2FA3 - Assignment 3

Submitted via Avenue. Due April 10th, 11:59pm. Note: I indicate what each question if worth by
square brackets, i.e. [k].

1. Give a context free grammar for the following language:
L={a"b™c" | k #n+m}
[5]

2. Let
Ly = {a"b™c"* | n,m,k > 0}

and let
Ly ={a"b"c" | n > 1}

Complete the pushdown automata M (in the figure below), such that
L(M) =Ly — Lo,

where ¥ = {a,b,c}. Your solution must use the template below. You may not add/remove
transitions. If add/remove states/transitions, or change the labelled transitions already there,
you will receive 0 on the question. [10]

<>/ b, L/L

—O

b, /B

3. Turing machines can also be used to output more than just Accept/Reject. When they halt,
they may also have useful output written on the tape. For example, a Turning machine may

add numbers by taking in strings such as: 101#111 and having the string 1100 written on the
tape when is halts. Note, 1100 equals 101 4+ 111. You are going to create such a machine.
To do this your machine will have three distinct parts. The first part will take the input of
the form B;# Bs#, where By and By are binary sequences of equal length, and complete its
portion with X#X#C written on the tape and the read/write head pointing to the left most
digit. The sequences C' and X are the same length as B; and By. Moreover, the ith character
of C' will be a c if the ith digits of By and By are both 1’s, will be a 0 the ith digits of B; and
By are both 0’s, and be 1 otherwise. The sequence X is just a sequence of x’s. To help you
understand what this portion is doing, the ¢ stands for carry-bit. As an example, if the input
is

10100410101

then this part of the machine will complete its task with the tape looking like:

rrxrrrHFrrrre#c0c0l

For this portion of the machine reverse engineer my partial solution below and fill-out all
TODO values in the table.

1 0 X # c U
qs (qua) R) (QI,Sa X, R) ((]s, X, R) - - -
q1,1 (q1,1,1,R) (q1,1,0,R) - (q1,2, #, R) - -
q1,2 (ql’5,X7R) TODO (qLQ, X, R) - - -
T3 (q1.3,L,R) (q1,3,0,R) - (qu4, #, R) - -
1,4 TODO (q1,7,%,R) (14, %, R) - - -
Q5 (q15,L,R) (q1,5,0,R) - (q18:#:R) - -
q1,6 (q1,6,1,R) (q1,6,0,R) - (q1,0,#.R) - -
Q7 (q1.7,L,R) (q1,7,0,R) - (q1,10,#,R) - -
q1,8 TODO TODO - - TODO TODO
q1,9 TODO TODO - - TODO TODO
q1,10 TODO TODO - - TODO TODO
q1,endl (q1,end17]-aL) (ql,endlvoaL) B (ql,end27#7L) (ql,endhCaL) B
q1,end2 (Q1,end371,L) (Q1,end370,L) (ql,end27X7L) (ql,enan#aL) - (Q2,S,D7R)
q1,end3 (q1,end37laL) ((ILendBaOaL) (ql,endl%aXaL) ((I1,end37#aL) - (QSv‘:l,R)

For the next part of the machine, we want to clean up the tape a bit. That is, we want to go
from something below, where the read/write head is at the far left end

rrxrrrxFHFrerrer#Hc0cOl

to

c0c01

where the read write head is at the far right end. Complete the table below to achieve this.
The final and third part of the machine has a string like

c0c01

1 0 X # c O
2.5 - - TODO | TODO - -
42,1 - - TODO TODO - -
¢22 | TODO | TODO - - TODO | (g3, 0, L)

written on the tape with the read/write head on the far right side. After a single pass the
machine will have the final binary string (the addition of the two input written on the tape).
Following our example when the machine halts the tape will look like

101001

Produce and complete a transition table for this portion. You should use the fewest number
of states possible.

[10] marks for the first table, [2] marks for the second table, and [3] marks for the final table.

4. Maybe one more question to come... we’ll see.

