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Preface
This book introduces students to the theory and practice of control
systems engineering. The text emphasizes the practical application of
the subject to the analysis and design of feedback systems.

The study of control systems engineering is essential for students
pursuing degrees in electrical, mechanical, aerospace, biomedical, or
chemical engineering. Control systems are found in a broad range of
applications within these disciplines, from aircraft and spacecraft to
robots and process control systems.

Control Systems Engineering is suitable for upper‐division college
and university engineering students and for those who wish to
master the subject matter through self‐study. The student using this
text should have completed typical lower‐division courses in physics
and mathematics through differential equations. Other required
background material, including Laplace transforms and linear
algebra, is incorporated in the text, either within chapter discussions
or separately in the appendixes. This review material can be omitted
without loss of continuity if the student does not require it.

Key Features
The key features of this eighth edition are:

Standardized chapter organization

Qualitative and quantitative explanations

Examples, Skill‐Assessment Exercises, and Case Studies
throughout the text

Cyber Exploration Laboratory and Hardware Interface
Laboratory, and Virtual Experiments
Abundant illustrations

Numerous end‐of‐chapter problems



Emphasis on design

Flexible coverage

Emphasis on computer‐aided analysis and design including
MATLAB®1 and LabVIEW®2

Icons identifying major topics

Let us look at each feature in more detail.

Standardized Chapter Organization
Each chapter begins with a list of chapter learning outcomes,
followed by a list of case study learning outcomes that relate to
specific student performance in solving a practical case study
problem, such as an antenna azimuth position control system.

Topics are then divided into clearly numbered and labeled sections
containing explanations, examples, and, where appropriate, skill‐
assessment exercises with answers. These numbered sections are
followed by one or more case studies, as will be outlined in a few
paragraphs. Each chapter ends with a brief summary, several review
questions requiring short answers, a set of homework problems, and
experiments.

Qualitative and Quantitative Explanations
Explanations are clear and complete and, where appropriate, include
a brief review of required background material. Topics build upon
and support one another in a logical fashion. Groundwork for new
concepts and terminology is carefully laid to avoid overwhelming the
student and to facilitate self‐study.

Although quantitative solutions are obviously important, a
qualitative or intuitive understanding of problems and methods of
solution is vital to producing the insight required to develop sound
designs. Therefore, whenever possible, new concepts are discussed
from a qualitative perspective before quantitative analysis and design
are addressed. For example, in Chapter 8 the student can simply look
at the root locus and describe qualitatively the changes in transient
response that will occur as a system parameter, such as gain, is



varied. This ability is developed with the help of a few simple
equations from Chapter 4.

Examples, Skill‐Assessment Exercises, and Case
Studies
Explanations are clearly illustrated by means of numerous numbered
and labeled Examples throughout the text. Where appropriate,
sections conclude with Skill‐Assessment Exercises. These are
computation drills, most with answers that test comprehension and
provide immediate feedback. Complete solutions are available for
instructor’s at
www.wiley.com/go/Nise/ControlSystemsEngineering8e

Broader examples in the form of Case Studies can be found after
the last numbered section of every chapter, with the exception of
Chapter 1. These case studies are practical application problems that
demonstrate the concepts introduced in the chapter. Each case study
concludes with a “Challenge” problem that students may work in
order to test their understanding of the material.

One of the case studies, an antenna azimuth position control system,
is carried throughout the book. The purpose is to illustrate the
application of new material in each chapter to the same physical
system, thus highlighting the continuity of the design process.
Another, more challenging case study, involving an Unmannered
Free‐Swimming Submersible Vehicle, is developed over the course of
five chapters.

Cyber Exploration Laboratory, Hardware Interface
Laboratory, and Virtual Experiments
Computer experiments using MATLAB, Simulink®3 and the Control
System Toolbox are found at the end of the Problems sections under
the sub‐heading Cyber Exploration Laboratory. The
experiments allow the reader to verify the concepts covered in the
chapter via simulation. The reader also can change parameters and
perform “what if” exploration to gain insight into the effect of
parameter and configuration changes. The experiments are written
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with stated Objectives, Minimum Required Software Packages, as
well as Prelab, Lab, and Postlab tasks and questions. Thus, the
experiments may be used for a laboratory course that accompanies
the class. Cover sheets for these experiments are available from your
instructor at
www.wiley.com/go/Nise/ControlSystemsEngineering8e

Subsequent to the Cyber Exploration Laboratory experiments, are
Hardware Interface Laboratory experiments in some chapters. These
experiments use National Instruments' myDAQ to interface your
computer to actual hardware to test control system principles in the
real world.

Finally, in this eighth edition are Virtual Experiments. These
experiments are more tightly focused than the Cyber Exploration
Laboratory experiments as they let students interact with virtual
models of actual teaching lab equipment produced by Quanser.
These experiments will help students gain a more intuitive
understanding of the physical implications of important control
concepts. The experiments are referenced in sidebars throughout
some chapters.

Abundant Illustrations
The ability to visualize concepts and processes is critical to the
student's understanding. For this reason, approximately 800 photos,
diagrams, graphs, and tables appear throughout the book to
illustrate the topics under discussion.

Numerous End‐of‐Chapter Problems
Each chapter ends with a variety of homework problems that allow
students to test their understanding of the material presented in the
chapter. Problems vary in degree of difficulty and complexity, and
most chapters include several practical, real‐life problems to help
maintain students’ motivation. Also, the homework problems
contain progressive analysis and design problems that use the same
practical systems to demonstrate the concepts of each chapter.

Emphasis on Design
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 This textbook places a heavy emphasis on design. Chapters 8,
9, 11, 12, and 13 focus primarily on design. But. even in chapters that
emphasize analysis, simple design examples are included wherever
possible.

Throughout the book, design examples involving physical systems
are identified by the icon shown in the margin. End‐of‐chapter
problems that involve the design of physical systems are included
under the separate heading Design Problems. Design Problems
also can be found in chapters covering design, under the heading
Progressive Analysis and Design Problems. In these examples
and problems, a desired response is specified, and the student must
evaluate certain system parameters, such as gain, or specify a system
configuration along with parameter values. In addition, the text
includes numerous design examples and problems (not identified by
an icon) that involve purely mathematical systems.

Because visualization is so vital to understanding design, this text
carefully relates indirect design specifications to more familiar ones.
For example, the less familiar and indirect phase margin is carefully
related to the more direct and familiar percent overshoot before
being used as a design specification.

For each general type of design problem introduced in the text, a
methodology for solving the problem is presented—in many cases in
the form of a step‐by‐step procedure, beginning with a statement of
design objectives. Example problems serve to demonstrate the
methodology by following the procedure, making simplifying
assumptions, and presenting the results of the design in tables or
plots that compare the performance of the original system to that of
the improved system. This comparison also serves as a check on the
simplifying assumptions.

Transient response design topics are covered comprehensively in the
text. They include:

Design via gain adjustment using the root locus

Design of compensation and controllers via the root locus



Design via gain adjustment using sinusoidal frequency response
methods

Design of compensation via sinusoidal frequency response
methods

Design of controllers in state space using pole‐placement
techniques

Design of observers in state‐space using pole‐placement
techniques

Design of digital control systems via gain adjustment on the root
locus

Design of digital control system compensation via s‐plane design
and the Tustin transformation

Steady‐state error design is covered comprehensively in this textbook
and includes:

Gain adjustment

Design of compensation via the root locus

Design of compensation via sinusoidal frequency response
methods

Design of integral control in state space

Finally, the design of gain to yield stability is covered from the
following perspectives:

Routh‐Hurwitz criterion

Root locus

Nyquist criterion

Bode plots

Flexible Coverage
The material in this book can be adapted for a one‐quarter or a one‐
semester course. The organization is flexible, allowing the instructor



to select the material that best suits the requirements and time
constraints of the class.

 Throughout the book, state‐space methods are presented
along with the classical approach. Chapters and sections (as well as
examples, exercises, review questions, and problems) that cover state
space are marked by the icon shown in the margin and can be
omitted without any loss of continuity. Those wishing to add a basic
introduction to state‐space modeling can include Chapter 3 in the
syllabus.

In a one‐semester course, the discussions of state‐space analysis in
Chapters 4, 5, 6 and 7, as well as state‐space design in Chapter 12,
can be covered along with the classical approach. Another option is
to teach state space separately by gathering the appropriate chapters
and sections marked with the State Space icon into a single unit
that follows the classical approach. In a one‐quarter course, Chapter
13, Digital Control Systems, could be eliminated.

Emphasis on Computer‐Aided Analysis and
Design
Control systems problems, particularly analysis and design problems
using the root locus, can be tedious, since their solution involves trial
and error. To solve these problems, students should be given access
to computers or programmable calculators configured with
appropriate software. In this eighth edition, MATLAB and LabVIEW
continue to be integrated into the text as an optional feature.

Many problems in this text can be solved with either a computer or a
hand‐held programmable calculator. For example, students can use
the programmable calculator to (1) determine whether a point on the
s‐plane is also on the root locus, (2) find magnitude and phase
frequency response data for Nyquist and Bode diagrams, and (3)
convert between the following representations of a second‐order
system:

Pole location in polar coordinates

Pole location in Cartesian coordinates



Characteristic polynomial

Natural frequency and damping ratio

Settling time and percent overshoot

Peak time and percent overshoot

Settling time and peak time

Handheld calculators have the advantage of easy accessibility for
homework and exams. Please consult Appendix H, that is available to
instructor’s for distribution at
www.wiley.com/go/Nise/ControlSystemsEngineering8e, for a
discussion of computational aids that can be adapted to handheld
calculators.

Personal computers are better suited for more computation‐intensive
applications, such as plotting time responses, root loci, and
frequency response curves, as well as finding state‐transition
matrices. These computers also give the student a real‐world
environment in which to analyze and design control systems. Those
not using MATLAB or LabVIEW can write their own programs or use
other programs, such as Program CC. Please consult Appendix H
www.wiley.com/go/Nise/ControlSystemsEngineering8e for a
discussion of computational aids that can be adapted for use on
computers that do not have MATLAB or LabVIEW installed.

Without access to computers or programmable calculators, students
cannot obtain meaningful analysis and design results and the
learning experience will be limited.

Label Identifying Major Topics
Several icons identify coverage and optional material. The icons are
summarized as follows:

 The MATLAB label identifies MATLAB discussions,
examples, exercises, and problems. MATLAB coverage is provided as
an enhancement and is not required to use the text.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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 The Simulink label identify Simulink discussions, examples,
exercises, and problems. Simulink coverage is provided as an
enhancement and is not required to use the text.

 The GUI Tool icon identifies MATLAB GUI Tools discussions,
examples, exercises, and problems. The discussion of the tools,
which includes the Linear System Analyzer, and the Control System
Designer, is provided as an enhancement and is not required to use
the text.

 The Symbolic Math icon identifies Symbolic Math Toolbox
discussions, examples, exercises, and problems. Symbolic Math
Toolbox coverage is provided as an enhancement and is not required
to use the text.

 The LabVIEW icon identifies LabVIEW discussions,
examples, exercises, and problems. LabVIEW is provided as an
enhancement and is not required to use the text.

 The State Space icon highlight state‐space discussions,
examples, exercises, and problems. State‐space material is optional
and can be omitted without loss of continuity.

 The Design icon clearly identify design problems involving
physical systems.

 The Student Solution icon provides a link to solved problems
from the chapter problem set.

New to This Edition
The following list describes the key changes in this eighth edition:

New Format
The eighth edition is now in the form of an e-book. End‐of‐chapter
problems and appendices have been removed from the print book,
are included in the ebook with your purchase or available from your



instructor from the website,
www.wiley.com/go/Nise/ControlSystemsEngineering8e. In addition,
many end‐of‐chapter problems have been designated Student
Solutions (SS) and are completely solved. These solutions are
accessed from links to the problem. You will also find other links
from the e-book to other ancillary material.

End‐of‐chapter problems
Approximately 100 end‐of‐chapter problems have been revised.

MATLAB
The use of MATLAB for computer‐aided analysis and design
continues to be integrated into discussions and problems as an
optional feature in the eighth edition. The MATLAB tutorial has been
updated to MATLAB Version 9.3 (R2017b), the Control System
Toolbox Version 10.3, and the Symbolic Math Toolbox Version 8.0

In addition, MATLAB code continues to be incorporated in the
chapters in the form of sidebar boxes entitled TryIt.

Simulink
The use of Simulink to show the effects of nonlinearities upon the
time response of open‐loop and closed‐loop systems appears again in
this eighth edition. We also continue to use Simulink to demonstrate
how to simulate digital systems. Finally, the Simulink tutorial has
been updated to Simulink 9.0.

LabVIEW
LabVIEW continues to be integrated in problems and experiments.
LabVIEW has been updated to LabVIEW 2017.

Ancillary Material
The eighth edition includes various student and instructor resources.
These free resources can be accessed by going to

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


www.wiley.com/go/Nise/ControlSystemsEngineering8e and clicking
on Student Companion Site. Professors also access their password-
protected resources on the Instructor Companion Site available
through this url. Instructors should contact their Wiley sales
representative for access. Many of the ancillary materials are also
included with your purchased e-book package and accessed
separately or through links in the e-book text.

