                                                                                | 1                                                    | e    | 3                                                                                                                                                                                              | e                          |
| la                                                                                                                                                                                 | ζ                                                    | a    | 4                                                                                                                                                                                              | b                          |
| + 6                                                                                                                                                                                | 2                                                    | E    | -+                                                                                                                                                                                             | C                          |
| <del>1 :</del>                                                                                                                                                                     | 2                                                    | e    | 4                                                                                                                                                                                              | à                          |
| <del>  à</del>                                                                                                                                                                     | 2                                                    | é    | 4                                                                                                                                                                                              | 6                          |
| Ιe                                                                                                                                                                                 | 2                                                    | e    | Ч                                                                                                                                                                                              | e                          |
| 0 e<br>1 e<br>1 e<br>2 c<br>2 c<br>2 c<br>2 c<br>3 c<br>4 e<br>4 c<br>4 e<br>4 c<br>4 e<br>2 c<br>2 c<br>3 c<br>3 c<br>4 e<br>4 c<br>4 c<br>4 c<br>4 c<br>4 c<br>4 c<br>4 c<br>4 c | 0                                                    | a    | Ч                                                                                                                                                                                              | b                          |
| <u> 2 %</u>                                                                                                                                                                        | 0                                                    | e    | +                                                                                                                                                                                              | ٢                          |
| <del>? :</del>                                                                                                                                                                     | 0                                                    | E    | 4                                                                                                                                                                                              | र्द                        |
| 2 à                                                                                                                                                                                | Û                                                    | e    | +                                                                                                                                                                                              | 6                          |
| Ze                                                                                                                                                                                 | 0                                                    | e    | Ч                                                                                                                                                                                              | e                          |
| 3 â                                                                                                                                                                                | 4                                                    | a    | 3                                                                                                                                                                                              | 6                          |
| 3ь                                                                                                                                                                                 | Ч                                                    | e    | 3                                                                                                                                                                                              | С                          |
| 3ι                                                                                                                                                                                 | Ч                                                    | e    | 3                                                                                                                                                                                              | d                          |
| 3 d                                                                                                                                                                                | ч                                                    | e    | 3                                                                                                                                                                                              | 6                          |
| 3 e                                                                                                                                                                                | Ч                                                    | е    | 3                                                                                                                                                                                              | e                          |
| Чa                                                                                                                                                                                 | Ч                                                    | 0    | Ч                                                                                                                                                                                              | b                          |
| 46                                                                                                                                                                                 | ч                                                    | е    | Ч                                                                                                                                                                                              | с                          |
| Ч с                                                                                                                                                                                | 4                                                    | e    | 4                                                                                                                                                                                              | d                          |
| Чd                                                                                                                                                                                 | Ч                                                    | е    | 3<br>3<br>4<br>4<br>4                                                                                                                                                                          | e<br>b<br>c<br>d<br>b<br>e |
| Чe                                                                                                                                                                                 | 4                                                    | e    | 4                                                                                                                                                                                              | e                          |


never




3e

le







4. Create an NFA which accepts all strings in which the third last character is an *a*. Then via subset construction, create an equivalent DFA. Show all your work. [5]

(12)

9.b 123