For the Student:

All M‐files used in the MATLAB, Simulink, GUI Tools, and
Symbolic Math Toolbox tutorials, as well as the TryIt exercises

Copies of the Cyber Exploration Laboratory and Hardware
Interface Laboratory experiments for use as experiment cover
sheets

Solutions to the Skill‐Assessment Exercises in the text

LabVIEW Virtual Experiments

LabVIEW VIs used in Appendix D

All files required to perform Hardware Interface Laboratory
experiments using National Instruments myDAQ

All appendices

All end-of chapter problems

Solutions to selected problems

For the Instructor;

PowerPoint®4 files containing the figures from the textbook

Solutions to end‐of‐chapter problem sets

Simulations, developed by JustAsk, for inclusion in lecture
presentations

Instructor Problem Set
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Book Organization by Chapter
Many times it is helpful to understand an author's reasoning behind
the organization of the course material. The following paragraphs
hopefully shed light on this topic.

The primary goal of Chapter 1 is to motivate students. In this
chapter, students learn about the many applications of control
systems in everyday life and about the advantages of study and a
career in this field. Control systems engineering design objectives,
such as transient response, steady‐state error, and stability, are
introduced, as is the path to obtaining these objectives. New and
unfamiliar terms also are included in the Glossary.

Many students have trouble with an early step in the analysis and
design sequence: transforming a physical system into a schematic.
This step requires many simplifying assumptions based on
experience the typical college student does not yet possess.
Identifying some of these assumptions in Chapter 1 helps to fill the
experience gap.

Chapters 2, 3, and 5 address the representation of physical systems.
Chapters 2 and 3 cover modeling of open‐loop systems, using
frequency response techniques and state‐space techniques,
respectively. Chapter 5 discusses the representation and reduction of
systems formed of interconnected open‐loop subsystems. Only a
representative sample of physical systems can be covered in a
textbook of this length. Electrical, mechanical (both translational
and rotational), and electromechanical systems are used as examples
of physical systems that are modeled, analyzed, and designed.
Linearization of a nonlinear system—one technique used by the
engineer to simplify a system in order to represent it mathematically
—is also introduced.

Chapter 4 provides an introduction to system analysis, that is,
finding and describing the output response of a system. It may seem
more logical to reverse the order of Chapters 4 and 5, to present the
material in Chapter 4 along with other chapters covering analysis.
However, many years of teaching control systems have taught me
that the sooner students see an application of the study of system
representation, the higher their motivation levels remain.



Chapters 6, 7, 8, and 9 return to control systems analysis and design
with the study of stability (Chapter 6), steady‐state errors (Chapter
7), and transient response of higher‐order systems using root locus
techniques (Chapter 8). Chapter 9 covers design of compensators
and controllers using the root locus.

Chapters 10 and 11 focus on sinusoidal frequency analysis and
design. Chapter 10, like Chapter 8, covers basic concepts for stability,
transient response, and steady‐state‐error analysis. However,
Nyquist and Bode methods are used in place of root locus. Chapter
11, like Chapter 9, covers the design of compensators, but from the
point of view of sinusoidal frequency techniques rather than root
locus.

An introduction to state‐space design and digital control systems
analysis and design completes the text in Chapters 12 and 13,
respectively. Although these chapters can be used as an introduction
for students who will be continuing their study of control systems
engineering, they are useful by themselves and as a supplement to
the discussion of analysis and design in the previous chapters. The
subject matter cannot be given a comprehensive treatment in two
chapters, but the emphasis is clearly outlined and logically linked to
the rest of the book.
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Chapter 1
Introduction



Chapter 1 Problems
 Student solution available in interactive e-text.

1. A rotating potentiometer is a simple sensor that can be used
to measure angular displacements; see Figure P1.1. The
resistance between A and C is fixed, but the resistance from A to
B and from B to C changes with the angular position of the wiper
arm. If it takes 15 turns to move the wiper arm from A to C, find
an equivalent block diagram for the system showing the input
θ(t), the voltage output vo(t), and inside the block, the constant
gain by which the input is multiplied to obtain the output. A
PowerPoint animation is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See
Potentiometer [Section 1.4: Introduction to a Case Study].

FIGURE P1.1 Potentiometer

2. A temperature control system operates by sensing the
difference between the thermostat setting and the actual
temperature and then opening a fuel valve an amount
proportional to this difference. Draw a functional closed-loop
block diagram similar to Figure 1.8(d) identifying the input and
output transducers, the controller, and the plant. Further,
identify the input and output signals of all subsystems
previously described [Section 1.4: Introduction to a Case Study].

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


3. We can build a control system that will automatically adjust a
motorcycle's radio volume as the noise generated by the
motorcycle changes. The noise generated by the motorcycle
increases with speed. As the noise increases, the system
increases the volume of the radio. Assume that the amount of
noise can be represented by a voltage generated by the
speedometer cable, and the volume of the radio is controlled by
a dc voltage (Hogan, 1988). If the dc voltage represents the
desired volume disturbed by the motorcycle noise, draw the
functional block diagram of the automatic volume control
system, showing the input transducer, the volume control
circuit, and the speed transducer as blocks. Also, show the
following signals: the desired volume as an input, the actual
volume as an output, and voltages representing speed, desired
volume, and actual volume. An animation PowerPoint
presentation (PPT) demonstrating this system is available for
instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See
Motorcycle [Section 1.4: Introduction to a Case Study].

 4. A dynamometer is a device used to measure torque and
speed and to vary the load on rotating devices. The
dynamometer operates as follows to control the amount of
torque: A hydraulic actuator attached to the axle presses a tire
against a rotating flywheel. The greater the displacement of the
actuator, the greater the force that is applied to the rotating
flywheel. A strain gage load cell senses the force. The
displacement of the actuator is controlled by an electrically
operated valve whose displacement regulates fluid flowing into
the actuator (D'Souza, 1988). Draw a functional block diagram
of a closed-loop system that uses the described dynamometer to
regulate the force against the tire during testing. Show all signals
and systems. Include amplifiers that power the valve, the valve,
the actuator and load, and the tire [Section 1.4: Introduction to a
Case Study].

Check Answer!
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 5. The vertical position, x(t), of a grinding wheel is
controlled by a closed-loop system. The input to the system is
the desired depth of grind, and the output is the actual depth of
grind. The difference between the desired depth and the actual
depth drives the motor, resulting in a force applied to the work.
This force results in a feed velocity for the grinding wheel
(Jenkins, 1997). Draw a closed-loop functional block diagram for
the grinding process, showing the input, output, force, and
grinder feed rate [Section 1.4: Introduction to a Case Study].

Check Answer!

6. The human eye has a biological control system that varies the
pupil diameter to maintain constant light intensity to the retina.
As the light intensity increases, the optical nerve sends a signal
to the brain, which commands internal eye muscles to decrease
the pupil's eye diameter. When the light intensity decreases, the
pupil diameter increases.

a. Draw a functional block diagram of the light-pupil
system indicating the input, output, and intermediate
signals; the sensor; the controller; and the actuator [Section
1.4: Introduction to a Case Study].

b. Under normal conditions the incident light will be larger
than the pupil. If the incident light is smaller than the
diameter of the pupil, the feedback path is broken
(Bechhoefer, 2005). Modify your block diagram from Part
a. to show where the loop is broken. What will happen if the
narrow beam of light varies in intensity, such as in a
sinusoidal fashion?

c. It has been found (Bechhoefer, 2005) that it takes the
pupil about 300 milliseconds to react to a change in the
incident light. If light shines off center to the retina,
describe the response of the pupil with delay present and
then without delay present.

7. A Segway®1 Personal Transporter (PT) (Figure P1.2) is a two-
wheeled vehicle in which the human operator stands vertically
on a platform. As the driver leans left, right, forward, or



backward, a set of sensitive gyroscopic sensors sense the desired
input. These signals are fed to a computer that amplifies them
and commands motors to propel the vehicle in the desired
direction. One very important feature of the PT is its safety: The
system will maintain its vertical position within a specified angle
despite road disturbances, such as uphills and downhills or even
if the operator over-leans in any direction. Draw a functional
block diagram of the PT system that keeps the system in a
vertical position. Indicate the input and output signals,
intermediate signals, and main subsystems
(http://segway.com).

FIGURE P1.2 The Segway Personal Transporter (PT)

8. In humans, hormone levels, alertness, and core body
temperature are synchronized through a 24-hour circadian
cycle. Daytime alertness is at its best when sleep/wake cycles are
in sync with the circadian cycle. Thus alertness can be easily



affected with a distributed work schedule, such as the one to
which astronauts are subjected. It has been shown that the
human circadian cycle can be delayed or advanced through light
stimulus. To ensure optimal alertness, a system is designed to
track astronauts' circadian cycles and increase the quality of
sleep during missions. Core body temperature can be used as an
indicator of the circadian cycle. A computer model with
optimum circadian body temperature variations can be
compared to an astronaut's body temperatures. Whenever a
difference is detected, the astronaut is subjected to a light
stimulus to advance or delay the astronaut's circadian cycle
(Mott, 2003). Draw a functional block diagram of the system.
Indicate the input and output signals, intermediate signals, and
main subsystems.

9. Tactile feedback is an important component in the learning of
motor skills such as dancing, sports, and physical rehabilitation.
A suit with white dots recognized by a vision system to
determine arm joint positions with millimetric precision was
developed. This suit is worn by both teacher and student to
provide position information. (Lieberman, 2007). If there is a
difference between the teacher's positions and that of the
student, vibrational feedback is provided to the student through
eight strategically placed vibrotactile actuators in the wrist and
arm. This placement takes advantage of a sensory effect known
as cutaneous rabbit that tricks the subject to feel uniformly
spaced stimuli in places where the actuators are not present.
These stimuli help the student adjust to correct the motion. In
summary, the system consists of an instructor and a student
having their movements followed by the vision system. Their
movements are fed into a computer that finds the differences
between their joint positions and provides proportional
vibrational strength feedback to the student. Draw a block
diagram describing the system design.

10. Moored floating platforms are subject to external
disturbances such as waves, wind, and currents that cause them
to drift. There are certain applications, such as diving support,
drilling pipe-laying, and tanking between ships in which precise
positioning of moored platforms is very important (Muñoz-



Mansilla, 2011). Figure P1.3 illustrates a tethered platform in
which side thrusters are used for positioning. A control system is
to be designed in which the objective is to minimize the drift, Y,
and an angular deviation from the vertical axes, ϕ (not shown).
The disturbances acting on the system's outputs are the force, F,
and the torque, M, caused by the external environment. In this
problem, the plant will have one input, the force delivered by the
thrusters (Fu) and two outputs, Y and ϕ. Note also that this is a
disturbance attenuation problem, so there is no command input.
Draw a block diagram of the system indicating the disturbances
F and M, the control signal Fu, and the outputs Y and ϕ. Your
diagram should also have blocks for a controller, the one-input
two-output plant, and a block indicating how the disturbances
affect each of the outputs.

FIGURE P1.3 Tethered platform using side thrusters
for positioning2

11. Figure P1.4 shows the topology of a photo-voltaic (PV)
system that uses solar cells to supply electrical power to a
residence with hybrid electric vehicle loads (Gurkavnak, 2009).
The system consists of a PV array to collect the sun's rays, a
battery pack to store energy during the day, a dc/ac inverter to
supply ac power to the load, and a bidirectional dc/dc converter
to control the terminal voltage of the solar array according to a
maximum power point tracking (MPPT) algorithm. In case of
sufficient solar power (solar insolation), the dc/dc converter



charges the battery and the solar array supplies power to the
load through the dc/ac inverter. With less or no solar energy
(solar non-insolation), power is supplied from the battery to the
load through the dc/dc converter and the dc/ac inverter. Thus,
the dc/dc converter must be bidirectional to be able to charge
and discharge the battery. With the MPPT controller providing
the reference voltage, the converter operates as a step-up
converter (boost) to discharge the battery if the battery is full or
a step-down (buck) converter, which charges the battery if it is
not full.3

FIGURE P1.4 Proposed solar powered residential
home with plug-in hybrid electric vehicle (PHEV)
loads4

In Figure P1.4, the Inverter is controlled by the Power Manager
and Controller through the Current Controller. The Power
Manager and Controller directs the Inverter to take power
either from the battery, via the Bidirectional Converter, or the
solar array, depending upon the time of day and the battery
state of charge (SOC). Draw the following two functional block
diagrams for this system:



a. A diagram that illustrates the conversion of solar
irradiation into energy stored in the battery. In that
diagram, the input is the solar irradiance, r(t), and the
output is the battery voltage, vb(t).

b. The main diagram, in which the input is the desired
output voltage, vr(t), and the output is the actual inverter
output voltage, vo(t).

Both of these functional block diagrams should show their
major components, including the PV array, MPPT controller,
dc/dc converter, battery pack, dc/ac inverter, current
controller, and the Power Manager and Controller. Show all
signals, including intermediate voltages and currents, time of
day, and the SOC of the battery.

12. Oil drilling rigs are used for drilling holes for identification
of oil or natural gas sources and for extraction. An oil drilling
system can be thought of as a drill inside a straw, which is
placed inside a glass. The straw assembly represents the drill
string, the drill surrounded by fluid, and the glass represents the
volume, the annulus, around the drill string through which
slurry and eventually oil will flow as the drilling progresses.

Assume that we want to control the drill pressure output, Pd(t),
with a reference voltage input, Vd(t). A control loop model
(Zhao, 2007) consists of a drill-pressure controller, drill motor
subsystem, pulley subsystem, and drill stick subsystem. The
output signal of the latter, the drill pressure, Pd(t), is measured
using a transducer, which transmits a negative feedback voltage
signal, Vb(t), to the drill pressure controller. That signal is
compared at the input of the controller to the reference voltage,
Vr(t), Based on the error, e(t) = Vr(t) – Vb(t), the drill pressure
controller sets the desired drill speed, ωd, which is the input to
the drill motor subsystem whose output is the actual drill
speed, ωa, which is the input to the pulley subsystem. The
output of the pulley system drives the drill stick subsystem. The
drill stick subsystem may be severely affected by environmental



conditions, which may be represented as disturbances acting
between the pulley and stick subsystems.

Draw a functional block diagram for the above system, showing
its major components as well as all signals.

 13. Given the electric network shown in Figure P1.5.
[Review]

a. Write the differential equation for the network if v(t) =
u(t), a unit step.

b. Solve the differential equation for the current, i(t), if
there is no initial energy in the network.

c. Make a plot of your solution if R/L = 1.

FIGURE P1.5 RL network

Check Answer!

14. Repeat Problem 13 using the network shown in Figure P1.6.
Assume R = 1 Ω, L = 0.5 H,and1/LC = 16. [Review]

FIGURE P1.6 RLC network



15. Assuming zero initial conditions, use classical methods to
find solutions for the following differential equations: [Review]

a. + 5x = 2 cos 3t

b. + 4 + 2x = 2 sin t

c. + 6 + 20x = 5u (t)

x(t) = − e
−4t ( cos 3t + sin 3t)

16. Solve the following differential equations using classical
methods and the given initial conditions: [Review]

a. + 2 + 2x = sin2t

x (0) = 2; (0) = −3

Check Answer!

b. + 2 + x = 5e−2t + t

x (0) = 2; (0) = 1

c. + 4x = t
2

x (0) = 1; (0) = 2

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

17. Control of HIV/AIDS. As of 2012, the number of people
living worldwide with Human Immunodeficiency
Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) was
estimated at 35 million, with 2.3 million new infections per year
and 1.6 million deaths due to the disease (UNAIDS, 2013).
Currently there is no known cure for the disease, and HIV
cannot be completely eliminated in an infected individual. Drug
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combinations can be used to maintain the virus numbers at low
levels, which helps prevent AIDS from developing. A common
treatment for HIV is the administration of two types of drugs:
reverse transcriptase inhibitors (RTIs) and protease inhibitors
(PIs). The amount in which each of these drugs is administered
is varied according to the amount of HIV viruses in the body
(Craig, 2004). Draw a block diagram of a feedback system
designed to control the amount of HIV viruses in an infected
person. The plant input variables are the amount of RTIs and
PIs dispensed. Show blocks representing the controller, the
system under control, and the transducers. Label the
corresponding variables at the input and output of every block.

18. Hybrid vehicle. The use of hybrid cars is becoming
increasingly popular. A hybrid electric vehicle (HEV) combines
electric machine(s) with an internal combustion engine (ICE),
making it possible (along with other fuel consumption–reducing
measures, such as stopping the ICE at traffic lights) to use
smaller and more efficient gasoline engines. Thus, the efficiency
advantages of the electric drivetrain are obtained, while the
energy needed to power the electric motor is stored in the
onboard fuel tank and not in a large and heavy battery pack.

There are various ways to arrange the flow of power in a hybrid
car. In a serial HEV (Figure P1.7), the ICE is not connected to
the drive shaft. It drives only the generator, which charges the
batteries and/or supplies power to the electric motor(s)
through an inverter or a converter.



FIGURE P1.7 Serial hybrid-electric vehicle5

The HEVs sold today are primarily of the parallel or split-power
variety. If the combustion engine can turn the drive wheels as
well as the generator, then the vehicle is referred to as a
parallel hybrid, because both an electric motor and the ICE can
drive the vehicle. A parallel hybrid car (Figure P1.8) includes a
relatively small battery pack (electrical storage) to put out extra
power to the electric motor when fast acceleration is needed.
See (Bosch, 5th ed., 2000), (Bosch, 7th ed., 2007), (Edelson,
2008), and (Anderson, 2009) for more detailed information
about HEV.

FIGURE P1.8 Parallel hybrid drive6

As shown in Figure P1.9, split-power hybrid cars utilize a
combination of series and parallel drives (Bosch, 5th ed., 2007).



These cars use a planetary gear (3) as a split-power
transmission to allow some of the ICE power to be applied
mechanically to the drive. The other part is converted into
electrical energy through the alternator (7) and the inverter (5)
to feed the electric motor (downstream of the transmission)
and/or to charge the high-voltage battery (6). Depending upon
driving conditions, the ICE, the electric motor, or both propel
the vehicle.

FIGURE P1.9 Split-power hybrid electric vehicle7

Draw a functional block diagram for the cruise (speed) control
system of:

a. A serial hybrid vehicle, showing its major components,
including the speed sensor, electronic control unit (ECU),
inverter, electric motor, and vehicle dynamics; as well as all
signals, including the desired vehicle speed, actual speed,



control command (ECU output), controlled voltage
(inverter output), the motive force (provided by the electric
motor), and running resistive force;8

b. A parallel hybrid vehicle, showing its major components,
which should include also a block that represents the
accelerator, engine, and motor, as well as the signals
(including accelerator displacement and combined
engine/motor motive force);

c. A split-power HEV, showing its major components and
signals, including, in addition to those listed in Parts a and
b, a block representing the planetary gear and its control,
which, depending upon driving conditions, would allow the
ICE, the electric motor, or both to propel the vehicle, that is,
to provide the necessary total motive force.

19. Parabolic trough collector. A set of parabolic mirrors
can be used to concentrate the sun's rays to heat a fluid flowing
in a pipe positioned at the mirrors' focal points (Camacho,
2012). The heated fluid, such as oil, for example, is transported
to a pressurized tank to be used to create steam to generate
electricity or power an industrial process. Since the solar energy
varies with time of day, time of year, cloudiness, humidity, etc., a
control system has to be developed in order to maintain the fluid
temperature constant. The temperature is mainly controlled by
varying the amount of fluid flow through the pipes, but possibly
also with a solar tracking mechanism that tilts the mirrors at
appropriate angles.

Assuming fixed mirror angles, draw the functional block
diagram of a system to maintain the fluid temperature a
constant. The desired and actual fluid temperature difference is
fed to a controller followed by an amplifier and signal
conditioning circuit that varies the speed of a fluid circulating
pump. Label the blocks and links of your diagram, indicating all
the inputs to the system, including external disturbances such
as solar variations, cloudiness, humidity, etc.

Notes



1 Segway is a registered trademark of Segway, Inc. in the United
States and/or other countries.

2 Muñoz-Mansilla, R., Aranda, J., Diaz, J. M., Chaos, D., and
Reinoso, A. J., Applications of QFT Robust Control Techniques to
Marine Systems. 9th IEEE International Conference on Control
and Automation. December 19–21, 2011, pp. 378–385. (Figure 3,
p. 382).

3 For a description of all other operational scenarios, refer to the
above-listed reference.

4 Gurkaynak, Y., Li, Z., and Khaligh, A. A Novel Grid-tied, Solar
Powered Residential Home with Plug-in Hybrid Electric Vehicle
(PHEV) Loads. IEEE Vehicle Power and Propulsion Conference
2009, pp. 813–816. (Figure 1, p. 814).

5 Mark Looper, www.Altfuels.org. Alternative Drivetrains, July 2005,
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10/13/2009.

6 Mark Looper, www.Altfuels.org. Alternative Drivetrains, July
2005, http://www.altfuels.org/backgrnd/altdrive.html. Last
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7 Robert Bosch GmbH, Bosch Automotive Handbook, 7th ed. John
Wiley & Sons, Ltd., UK, 2007.

8 These include the aerodynamic drag, rolling resistance, and
climbing resistance. The aerodynamic drag is a function of car
speed, whereas the other two are proportional to car weight.



Chapter 1 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Define a control system and describe some applications (Section 1.1)

Describe historical developments leading to modern day control theory (Section 1.2)

Describe the basic features and configurations of control systems (Section 1.3)

Describe control systems analysis and design objectives (Section 1.4)

Describe a control system's design process (Sections 1.5–1.6)

Describe the benefit from studying control systems (Section 1.7)

Case Study Learning Outcomes
You will be introduced to a running case study—an antenna azimuth position control
system—that will serve to illustrate the principles in each subsequent chapter. In this
chapter, the system is used to demonstrate qualitatively how a control system works as
well as to define performance criteria that are the basis for control systems analysis
and design.

1.1 Introduction



Control systems are an integral part of modern society. Numerous applications are all
around us: The rockets fire, and the space shuttle lifts off to earth orbit; in splashing
cooling water, a metallic part is automatically machined; a self-guided vehicle delivering
material to workstations in an aerospace assembly plant glides along the floor seeking its
destination. These are just a few examples of the automatically controlled systems that we
can create.

We are not the only creators of automatically controlled systems; but these systems also
exist in nature. Within our own bodies are numerous control systems, such as the pancreas,
which regulates our blood sugar. In time of “fight or flight,” our adrenaline increases along
with our heart rate, causing more oxygen to be delivered to our cells. Our eyes follow a
moving object to keep it in view; our hands grasp the object and place it precisely at a
predetermined location.

Even the nonphysical world appears to be automatically regulated. Models have been
suggested showing automatic control of student performance. The input to the model is the
student's available study time, and the output is the grade. The model can be used to
predict the time required for the grade to rise if a sudden increase in study time is available.
Using this model, you can determine whether increased study is worth the effort during the
last week of the term.

Control System Definition
A control system consists of subsystems and processes (or plants) assembled for the
purpose of obtaining a desired output with desired performance, given a specified input.
Figure 1.1 shows a control system in its simplest form, where the input represents a desired
output.

FIGURE 1.1 Simplified description of a control system

For example, consider an elevator. When the fourth-floor button is pressed on the first
floor, the elevator rises to the fourth floor with a speed and floor-leveling accuracy designed
for passenger comfort. The push of the fourth-floor button is an input that represents our
desired output, shown as a step function in Figure 1.2. The performance of the elevator can
be seen from the elevator response curve in the figure.



FIGURE 1.2 Elevator response

Two major measures of performance are apparent: (1) the transient response and (2) the
steady-state error. In our example, passenger comfort and passenger patience are
dependent upon the transient response. If this response is too fast, passenger comfort is
sacrificed; if too slow, passenger patience is sacrificed. The steady-state error is another
important performance specification since passenger safety and convenience would be
sacrificed if the elevator did not level properly.

Advantages of Control Systems
With control systems we can move large equipment with precision that would otherwise be
impossible. We can point huge antennas toward the farthest reaches of the universe to pick
up faint radio signals; controlling these antennas by hand would be impossible. Because of
control systems, elevators carry us quickly to our destination, automatically stopping at the
right floor (Figure 1.3). We alone could not provide the power required for the load and the
speed; motors provide the power, and control systems regulate the position and speed.





FIGURE 1.3 a. Early elevators were controlled by hand ropes or an elevator
operator. Here a rope is cut to demonstrate the safety brake, an innovation
in early elevators; b. One of two modern Duo-lift elevators makes its way up
the Grande Arche in Paris. Two elevators are driven by one motor, with each
car acting as a counterbalance to the other. Today, elevators are fully
automatic, using control systems to regulate position and velocity.

We build control systems for four primary reasons:

1. Power amplification

2. Remote control

3. Convenience of input form

4. Compensation for disturbances

For example, a radar antenna, positioned by the low-power rotation of a knob at the input,
requires a large amount of power for its output rotation. A control system can produce the
needed power amplification, or power gain.

Robots designed by control system principles can compensate for human disabilities.
Control systems are also useful in remote or dangerous locations. For example, a remote-
controlled robot arm can be used to pick up material in a radioactive environment. Figure
1.4 shows a robot arm designed to work in contaminated environments.



FIGURE 1.4 Rover was built to work in contaminated areas at Three Mile
Island in Middleton, Pennsylvania, where a nuclear accident occurred in
1979. The remote-controlled robot's long arm can be seen at the front of the
vehicle.

Control systems can also be used to provide convenience by changing the form of the input.
For example, in a temperature control system, the input is a position on a thermostat. The
output is heat. Thus, a convenient position input yields a desired thermal output.

Another advantage of a control system is the ability to compensate for disturbances.
Typically, we control such variables as temperature in thermal systems, position and
velocity in mechanical systems, and voltage, current, or frequency in electrical systems. The
system must be able to yield the correct output even with a disturbance. For example,
consider an antenna system that points in a commanded direction. If wind forces the
antenna from its commanded position, or if noise enters internally, the system must be able
to detect the disturbance and correct the antenna's position. Obviously, the system's input
will not change to make the correction. Consequently, the system itself must measure the
amount that the disturbance has repositioned the antenna and then return the antenna to
the position commanded by the input.

1.2 A History of Control Systems



Feedback control systems are older than humanity. Numerous biological control systems
were built into the earliest inhabitants of our planet. Let us now look at a brief history of
human-designed control systems.1

Liquid-Level Control
The Greeks began engineering feedback systems around 300 B.C. A water clock invented by
Ktesibios operated by having water trickle into a measuring container at a constant rate.
The level of water in the measuring container could be used to tell time. For water to trickle
at a constant rate, the supply tank had to be kept at a constant level. This was accomplished
using a float valve similar to the water-level control in today's flush toilets.

Soon after Ktesibios, the idea of liquid-level control was applied to an oil lamp by Philon of
Byzantium. The lamp consisted of two oil containers configured vertically. The lower pan
was open at the top and was the fuel supply for the flame. The closed upper bowl was the
fuel reservoir for the pan below. The containers were interconnected by two capillary tubes
and another tube, called a vertical riser, which was inserted into the oil in the lower pan
just below the surface. As the oil burned, the base of the vertical riser was exposed to air,
which forced oil in the reservoir above to flow through the capillary tubes and into the pan.
The transfer of fuel from the upper reservoir to the pan stopped when the previous oil level
in the pan was reestablished, thus blocking the air from entering the vertical riser. Hence,
the system kept the liquid level in the lower container constant.

Steam Pressure and Temperature Controls
Regulation of steam pressure began around 1681 with Denis Papin's invention of the safety
valve. The concept was further elaborated on by weighting the valve top. If the upward
pressure from the boiler exceeded the weight, steam was released, and the pressure
decreased. If it did not exceed the weight, the valve did not open, and the pressure inside
the boiler increased. Thus, the weight on the valve top set the internal pressure of the
boiler.

Also in the seventeenth century, Cornelis Drebbel in Holland invented a purely mechanical
temperature control system for hatching eggs. The device used a vial of alcohol and
mercury with a floater inserted in it. The floater was connected to a damper that controlled
a flame. A portion of the vial was inserted into the incubator to sense the heat generated by
the fire. As the heat increased, the alcohol and mercury expanded, raising the floater,
closing the damper, and reducing the flame. Lower temperature caused the float to
descend, opening the damper and increasing the flame.

Speed Control
In 1745, speed control was applied to a windmill by Edmund Lee. Increasing winds pitched
the blades farther back, so that less area was available. As the wind decreased, more blade
area was available. William Cubitt improved on the idea in 1809 by dividing the windmill
sail into movable louvers.

Also in the eighteenth century, James Watt invented the flyball speed governor to control
the speed of steam engines. In this device, two spinning flyballs rise as rotational speed
increases. A steam valve connected to the flyball mechanism closes with the ascending
flyballs and opens with the descending flyballs, thus regulating the speed.

Stability, Stabilization, and Steering



Control systems theory as we know it today began to crystallize in the latter half of the
nineteenth century. In 1868, James Clerk Maxwell published the stability criterion for a
third-order system based on the coefficients of the differential equation. In 1874, Edward
John Routh, using a suggestion from William Kingdon Clifford that was ignored earlier by
Maxwell, was able to extend the stability criterion to fifth-order systems. In 1877, the topic
for the Adams Prize was “The Criterion of Dynamical Stability.” In response, Routh
submitted a paper entitled A Treatise on the Stability of a Given State of Motion and won
the prize. This paper contains what is now known as the Routh–Hurwitz criterion for
stability, which we will study in Chapter 6. Alexandr Michailovich Lyapunov also
contributed to the development and formulation of today's theories and practice of control
system stability. A student of P. L. Chebyshev at the University of St. Petersburg in Russia,
Lyapunov extended the work of Routh to nonlinear systems in his 1892 doctoral thesis,
entitled The General Problem of Stability of Motion.

During the second half of the 1800s, the development of control systems focused on the
steering and stabilizing of ships. In 1874, Henry Bessemer, using a gyro to sense a ship's
motion and applying power generated by the ship's hydraulic system, moved the ship's
saloon to keep it stable (whether this made a difference to the patrons is doubtful). Other
efforts were made to stabilize platforms for guns as well as to stabilize entire ships, using
pendulums to sense the motion.

Twentieth-Century Developments
It was not until the early 1900s that automatic steering of ships was achieved. In 1922, the
Sperry Gyroscope Company installed an automatic steering system that used the elements
of compensation and adaptive control to improve performance. However, much of the
general theory used today to improve the performance of automatic control systems is
attributed to Nicholas Minorsky, a Russian born in 1885. It was his theoretical
development applied to the automatic steering of ships that led to what we call today
proportional-plus-integral-plus-derivative (PID), or three-mode, controllers, which we will
study in Chapters 9 and 11.

In the late 1920s and early 1930s, H. W. Bode and H. Nyquist at Bell Telephone
Laboratories developed the analysis of feedback amplifiers. These contributions evolved
into sinusoidal frequency analysis and design techniques currently used for feedback
control system, and are presented in Chapters 10 and 11.

In 1948, Walter R. Evans, working in the aircraft industry, developed a graphical technique
to plot the roots of a characteristic equation of a feedback system whose parameters
changed over a particular range of values. This technique, now known as the root locus,
takes its place with the work of Bode and Nyquist in forming the foundation of linear
control systems analysis and design theory. We will study root locus in Chapters 8, 9, and
13.

Contemporary Applications
Today, control systems find widespread application in the guidance, navigation, and
control of missiles and spacecraft, as well as planes and ships at sea. For example, modern
ships use a combination of electrical, mechanical, and hydraulic components to develop
rudder commands in response to desired heading commands. The rudder commands, in
turn, result in a rudder angle that steers the ship.

We find control systems throughout the process control industry, regulating liquid levels in
tanks, chemical concentrations in vats, as well as the thickness of fabricated material. For



example, consider a thickness control system for a steel plate finishing mill. Steel enters the
finishing mill and passes through rollers. In the finishing mill, X-rays measure the actual
thickness and compare it to the desired thickness. Any difference is adjusted by a screw-
down position control that changes the roll gap at the rollers through which the steel
passes. This change in roll gap regulates the thickness.

Modern developments have seen widespread use of the digital computer as part of control
systems. For example, computers in control systems are for industrial robots, spacecraft,
and the process control industry. It is hard to visualize a modern control system that does
not use a digital computer.

Although recently retired, the space shuttle provides an excellent example of the use of
control systems because it contained numerous control systems operated by an onboard
computer on a time-shared basis. Without control systems, it would be impossible to guide
the shuttle to and from earth's orbit or to adjust the orbit itself and support life on board.
Navigation functions programmed into the shuttle's computers used data from the shuttle's
hardware to estimate vehicle position and velocity. This information was fed to the
guidance equations that calculated commands for the shuttle's flight control systems, which
steered the spacecraft. In space, the flight control system gimbaled (rotated) the orbital
maneuvering system (OMS) engines into a position that provided thrust in the commanded
direction to steer the spacecraft. Within the earth's atmosphere, the shuttle was steered by
commands sent from the flight control system to the aerosurfaces, such as the elevons.

Within this large control system represented by navigation, guidance, and control were
numerous subsystems to control the vehicle's functions. For example, the elevons required
a control system to ensure that their position was indeed that which was commanded, since
disturbances such as wind could rotate the elevons away from the commanded position.
Similarly, in space, the gimbaling of the orbital maneuvering engines required a similar
control system to ensure that the rotating engine can accomplish its function with speed
and accuracy. Control systems were also used to control and stabilize the vehicle during its
descent from orbit. Numerous small jets that compose the reaction control system (RCS)
were used initially in the exoatmosphere, where the aerosurfaces are ineffective. Control
was passed to the aerosurfaces as the orbiter descended into the atmosphere.

Inside the shuttle, numerous control systems were required for power and life support. For
example, the orbiter had three fuel-cell power plants that converted hydrogen and oxygen
(reactants) into electricity and water for use by the crew. The fuel cells involved the use of
control systems to regulate temperature and pressure. The reactant tanks were kept at
constant pressure as the quantity of reactant diminishes. Sensors in the tanks sent signals
to the control systems to turn heaters on or off to keep the tank pressure constant
(Rockwell International, 1984).

Control systems are not limited to science and industry. For example, a home heating
system is a simple control system consisting of a thermostat containing a bimetallic
material that expands or contracts with changing temperature. This expansion or
contraction moves a vial of mercury that acts as a switch, turning the heater on or off. The
amount of expansion or contraction required to move the mercury switch is determined by
the temperature setting.

Home entertainment systems also have built-in control systems. For example, in an optical
disk recording system microscopic pits representing the information are burned into the
disc by a laser during the recording process. During playback, a reflected laser beam
focused on the pits changes intensity. The light intensity changes are converted to an



electrical signal and processed as sound or picture. A control system keeps the laser beam
positioned on the pits, which are cut as concentric circles.

There are countless other examples of control systems, from the everyday to the
extraordinary. As you begin your study of control systems engineering, you will become
more aware of the wide variety of applications.

1.3 System Configurations
In this section, we discuss two major configurations of control systems: open loop and
closed loop. We can consider these configurations to be the internal architecture of the total
system shown in Figure 1.1. Finally, we show how a digital computer forms part of a control
system's configuration.

Open-Loop Systems
A generic open-loop system is shown in Figure 1.5(a). It starts with a subsystem called
an input transducer, which converts the form of the input to that used by the controller.
The controller drives a process or a plant. The input is sometimes called the reference,
while the output can be called the controlled variable. Other signals, such as
disturbances, are shown added to the controller and process outputs via summing
junctions, which yield the algebraic sum of their input signals using associated signs. For
example, the plant can be a furnace or air conditioning system, where the output variable is
temperature. The controller in a heating system consists of fuel valves and the electrical
system that operates the valves.

The distinguishing characteristic of an open-loop system is that it cannot compensate for
any disturbances that add to the controller's driving signal (Disturbance 1 in Figure 1.5(a)).
For example, if the controller is an electronic amplifier and Disturbance 1 is noise, then any
additive amplifier noise at the first summing junction will also drive the process, corrupting
the output with the effect of the noise. The output of an open-loop system is corrupted not
only by signals that add to the controller's commands but also by disturbances at the output
(Disturbance 2 in Figure 1.5(a)). The system cannot correct for these disturbances, either.



FIGURE 1.5 Block diagrams of control systems: a. open-loop system; b.
closed-loop system

Open-loop systems, then, do not correct for disturbances and are simply commanded by
the input. For example, toasters are open-loop systems, as anyone with burnt toast can
attest. The controlled variable (output) of a toaster is the color of the toast. The device is
designed with the assumption that the toast will be darker the longer it is subjected to heat.
The toaster does not measure the color of the toast; it does not correct for the fact that the
toast is rye, white, or sourdough, nor does it correct for the fact that toast comes in different
thicknesses.

Other examples of open-loop systems are mechanical systems consisting of a mass, spring,
and damper with a constant force positioning the mass. The greater the force, the greater
the displacement. Again, the system position will change with a disturbance, such as an
additional force, and the system will not detect or correct for the disturbance. Or, assume
that you calculate the amount of time you need to study for an examination that covers
three chapters in order to get an A. If the professor adds a fourth chapter—a disturbance—
you are an open-loop system if you do not detect the disturbance and add study time to that
previously calculated. The result of this oversight would be a lower grade than you
expected.

Closed-Loop (Feedback Control) Systems
The disadvantages of open-loop systems, namely sensitivity to disturbances and inability to
correct for these disturbances, may be overcome in closed-loop systems. The generic
architecture of a closed-loop system is shown in Figure 1.5(b).

The input transducer converts the form of the input to the form used by the controller. An
output transducer, or sensor, measures the output response and converts it into the form
used by the controller. For example, if the controller uses electrical signals to operate the



valves of a temperature control system, the input position and the output temperature are
converted to electrical signals. The input position can be converted to a voltage by a
potentiometer, a variable resistor, and the output temperature can be converted to a
voltage by a thermistor, a device whose electrical resistance changes with temperature.

The first summing junction algebraically adds the signal from the input to the signal from
the output, which arrives via the feedback path, the return path from the output to the
summing junction. In Figure 1.5(b), the output signal is subtracted from the input signal.
The result is generally called the actuating signal. However, in systems where both the
input and output transducers have unity gain (i.e., the transducer amplifies its input by 1),
the actuating signal's value is equal to the actual difference between the input and the
output. Under this condition, the actuating signal is called the error.

The closed-loop system compensates for disturbances by measuring the output response,
feeding that measurement back through a feedback path, and comparing that response to
the input at the summing junction. If there is any difference between the two responses, the
system drives the plant, via the actuating signal, to make a correction. If there is no
difference, the system does not drive the plant, since the plant's response is already the
desired response.

Closed-loop systems, then, have the obvious advantage of greater accuracy than open-loop
systems. They are less sensitive to noise, disturbances, and changes in the environment.
Transient response and steady-state error can be controlled more conveniently and with
greater flexibility in closed-loop systems, often by a simple adjustment of gain
(amplification) in the loop and sometimes by redesigning the controller. We refer to the
redesign as compensating the system and to the resulting hardware as a compensator.
On the other hand, closed-loop systems are more complex and expensive than open-loop
systems. A standard, open-loop toaster serves as an example: It is simple and inexpensive.
A closed-loop toaster oven is more complex and more expensive since it has to measure
both color (through light reflectivity) and humidity inside the toaster oven. Thus, the
control systems engineer must consider the trade-off between the simplicity and low cost of
an open-loop system and the accuracy and higher cost of a closed-loop system.

In summary, systems that perform the previously described measurement and correction
are called closed-loop, or feedback control, systems. Systems that do not have this property
of measurement and correction are called open-loop systems.

Computer-Controlled Systems
In many modern systems, the controller (or compensator) is a digital computer. The
advantage of using a computer is that many loops can be controlled or compensated by the
same computer through time sharing. Furthermore, any adjustments of the compensator
parameters required to yield a desired response can be made by changes in software rather
than hardware. The computer can also perform supervisory functions, such as scheduling
many required applications. For example, the space shuttle main engine (SSME) controller,
which contained two digital computers, alone controlled numerous engine functions. It
monitored engine sensors that provided pressures, temperatures, flow rates, turbopump
speed, valve positions, and engine servo valve actuator positions. The controller further
provided closed-loop control of thrust and propellant mixture ratio, sensor excitation, valve
actuators, spark igniters, as well as other functions (Rockwell International, 1984).

1.4 Analysis and Design Objectives



In Section 1.1 we briefly alluded to some control system performance specifications, such as
transient response and steady-state error. We now expand upon the topic of performance
and place it in perspective as we define our analysis and design objectives.

Analysis is the process by which a system's performance is determined. For example, we
evaluate its transient response and steady-state error to determine if they meet the desired
specifications. Design is the process by which a system's performance is created or
changed. For example, if a system's transient response and steady-state error are analyzed
and found not to meet the specifications, then we change parameters or add additional
components to meet the specifications.

A control system is dynamic: It responds to an input by undergoing a transient response
before reaching a steady-state response that generally resembles the input. We have
already identified these two responses and cited a position control system (an elevator) as
an example. In this section, we discuss three major objectives of systems analysis and
design: producing the desired transient response, reducing steady-state error, and
achieving stability. We also address some other design concerns, such as cost and the
sensitivity of system performance to changes in parameters.

Transient Response
Transient response is important. In the case of an elevator, a slow transient response makes
passengers impatient, whereas an excessively rapid response makes them uncomfortable. If
the elevator oscillates about the arrival floor for more than a second, a disconcerting feeling
can result. Transient response is also important for structural reasons: Too fast a transient
response could cause permanent physical damage. In a computer, transient response
contributes to the time required to read from or write to the computer's disk storage (see
Figure 1.6). Since reading and writing cannot take place until the head stops, the speed of
the read/write head's movement from one track on the disk to another influences the
overall speed of the computer.

FIGURE 1.6 Computer hard disk drive, showing disks and read/write head

In this book, we establish quantitative definitions for transient response. We then analyze
the system for its existing transient response. Finally, we adjust parameters or design
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components to yield a desired transient response—our first analysis and design objective.

Steady-State Response
Another analysis and design goal focuses on the steady-state response. As we have seen,
this response resembles the input and is usually what remains after the transients have
decayed to zero. For example, this response may be an elevator stopped near the fourth
floor or the head of a disk drive finally stopped at the correct track. We are concerned about
the accuracy of the steady-state response. An elevator must be level enough with the floor
for the passengers to exit, and a read/write head not positioned over the commanded track
results in computer errors. An antenna tracking a satellite must keep the satellite well
within its beamwidth in order not to lose track. In this text we define steady-state errors
quantitatively, analyze a system's steady-state error, and then design corrective action to
reduce the steady-state error—our second analysis and design objective.

Stability
Discussion of transient response and steady-state error is moot if the system does not have
stability. In order to explain stability, we start from the fact that the total response of a
system is the sum of the natural response and the forced response. When you studied
linear differential equations, you probably referred to these responses as the
homogeneous and the particular solutions, respectively. Natural response describes
the way the system dissipates or acquires energy. The form or nature of this response is
dependent only on the system, not the input. On the other hand, the form or nature of the
forced response is dependent on the input. Thus, for a linear system, we can write

Total response = Natural response + Forced response

For a control system to be useful, the natural response must (1) eventually approach zero,
thus leaving only the forced response, or (2) oscillate. In some systems, however, the
natural response grows without bound rather than diminish to zero or oscillate. Eventually,
the natural response is so much greater than the forced response that the system is no
longer controlled. This condition, called instability, could lead to self-destruction of the
physical device if limit stops are not part of the design. For example, the elevator would
crash through the floor or exit through the ceiling; an aircraft would go into an
uncontrollable roll; or an antenna commanded to point to a target would rotate, line up
with the target, but then begin to oscillate about the target with growing oscillations and
increasing velocity until the motor or amplifiers reached their output limits or until the
antenna was damaged structurally. A time plot of an unstable system would show a
transient response that grows without bound and without any evidence of a steady-state
response.

Control systems must be designed to be stable. That is, their natural response must decay
to zero as time approaches infinity, or oscillate. In many systems the transient response you
see on a time response plot can be directly related to the natural response. Thus, if the
natural response decays to zero as time approaches infinity, the transient response will also
die out, leaving only the forced response. If the system is stable, the proper transient
response and steady-state error characteristics can be designed. Stability is our third
analysis and design objective.

Other Considerations



The three main objectives of control system analysis and design have already been
enumerated. However, other important considerations must be taken into account. For
example, factors affecting hardware selection, such as motor sizing to fulfill power
requirements and choice of sensors for accuracy, must be considered early in the design.

Finances are another consideration. Control system designers cannot create designs
without considering their economic impact. Such considerations as budget allocations and
competitive pricing must guide the engineer. For example, if your product is one of a kind,
you may be able to create a design that uses more expensive components without
appreciably increasing total cost. However, if your design will be used for many copies,
slight increases in cost per copy can translate into many more dollars for your company to
propose during contract bidding and to outlay before sales.

Another consideration is robust design. System parameters considered constant during the
design for transient response, steady-state errors, and stability change over time when the
actual system is built. Thus, the performance of the system also changes over time and will
not be consistent with your design. Unfortunately, the relationship between parameter
changes and their effect on performance is not linear. In some cases, even in the same
system, changes in parameter values can lead to small or large changes in performance,
depending on the system's nominal operating point and the type of design used. Thus, the
engineer wants to create a robust design so that the system will not be sensitive to
parameter changes. We discuss the concept of system sensitivity to parameter changes in
Chapters 7 and 8. This concept, then, can be used to test a design for robustness.



Case Study Introduction to a Case Study
Now that our objectives are stated, how do we meet them? In this section, we will look
at an example of a feedback control system. The system introduced here will be used in
subsequent chapters as a running case study to demonstrate the objectives of those
chapters. A colored background like this will identify the case study section at the end
of each chapter. Section 1.5, which follows this first case study, explores the design
process that will help us build our system.

Antenna Azimuth: An Introduction to Position Control Systems
A position control system converts a position input command to a position output
response. Position control systems find widespread applications in antennas, robot
arms, and computer disk drives. The radio telescope antenna in Figure 1.7 is one
example of a system that uses position control systems. In this section, we will look in
detail at an antenna azimuth position control system that could be used to position a
radio telescope antenna. We will see how the system works and how we can effect
changes in its performance. The discussion here will be on a qualitative level, with the
objective of getting an intuitive feeling for the systems with which we will be dealing.

FIGURE 1.7 The search for extraterrestrial life is being carried out with
radio antennas like the one pictured here. A radio antenna is an example
of a system with position controls.

An antenna azimuth position control system is shown in Figure 1.8(a), with a more
detailed layout and schematic in Figures 1.8(b) and 1.8(c), respectively. Figure 1.8(d)
shows a functional block diagram of the system. The functions are shown above the
blocks, and the required hardware is indicated inside the blocks. Parts of Figure 1.8 are
repeated in Appendix A2 for future reference.



FIGURE 1.8 Antenna azimuth position control system: a. system
concept; b. detailed layout; c. schematic d. functional block diagram

The purpose of this system is to have the azimuth angle output of the antenna, θo(t),
follow the input angle of the potentiometer, θi(t). Let us look at Figure 1.8(d) and
describe how this system works. The input command is an angular displacement. The
potentiometer converts the angular displacement into a voltage. Similarly, the output
angular displacement is converted to a voltage by the potentiometer in the feedback
path. The signal and power amplifiers boost the difference between the input and
output voltages. This amplified actuating signal drives the plant.



The system normally operates to drive the error to zero. When the input and output
match, the error will be zero, and the motor will not turn. Thus, the motor is driven
only when the output and the input do not match. The greater the difference between
the input and the output, the larger the motor input voltage, and the faster the motor
will turn.

If we increase the gain of the signal amplifier, will there be an increase in the steady-
state value of the output? If the gain is increased, then for a given actuating signal, the
motor will be driven harder. However, the motor will still stop when the actuating
signal reaches zero, that is, when the output matches the input. The difference in the
response, however, will be in the transients. Since the motor is driven harder, it turns
faster toward its final position. Also, because of the increased speed, increased
momentum could cause the motor to overshoot the final value and be forced by the
system to return to the commanded position. Thus, the possibility exists for a transient
response that consists of damped oscillations (i.e., a sinusoidal response whose
amplitude diminishes with time) about the steady-state value if the gain is high. The
responses for low gain and high gain are shown in Figure 1.9.

FIGURE 1.9 Response of a position control system, showing effect of
high and low controller gain on the output response

We have discussed the transient response of the position control system. Let us now
direct our attention to the steady-state position to see how closely the output matches
the input after the transients disappear.

We define steady-state error as the difference between the input and the output after
the transients have effectively disappeared. The definition holds equally well for step,
ramp, and other types of inputs. Typically, the steady-state error decreases with an
increase in gain and increases with a decrease in gain. Figure 1.9 shows zero error in
the steady-state response; that is, after the transients have disappeared, the output
position equals the commanded input position. In some systems, the steady-state error



will not be zero; for these systems, a simple gain adjustment to regulate the transient
response is either not effective or leads to a trade-off between the desired transient
response and the desired steady-state accuracy.

To solve this problem, a controller with a dynamic response, such as an electrical filter,
is used along with an amplifier. With this type of controller, it is possible to design
both the required transient response and the required steady-state accuracy without
the trade-off required by a simple setting of gain. However, the controller is now more
complex. The filter in this case is called a compensator. Many systems also use
dynamic elements in the feedback path along with the output transducer to improve
system performance. An animation PowerPoint presentation (PPT) demonstrating this
system is available for instructors. See Antenna (Ch. 1).

In summary, then, our design objectives and the system's performance revolve around
the transient response, the steady-state error, and stability. Gain adjustments can
affect performance and sometimes lead to trade-offs between the performance criteria.
Compensators can often be designed to achieve performance specifications without the
need for trade-offs. Now that we have stated our objectives and some of the methods
available to meet those objectives, we describe the orderly progression that leads us to
the final system design.

1.5 The Design Process
In this section, we establish an orderly sequence for the design of feedback control systems
that will be followed as we progress through the rest of the book. Figure 1.10 shows the
described process as well as the chapters in which the steps are discussed.

FIGURE 1.10 The control system design process

The antenna azimuth position control system discussed in the last section is representative
of control systems that must be analyzed and designed. Inherent in Figure 1.10 is feedback
and communication during each phase. For example, if testing (Step 6) shows that
requirements have not been met, the system must be redesigned and retested. Sometimes
requirements are conflicting and the design cannot be attained. In these cases, the
requirements have to be respecified and the design process repeated. Let us now elaborate
on each block of Figure 1.10.

Step 1: Transform Requirements Into a Physical System
We begin by transforming the requirements into a physical system. For example, in the
antenna azimuth position control system, the requirements would state the desire to



position the antenna from a remote location and describe such features as weight and
physical dimensions. Using the requirements, design specifications, such as desired
transient response and steady-state accuracy, are determined. Perhaps an overall concept,
such as Figure 1.8(a), would result.

Step 2: Draw a Functional Block Diagram
The designer now translates a qualitative description of the system into a functional block
diagram that describes the component parts of the system (i.e., function and/or hardware)
and shows their interconnection. Figure 1.8(d) is an example of a functional block diagram
for the antenna azimuth position control system. It indicates functions such as input
transducer and controller, as well as possible hardware descriptions such as amplifiers and
motors. At this point the designer may produce a detailed layout of the system, such as that
shown in Figure 1.8(b), from which the next phase of the analysis and design sequence,
developing a schematic diagram, can be launched.

Step 3: Create a Schematic
As we have seen, position control systems consist of electrical, mechanical, and
electromechanical components. After producing the description of a physical system, the
control systems engineer transforms the physical system into a schematic diagram. The
control system designer can begin with the physical description, as contained in Figure
1.8(a), to derive a schematic. The engineer must make approximations about the system
and neglect certain phenomena, or else the schematic will be unwieldy, making it difficult
to extract a useful mathematical model during the next phase of the analysis and design
sequence. The designer starts with a simple schematic representation and, at subsequent
phases of the analysis and design sequence, checks the assumptions made about the
physical system through analysis and computer simulation. If the schematic is too simple
and does not adequately account for observed behavior, the control systems engineer adds
phenomena to the schematic that were previously assumed negligible. A schematic diagram
for the antenna azimuth position control system is shown in Figure 1.8(c).

When we draw the potentiometers, we make our first simplifying assumption by neglecting
their friction or inertia. These mechanical characteristics yield a dynamic, rather than an
instantaneous, response in the output voltage. We assume that these mechanical effects are
negligible and that the voltage across a potentiometer changes instantaneously as the
potentiometer shaft turns.

A differential amplifier and a power amplifier are used as the controller to yield gain and
power amplification, respectively, to drive the motor. Again, we assume that the dynamics
of the amplifiers are rapid compared to the response time of the motor; thus, we model
them as a pure gain, K.

A dc motor and equivalent load produce the output angular displacement. The speed of the
motor is proportional to the voltage applied to the motor's armature circuit. Both
inductance and resistance are part of the armature circuit. In showing just the armature
resistance in Figure 1.8(c), we assume the effect of the armature inductance is negligible for
a dc motor.

The designer makes further assumptions about the load. The load consists of a rotating
mass and bearing friction. Thus, the model consists of inertia and viscous damping whose
resistive torque increases with speed, as in an automobile's shock absorber or a screen door
damper.



(1.2)4

The decisions made in developing the schematic stem from knowledge of the physical
system, the physical laws governing the system's behavior, and practical experience. These
decisions are not easy; however, as you acquire more design experience, you will gain the
insight required for this difficult task.

Step 4: Develop a Mathematical Model (Block Diagram)
Once the schematic is drawn, the designer uses physical laws, such as Kirchhoff's laws for
electrical networks and Newton's law for mechanical systems, along with simplifying
assumptions, to model the system mathematically. These laws are

Kirchhoff's
voltage law

The sum of voltages around a closed path equals zero.

Kirchhoff's
current law

The sum of electric currents flowing from a node equals zero.

Newton's laws The sum of forces on a body equals zero;3 the sum of moments on a
body equals zero.

Kirchhoff's and Newton's laws lead to mathematical models that describe the relationship
between the input and output of dynamic systems. One such model is the linear, time-
invariant differential equation, Eq. (1.2):

+ dn−1 + ⋯ + d0c(t) = bm + bm−1 + ⋯ + b0r(t)

Many systems can be approximately described by this equation, which relates the output,
c(t), to the input, r(t), by way of the system parameters, ai and bj. We assume the reader is
familiar with differential equations. Problems and a bibliography are provided at the end of
the chapter for you to review this subject.

Simplifying assumptions made in the process of obtaining a mathematical model usually
leads to a low-order form of Eq. (1.2). Without the assumptions the system model could be
of high order or described with nonlinear, time-varying, or partial differential equations.
These equations complicate the design process and reduce the designer's insight. Of course,
all assumptions must be checked and all simplifications justified through analysis or
testing. If the assumptions for simplification cannot be justified, then the model cannot be
simplified. We examine some of these simplifying assumptions in Chapter 2.

In addition to the differential equation, the transfer function is another way of
mathematically modeling a system. The model is derived from the linear, time-invariant
differential equation using what we call the Laplace transform. Although the transfer
function can be used only for linear systems, it yields more intuitive information than the
differential equation. We will be able to change system parameters and rapidly sense the
effect of these changes on the system response. The transfer function is also useful in
modeling the interconnection of subsystems by forming a block diagram similar to Figure
1.8(d) but with a mathematical function inside each block.

Still another model is the state-space representation. One advantage of state-space
methods is that they can also be used for systems that cannot be described by linear
differential equations. Further, state-space methods are used to model systems for
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simulation on the digital computer. Basically, this representation turns an nth-order
differential equation into n simultaneous first-order differential equations. Let this
description suffice for now; we describe this approach in more detail in Chapter 3.

Finally, we should mention that to produce the mathematical model for a system, we
require knowledge of the parameter values, such as equivalent resistance, inductance,
mass, and damping, which is often not easy to obtain. Analysis, measurements, or
specifications from vendors are sources that the control systems engineer may use to obtain
the parameters.

Step 5: Reduce the Block Diagram
Subsystem models are interconnected to form block diagrams of larger systems, as in
Figure 1.8(d), where each block has a mathematical description. Notice that many signals,
such as proportional voltages and error, are internal to the system. There are also two
signals—angular input and angular output—that are external to the system. In order to
evaluate system response in this example, we need to reduce this large system's block
diagram to a single block with a mathematical description that represents the system from
its input to its output, as shown in Figure 1.11. Once the block diagram is reduced, we are
ready to analyze and design the system.

FIGURE 1.11 Equivalent block diagram for the antenna azimuth position
control system

Step 6: Analyze and Design
The next phase of the process, following block diagram reduction, is analysis and design. If
you are interested only in the performance of an individual subsystem, you can skip the
block diagram reduction and move immediately into analysis and design. In this phase, the
engineer analyzes the system to see if the response specifications and performance
requirements can be met by simple adjustments of system parameters. If specifications
cannot be met, the designer then designs additional hardware in order to effect a desired
performance.

Test input signals are used, both analytically and during testing, to verify the design. It is
neither necessarily practical nor illuminating to choose complicated input signals to
analyze a system's performance. Thus, the engineer usually selects standard test inputs.
These inputs are impulses, steps, ramps, parabolas, and sinusoids, as shown in Table 1.1.



TABLE 1.1

Test waveforms used in control systems
Input Function Description Sketch Use

Impulse δ (t)

δ(t) = ∞ for 0− < t < 0+

= 0 elsewhere

∫
0+

0−
δ(t)dt = 1

Transient response
Modeling

Step u (t)
u (t) = 1 for t > 0

= 0 for t < 0
Transient response
Steady-state error

Ramp tu (t)
tu (t) = t for t ≥ 0

= 0 else where
Steady-state error

Parabola t
2
u (t)

t
2
u (t) = t

2 for t ≥ 0

= 0 else where
Steady-state error

Sinusoid sinωt Transient response
Modeling Steady-state
error

An impulse is infinite at t = 0 and zero elsewhere. The area under the unit impulse is 1. An
approximation of this type of waveform is used to place initial energy into a system so that
the response due to that initial energy is only the transient response of a system. From this
response the designer can derive a mathematical model of the system.

A step input represents a constant command, such as position, velocity, or acceleration.
Typically, the step input command is of the same form as the output. For example, if the
system's output is position, as it is for the antenna azimuth position control system, the
step input represents a desired position, and the output represents the actual position. If
the system's output is velocity, as is the spindle speed for a video disc player, the step input

1
2

1
2

1
2



represents a constant desired speed, and the output represents the actual speed. The
designer uses step inputs because both the transient response and the steady-state
response are clearly visible and can be evaluated.

The ramp input represents a linearly increasing command. For example, if the system's
output is position, the input ramp represents a linearly increasing position, such as that
found when tracking a satellite moving across the sky at constant speed. If the system's
output is velocity, the input ramp represents a linearly increasing velocity. The response to
an input ramp test signal yields additional information about the steady-state error. The
previous discussion can be extended to parabolic inputs, which are also used to evaluate a
system's steady-state error.

Sinusoidal inputs can also be used to test a physical system to arrive at a mathematical
model. We discuss the use of this waveform in detail in Chapters 10 and 11.

We conclude that one of the basic analysis and design requirements is to evaluate the time
response of a system for a given input. Throughout the book you will learn numerous
methods for accomplishing this goal.

The control systems engineer must take into consideration other characteristics about
feedback control systems. For example, control system behavior is altered by fluctuations
in component values or system parameters. These variations can be caused by temperature,
pressure, or other environmental changes. Systems must be built so that expected
fluctuations do not degrade performance beyond specified bounds. A sensitivity analysis
can yield the percentage of change in a specification as a function of a change in a system
parameter. One of the designer's goals, then, is to build a system with minimum sensitivity
over an expected range of environmental changes.

In this section, we looked at some control systems analysis and design considerations. We
saw that the designer is concerned about transient response, steady-state error, stability,
and sensitivity. The text pointed out that although the basis of evaluating system
performance is the differential equation, other methods, such as transfer functions and
state space, will be used. The advantages of these new techniques over differential
equations will become apparent as we discuss them in later chapters.

1.6 Computer-Aided Design
Now that we have discussed the analysis and design sequence, let us discuss the use of the
computer as a computational tool in this sequence. The computer plays an important role
in the design of modern control systems. In the past, control system design was labor
intensive. Many of the tools we use today were implemented through hand calculations or,
at best, using plastic graphical aid tools. The process was slow, and the results not always
accurate. Large mainframe computers were then used to simulate the designs.

Today we are fortunate to have computers and software that remove the drudgery from the
task. At our own desktop computers, we can perform analysis, design, and simulation with
one program. With the ability to simulate a design rapidly, we can easily make changes and
immediately test a new design. We can play what-if games and try alternate solutions to see
if they yield better results, such as reduced sensitivity to parameter changes. We can
include nonlinearities and other effects and test our models for accuracy.

MATLAB
The computer is an integral part of modern control system design, and many
computational tools are available for your use. In this book we use MATLAB and the



MATLAB Control System Toolbox, which expands MATLAB to include control system–
specific commands. In addition, presented are several MATLAB enhancements that give
added functionality to MATLAB and the Control Systems Toolbox. Included are (1)
Simulink, which uses a graphical user interface (GUI); (2) the Linear System Analyzer,
which permits measurements to be made directly from time and frequency response
curves; (3) the Control System Designer, a convenient and intuitive analysis and design
tool; and (4) the Symbolic Math Toolbox, which saves labor when making symbolic
calculations required in control system analysis and design. Some of these enhancements
may require additional software available from The MathWorks, Inc.

MATLAB is presented as an alternate method of solving control system problems. You are
encouraged to solve problems first by hand and then by MATLAB so that insight is not lost
through mechanized use of computer programs. To this end, many examples throughout
the book are solved by hand, followed by suggested use of MATLAB.

As an enticement to begin using MATLAB, simple program statements that you can try are
suggested throughout the chapters at appropriate locations. Throughout the book,
MATLAB references direct you to the proper program in the proper appendix and tell you
what you will learn. Selected end-of-chapter problems and Case Study Challenges to be
solved using MATLAB have also been marked. The following list itemizes the specific
components of MATLAB used in this book and the appendix in which a description can be
found:

 MATLAB/Control System Toolbox tutorials and code are found in Appendix B and
identified in the text.

 Simulink tutorials and diagrams are found in Appendix C and identified in the
text.

 MATLAB GUI tools, tutorials, and examples are in Appendix E and identified in
the text. These tools consist of the Linear System Analyzer and the Control System

Designer.

 Symbolic Math Toolbox tutorials and code are found in Appendix F at
www.wiley.com/go/Nise/ControlSystemsEngineering8e and identified in the text with

the Symbolic Math icon shown in the margin.

MATLAB code itself is not platform specific. The same code runs on PCs and workstations
that support MATLAB. Although there are differences in installing and managing MATLAB
files, we do not address them in this book. Also, there are many more commands in
MATLAB and the MATLAB toolboxes than are covered in the appendixes. Please explore
the bibliographies at the end of the applicable appendixes to find out more about MATLAB
file management and MATLAB instructions not covered in this textbook.

LabVIEW
LabVIEW is a programming environment presented as an alternative to MATLAB. This
graphical alternative produces front panels of virtual instruments on your computer that
are pictorial reproductions of hardware instruments, such as waveform generators or
oscilloscopes. Underlying the front panels are block diagrams. The blocks contain
underlying code for the controls and indicators on the front panel. Thus, a knowledge of
coding is not required. Also, parameters can be easily passed or viewed from the front
panel.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


 A LabVIEW tutorial is in Appendix D and all LabVIEW material is identified in
the text.

You are encouraged to use computational aids throughout this book. Those not using
MATLAB or LabVIEW should consult Appendix H for a discussion of other alternatives.
Now that we have introduced control systems to you and established a need for
computational aids to perform analysis and design, we will conclude with a discussion of
your career as a control systems engineer and look at the opportunities and challenges that
await you.

1.7 The Control Systems Engineer
Control systems engineering is an exciting field in which to apply your engineering talents,
because it cuts across numerous disciplines and numerous functions within those
disciplines. The control engineer can be found at the top level of large projects, engaged at
the conceptual phase in determining or implementing overall system requirements. These
requirements include total system performance specifications, subsystem functions, and
the interconnection of these functions, including interface requirements, hardware and
software design, and test plans and procedures.

Many engineers are engaged in only one area, such as circuit design or software
development. However, as a control systems engineer, you may find yourself working in a
broad arena and interacting with people from numerous branches of engineering and the
sciences. For example, if you are working on a biological system, you will need to interact
with colleagues in the biological sciences, mechanical engineering, electrical engineering,
and computer engineering, not to mention mathematics and physics. You will be working
with these engineers at all levels of project development from concept through design and,
finally, testing. At the design level, the control systems engineer can be performing
hardware selection, design, and interface, including total subsystem design to meet
specified requirements. The control engineer can be working with sensors and motors as
well as electronic, pneumatic, and hydraulic circuits.

The space shuttle provides another example of the diversity required of the systems
engineer. In the previous section, we showed that the space shuttle's control systems cut
across many branches of science: orbital mechanics and propulsion, aerodynamics,
electrical engineering, and mechanical engineering. Whether or not you work in the space
program, as a control systems engineer you will apply broad-based knowledge to the
solution of engineering control problems. You will have the opportunity to expand your
engineering horizons beyond your university curriculum.

You are now aware of future opportunities. But for now, what advantages does this course
offer to a student of control systems (other than the fact that you need it to graduate)?
Engineering curricula tend to emphasize bottom-up design. That is, you start from the
components, develop circuits, and then assemble a product. In top-down design, a high-
level picture of the requirements is first formulated; then the functions and hardware
required to implement the system are determined. You will be able to take a top-down
systems approach as a result of this course.

A major reason for not teaching top-down design throughout the curriculum is the high
level of mathematics initially required for the systems approach. For example, control
systems theory, which requires differential equations, could not be taught as a lower-
division course. However, while progressing through bottom-up design courses, it is



difficult to see how such design fits logically into the large picture of the product
development cycle.

After completing this control systems course, you will be able to stand back and see how
your previous studies fit into the large picture. Your amplifier course or vibrations course
will take on new meaning as you begin to see the role design work plays as part of product
development. For example, as engineers, we want to describe the physical world
mathematically so that we can create systems that will benefit humanity. You will find that
you have indeed acquired, through your previous courses, the ability to model physical
systems mathematically, although at the time you might not have understood where in the
product development cycle the modeling fits. This course will clarify the analysis and
design procedures and show you how the knowledge you acquired fits into the total picture
of system design.

Understanding control systems enables students from all branches of engineering to speak
a common language and develop an appreciation and working knowledge of the other
branches. You will find that there really is not much difference among the branches of
engineering as far as the goals and applications are concerned. As you study control
systems, you will see this commonality.

Summary
Control systems contribute to every aspect of modern society. In our homes we find them in
everything from toasters to heating systems to DVD players. Control systems also have
widespread applications in science and industry, from steering ships and planes to guiding
missiles. Control systems also exist naturally; our bodies contain numerous control
systems. Even economic and psychological system representations have been proposed
based on control system theory. Control systems are used where power gain, remote
control, or conversion of the form of the input is required.

A control system has an input, a process, and an output. Control systems can be open loop
or closed loop. Open-loop systems do not monitor or correct the output for disturbances;
however, they are simpler and less expensive than closed-loop systems. Closed-loop
systems monitor the output and compare it to the input. If an error is detected, the system
corrects the output and hence corrects the effects of disturbances.

Control systems analysis and design focuses on three primary objectives:

1. Producing the desired transient response

2. Reducing steady-state errors

3. Achieving stability

A system must be stable in order to produce the proper transient and steady-state response.
Transient response is important because it affects the speed of the system and influences
human patience and comfort, not to mention mechanical stress. Steady-state response
determines the accuracy of the control system; it governs how closely the output matches
the desired response.

The design of a control system follows these steps:

Step 1 Determine a physical system and specifications from requirements.

Step 2 Draw a functional block diagram.



Step 3 Represent the physical system as a schematic.

Step 4 Use the schematic to obtain a mathematical model, such as a block diagram.

Step 5 Reduce the block diagram.

Step 6 Analyze and design the system to meet specified requirements and
specifications that include stability, transient response, and steady-state performance.

In the next chapter we continue through the analysis and design sequence and learn how to
use the schematic to obtain a mathematical model.

Review Questions
1. Name three applications for feedback control systems.

2. Name three reasons for using feedback control systems and at least one reason for not
using them.

3. Give three examples of open-loop systems.

4. Functionally, how do closed-loop systems differ from open-loop systems?

5. State one condition under which the error signal of a feedback control system would
not be the difference between the input and the output.

6. If the error signal is not the difference between input and output, by what general
name can we describe the error signal?

7. Name two advantages of having a computer in the loop.

8. Name the three major design criteria for control systems.

9. Name the two parts of a system's response.

10. Physically, what happens to a system that is unstable?

11. Instability is attributable to what part of the total response?

12. Describe a typical control system analysis task.

13. Describe a typical control system design task.

14. Adjustments of the forward path gain can cause changes in the transient response.
True or false?

15. Name three approaches to the mathematical modeling of control systems.

16. Briefly describe each of your answers to Question 15.

Cyber Exploration Laboratory

EXPERIMENT 1.1
Objective
To verify the behavior of closed-loop systems as described in the Chapter 1 Case Study.

Minimum Required Software Packages



LabVIEW and the LabVIEW Control Design and Simulation Module. Note: While no
knowledge of LabVIEW is required for this experiment, see Appendix D to learn more
about LabVIEW, which will be pursued in more detail in later chapters.

Prelab

1. From the discussion in the Case Study, describe the effect of the gain of a closed-loop
system upon transient response.

2. From the discussion in the Case Study about steady-state error, sketch a graph of a
step input superimposed with a step response output and show the steady-state error.
Assume any transient response. Repeat for a ramp input and ramp output response.
Describe the effect of gain upon the steady-state error.

Lab

1. Launch LabVIEW and open Find Examples… under the Help tab.

2. In the NI Example Finder window, open CDEx Effect of Controller Type.vi,
found by navigating to it through Toolkits and Modules/Control and
Simulation/Control Design/Time Analysis/CDEx Effect of Controller Type
vi.

3. On the tool bar click the circulating arrows located next to the solid arrow on the left.
The program is now running.

4. Move the slider Controller Gain and note the effect of high and low gains.

5. Change the controller by clicking the arrows for Controller Type and repeat Step 4.

Postlab

1. Correlate the responses found in the experiment with those described in your Prelab.
Explore other examples provided in the LabVIEW example folders.
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Notes
1 See (Bennett, 1979) and (Mayr, 1970) for definitive works on the history of control

systems.

2 You may be confused by the words transient vs. natural, and steady-state vs. forced. If
you look at Figure 1.2, you can see the transient and steady-state portions of the total
response as indicated. The transient response is the sum of the natural and forced



responses, while the natural response is large. If we plotted the natural response by
itself, we would get a curve that is different from the transient portion of Figure 1.2. The
steady-state response of Figure 1.2 is also the sum of the natural and forced responses,
but the natural response is small. Thus, the transient and steady-state responses are
what you actually see on the plot; the natural and forced responses are the underlying
mathematical components of those responses.

3 Alternately, ∑ forces = Ma. In this text the force, Ma, will be brought to the left-hand side
of the equation to yield ∑ forces = 0 (D’Alembert’s principle). We can then have a
consistent analogy between force and voltage, and Kirchhoff's and Newton's laws (i.e., ∑
forces = 0; ∑ voltages = 0).

4 The right-hand side of Eq. (1.2) indicates differentiation of the input, r(t). In physical
systems, differentiation of the input introduces noise. In Chapters 3 and 5 we show
implementations and interpretations of Eq. (1.2) that do not require differentiation of
the input.



Chapter 2
Modeling in the Frequency Domain



Chapter 2 Problems
1. Derive the Laplace transform for the following time functions:
[Section: 2.2]

a. u(t)

b. tu(t)

c. sin ωtu(t)

d. cos ωtu(t)

2. Using the Laplace transform pairs of Table 2.1 and the Laplace
transform theorems of Table 2.2, derive the Laplace transforms
for the following time functions: [Section: 2.2]

a. e−atsin ωtu(t)

b. e−atcos ωtu(t)

c. t3u(t)

3. Repeat Problem 14 in Chapter 1, using Laplace transforms.
Assume zero initial conditions. [Sections: 2.2; 2.3]

 4. Repeat Problem 15 in Chapter 1, using Laplace transforms.
Assume that the forcing functions are zero prior to t = 0 −.
[Section: 2.2]

Check Answer!

5. Using Laplace transforms, solve the differential equations in
Chapter 1, Problem 16 for the following initial conditions: (a) x(0) 
= 2, x′(0) = −2; (b) x(0) = 1; x′(0) = 1; (c) x(0) = 0, x′(0) = 1.
Assume that all input functions are zero for t < 0 and note that
x′(0) = (0). [Section 2.2]

6.  Use MATLAB and the Symbolic Math Toolbox to find
the inverse Laplace transform of the following frequency

functions: [Section: 2.2]

dx

dt



a. G (s) =

b. G (s) =

 7. A system is described by the following differential
equation:

+ 3 + 5 + y = + 4 + 6 + 8x

Find the expression for the transfer function of the system,
Y(s)/X(s). [Section: 2.3]

Check Answer!

8. Write the differential equation that corresponds to each of the
following transfer functions. [Section: 2.3]

a. =

b. =

c. =

 9. Write the differential equation for the system shown in
Figure P2.1. [Section: 2.3]

FIGURE P2.1

Check Answer!

10. Assume the input to the block in Figure P2.2 is r(t) = 10t4.
Write the equivalent differential equation for the system depicted
in the block diagram. [Section: 2.3]

(s
2
+3s+10)(s+5)

(s+3)(s+4)(s2+2s+100)

s
3
+4s

2
+2s+6

(s+8)(s2+8s+3)(s2+5s+7)

d3y

dt3

d2y

dt2

dy

dt

d3x

dt3

d2x

dt2

dx

dt

X(s)

F(s)
10

s2+7s+80

X(s)

F(s)
100

(s+3)(s+17)

X(s)

F(s)

s−8

s3+10s2−7s+30



FIGURE P2.2

11. A system is described by the following differential equation:
[Section 2.3]

+ 4 + 5x = 1

with the initial conditions x (0) = 1,
.
x (0) = −1. Show a block

diagram of the system, giving its transfer function and all
pertinent inputs and outputs. (Hint: the initial conditions will
show up as added inputs to an effective system with zero initial
conditions.)

 12.  Use MATLAB to generate the transfer function:
[Section: 2.3]

G (s) =

in the following ways:

a. the ratio of factors;

b. the ratio of polynomials.

Check Answer!

 13. Use MATLAB to generate the partial-fraction expansion
of the following function: [Section: 2.3]

F (s) =

d2x

dt2

dx

dt

5 (s + 15) (s + 26) (s + 72)

s (s + 55) (s2 + 5s + 30) (s + 56) (s2 + 27s + 52)

104 (s + 5) (s + 70)

s (s + 45) (s + 55) (s2 + 7s + 110) (s2 + 6s + 95)



Check Answer!

14. For each of the circuits in Figure P2.3, find the transfer
function, G(s) = Vo(s)/Vi(s). [Section: 2.4]

FIGURE P2.3

 15. Find the transfer function, G(s) = Vo(s)/Vi(s), for each
network shown in Figure P2.4. Solve the problem using mesh
analysis. [Section: 2.4]

FIGURE P2.4

Check Answer!

16. Repeat Problem 15 using nodal equations. [Section: 2.4]

17. For each of the circuits shown in Figure P2.5, find the
corresponding transfer function G(s) = Vo(s)/Vi(s). [Section: 2.4]



FIGURE P2.5

 18. Find the transfer function, G(s) = Vo(s)/Vi(s), for each
operational amplifier circuit shown in Figure P2.6. [Section: 2.4]



FIGURE P2.6



Check Answer!

19. For the translational mechanical system of Figure P2.7, find
the transfer function, X1(s)/F(s). [Section: 2.5]

FIGURE P2.7

 20. Find the transfer function, G(s) = X2(s)/F(s), for the
translational mechanical network shown in Figure P2.8. [Section:
2.5]

FIGURE P2.8

Check Answer!

21. Find the tranfer function, G(s) = X2(s)/F(s), for the system
shown in Figure P2.9 [Section: 2.5]



FIGURE P2.9

22. Find the transfer function, X3(s)/F(s), for each system shown
in Figure P2.10. [Section: 2.5]

FIGURE P2.10



23. Write, but do not solve, the equations of motion for the
translational mechanical system shown in Figure P2.11. [Section:
2.5]

FIGURE P2.11

24. For the unexcited (no external force applied) system of Figure
P2.12, do the following:

a. Write the differential equation that describes the system.

b. Assuming initial conditions x(0) = x0 and ẋ(0) = x1,
write a Laplace transform expression for X(s).

c. Find x(t) by obtaining the inverse Laplace transform from
the result in Part c.

d. What will be the oscillation frequency in Hz for this
system?



FIGURE P2.12

25. For each of the rotational mechanical systems shown in Figure
P2.13, write, but do not solve, the equations of motion. [Section:
2.6]

FIGURE P2.13

26. Calculate the transfer function G(s) = θ2(s)/T(s) for the
stystem of Figure P2.14. [Section: 2.6]



FIGURE P2.14

27. For the rotational mechanical system with gears shown in
Figure P2.15, find the transfer function, G(s) = θ3(s)/T(s). The
gears have inertia and bearing friction as shown. [Section: 2.7]

FIGURE P2.15

 28. For the rotational system shown in Figure P2.16, find the
transfer function, G(s) = θ2(s)/T(s). [Section: 2.7]



FIGURE P2.16

Check Answer!

29. Obtain the transfer function, G(s) = θ2(s)/T(s), for the system
of Figure P2.17. [Section: 2.7]

FIGURE P2.17

30. For the rotational system of Figure P2.18, find the transfer
function, G(s) = θ2(s)/T(s). [Section: 2.7]



FIGURE P2.18

31. For the rotational system shown in Figure P2.19, find the
transfer function, G(s) = θL(s)/T(s). [Section: 2.7]

FIGURE P2.19

32. Given the rotational system shown in Figure P2.20, find the
transfer function, G(s) = θ6(s)/θ1(s). [Section: 2.7]

FIGURE P2.20



33. For the combined translational and rotational system shown
in Figure P2.21, find the transfer function, G(s) = X(s)/T(s).
[Sections: 2.5; 2.6; 2.7]

FIGURE P2.21

34. In Figure P2.22, a load is driven with a motor whose torque–
speed characteristic is shown in the Figure. Determine the transfer
fuction, G(s) = θL(s)/Ea(s)

FIGURE P2.22

 35. The motor whose torque–speed characteristics are shown
in Figure P2.23 drives the load shown in the diagram. Some of the



gears have inertia. Find the transfer function, G(s) = θ2(s)/Ea(s).
[Section: 2.8]

FIGURE P2.23

Check Answer!

36. In this chapter, we derived the transfer function of a dc motor
relating the angular displacement output to the armature voltage
input. Often we want to control the output torque rather than the
displacement. Derive the transfer function of the motor that
relates output torque to input armature voltage. [Section: 2.8]

37. Find the transfer function, G(s) = X(s)/Ea(s), for the system
shown in Figure P2.24. [Sections: 2.5–2.8]



FIGURE P2.24

 38. Find the series and parallel analogs for the translational
mechanical system shown in Figure 2.20 in the text. [Section: 2.9]

Check Answer!

39. Find the series and parallel analogs for the rotational
mechanical systems shown in Figure P2.13(b) in the problems.
[Section: 2.9]

40. A system's output, c, is related to the system's input, r, by the
straight-line relationship, c = 5r + 7. Is the system linear?
[Section: 2.10]

 41. Consider the differential equation

+ 10 + 20 + 15x = f (x)

where f(x) is the input and is a function of the output, x. If 
f(x) = 3e−5x, linearize the differential equation for x near 0.
[Section: 2.10]

d3x

dt3

d2x

dt2

dx

dt



Check Answer!

42. For the translational mechanical system with a nonlinear
spring shown in Figure P2.25, find the transfer function, G(s) =
X(s)/F(s), for small excursions around f(t) = 1. The spring is
defined by xs(t) =1 − e−fs(t), where xs(t) is the spring
displacement and fs(t) is the spring force. [Section: 2.10]

FIGURE P2.25

43. Enzymes are large proteins that biological systems use to
increase the rate at which reactions occur. For example, food is
usually composed of large molecules that are hard to digest;
enzymes break down the large molecules into small nutrients as
part of the digestive process. One such enzyme is amylase,
contained in human saliva. It is commonly known that if you place
a piece of uncooked pasta in your mouth its taste will change from
paper-like to sweet as amylase breaks down the carbohydrates
into sugars. Enzyme breakdown is often expressed by the
following relation:

S + E
ks

⇄
k1

C
k1

→P

In this expression a substrate (S) interacts with an enzyme (E) to
form a combined product (C) at a rate k1. The intermediate
compound is reversible and gets disassociated at a rate k−1.
Simultaneously some of the compound is transformed into the
final product (P) at a rate k2. The kinetics describing this reaction



are known as the Michaelis–Menten equations and consist of
four nonlinear differential equations. However, under some
conditions these equations can be simplified. Let E0 and S0 be
the initial concentrations of enzyme and substrate, respectively.
It is generally accepted that under some energetic conditions or
when the enzyme concentration is very big (E0 ≫ S0), the kinetics
for this reaction are given by

= kψ ( ˜
KsC − S)

= kψ (S −
˜
KM C)

= k2C

where the following constant terms are used (Schnell, 2004):

kψ = k1E0

K̃ s=

and

K̃M = K̃ s +

a. Assuming the initial conditions for the reaction are S (0) =
S0, E (0) = E0, C (0) = P (0) = 0, find the Laplace transform
expressions for S, C, and P: ℒ {S}, ℒ {C}, and ℒ {P},
respectively.

b. Use the final theorem to find S (∞), C (∞), and P (∞).

44. Humans are able to stand on two legs through a complex
feedback system that includes several sensory inputs—equilibrium
and visual along with muscle actuation. In order to gain a better
understanding of the workings of the postural feedback
mechanism, an individual is asked to stand on a platform to which
sensors are attached at the base. Vibration actuators are attached

dS

dt

dC

dt

dP

dt

k−1
kψ

k2

kψ



with straps to the individual's calves. As the vibration actuators
are stimulated, the individual sways and movements are recorded.
It was hypothesized that the human postural dynamics are
analogous to those of a cart with a balancing standing pole
attached (inverted pendulum). In that case, the dynamics can be
described by the following two equations:

J = mgl sin θ (t) + Tbal + Td (t)

Tbal (t)= −mgl sin θ (t) + kJθ (t) − ηJθ˙(t)

−ρJ ∫ t

0
θ (t) dt

where m is the individual's mass; l is the height of the individual's
center of gravity; g is the gravitational constant; J is the
individual's equivalent moment of inertia; η, ρ, and k are
constants given by the body's postural control system; θ(t) is the
individual's angle with respect to a vertical line; Tbal(t) is the
torque generated by the body muscles to maintain balance; and
Td(t) is the external torque input disturbance. Find the transfer

function  (Johansson, 1988).

45. In order to design an underwater vehicle that has the
characteristics of both a long-range transit vehicle (torpedo-like)
and a highly maneuverable low-speed vehicle (boxlike),
researchers have developed a thruster that mimics that of squid jet
locomotion (Krieg, 2008). It has been demonstrated there that the
average normalized thrust due to a command step input, 

U (s) =  is given by:

T (t) = T
ref̂

(1 − e−λt) + a sin (2πft)

where T
ref̂

 is the reference or desired thrust, λ is the system's
damping constant, a is the amplitude of the oscillation caused by
the pumping action of the actuator, f is the actuator frequency,
and T(t) is the average resulting normalized thrust. Find the
thruster's transfer function . Show all steps.

d2θ

dt2

Θ(s)

Td(s)

Tref̂

s

T (s)

U(s)



46. The Gompertz growth model is commonly used to model
tumor cell growth. Let v(t) be the tumor's volume, then

= λe−αtv (t)

where λ and α are two appropriate constants (Edelstein-Keshet,
2005).

a. Verify that the solution to this equation is given by 
v (t) = v0e

λ/α(1−e−αt), where v0 is the initial tumor volume.

b. This model takes into account the fact that when nutrients
and oxygen are scarce at the tumor's core, its growth is
impaired. Find the final predicted tumor volume (let t→∞).

c. For a specific mouse tumor, it was experimentally found
that λ = 2.5 days, α = 0.1 days with v0 = 50 × 10−3 mm3

(Chignola, 2005). Use any method available to make a plot of
v(t) vs. t.

d. Check the result obtained in Part b with the results from
the graph found in Part c.

47. A muscle hanging from a beam is shown in Figure P2.26(a)
(Lessard, 2009). The α-motor neuron can be used to electrically
stimulate the muscle to contract and pull the mass, m, which
under static conditions causes the muscle to stretch. An equivalent
mechanical system to this setup is shown in Figure P2.36(b). The
force Fiso will be exerted when the muscle contracts. Find an
expression for the displacement X1(s) in terms of F1(s) and Fiso(s).

dv (t)

dt



FIGURE P2.26 a. Motor neuron stimulating a muscle;1

b. equivalent circuit2

48. A three-phase ac/dc converter supplies dc to a battery
charging system or dc motor (Graovac, 2001). Each phase has an
ac filter represented by the equivalent circuit in Figure P2.27.

FIGURE P2.27 AC filter equivalent circuit for a three-
phase ac/dc converter

Derive that the inductor current in terms of the two active
sources is



IacF (s) = IacR(s) + Va(s)

49. A photovoltaic system is used to capture solar energy to be
converted to electrical energy. A control system is used to pivot the
solar platform to track the sun's movements in order to maximize
the captured energy. The system consists of a motor and load
similar to that discussed in Section 2.8. A model has been
proposed (Agee, 2012) that is different from the model developed
in the chapter in the following ways: (1) the motor inductance was
not neglected and (2) the load, in addition to having inertia and
damping, has a spring. Find the transfer function, θm(s)/Ea(s),
for this augmented system assuming all load impedances have
already been reflected to the motor shaft.

50. In a paint mixing plant, two tanks supply fluids to a mixing
cistern. The height, h, of the fluid in the cistern is dependent upon
the difference between the input mass flow rate, q, and the output
flow rate, qe. A nonlinear differential equation describing this
dependency is given by (Schiop, 2010)

+ √2gh =

where A = cross-sectional area of the cistern, Ae = cross-sectional
area of the exit pipe, g = acceleration due to gravity, and ρ =
liquid density.

a. Linearize the nonlinear equation about the equilibrium
point (h0, q0) and find the transfer function relating the
output cistern fluid level, H(s), to the input mass flow rate,
Q(s).

b. The color of the liquid in the cistern can be kept constant
by adjusting the input flow rate, q, assuming the input flow's
color is specifically controlled. Assuming an average height,

1 + RCs

LCs2 + RCs + 1

Cs

LCs2 + RCs + 1

dh

dt

Ae

A

q

ρA



hav, of the liquid in the cistern, the following equation relates
the net flow of color to the cistern to the color in the cistern.

e1q − eqe = (ρAehav)

where e1 = fractional part of flow representing color into the
cistern, and e = fractional part of the cistern representing
color in the cistern. Assume that the flow out of the cistern is
constant and use the relationship, qe = ρAe√2ghav, along
with the given equation above to find the transfer function, 
E(s)/Q(s), that relates the color in the cistern to the input
flow rate.

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

51. Control of HIV/AIDS. HIV inflicts its damage by infecting
healthy CD4 + T cells (a type of white blood cell) that are
necessary to fight infection. As the virus embeds in a T cell and the
immune system produces more of these cells to fight the infection,
the virus propagates in an opportunistic fashion. As we now
develop a simple HIV model, refer to Figure P2.28. Normally T
cells are produced at a rate s and die at a rate d. The HIV virus is
present in the bloodstream in the infected individual. These
viruses in the bloodstream, called free viruses, infect healthy T
cells at a rate β. Also, the viruses reproduce through the T cell
multiplication process or otherwise at a rate k. Free viruses die at
a rate c. Infected T cells die at a rate μ.

d

dt



FIGURE P2.283

A simple mathematical model that illustrates these interactions is
given by the following equations (Craig, 2004):

= s − dT − βTv

= βTv − μT *

= kT * − cv

where

T =number of healthy T cells

T * =number of infected T cells

v =number of free viruses

a. The system is nonlinear; thus linearization is necessary to
find transfer functions as you will do in subsequent chapters.
The nonlinear nature of this model can be seen from the
above equations. Determine which of these equations are
linear, which are nonlinear, and explain why.

b. The system has two equilibrium points. Show that these
are given by

(T0, T *
0 , v0) = ( , 0, 0)

dT

dt

dT *

dt

dv

dt

s

d



and

(T0, T *
0 , v0) = ( , − , − )

52. Hybrid vehicle. Problem 18 in Chapter 1 discusses the
cruise control of serial, parallel, and split-power hybrid electric
vehicles (HEVs). The functional block diagrams developed for
these HEVs indicated that the speed of a vehicle depends upon the
balance between the motive forces (developed by the gasoline
engine and/or the electric motor) and running resistive forces.
The resistive forces include the aerodynamic drag, rolling
resistance, and climbing resistance. Figure P2.29 illustrates the
running resistances for a car moving uphill (Bosch, 2007).

The total running resistance, Fw, is calculated as Fw = FRo + FL +
FSt, where FRo is the rolling resistance, FL is the aerodynamic
drag, and FSt is the climbing resistance. The aerodynamic drag is
proportional to the square of the sum of car velocity, v, and the
head-wind velocity, vhw, or v + vhw. The other two resistances are
functions of car weight, G, and the gradient of the road (given by
the gradient angle, α), as seen from the following equations:

FRo = fG cos α = fmg cos α

where

f=coefficient of rolling resistance

m =car mass, in kg

g =gravitational acceleration, in m/s2

FL=0.5ρCwA(v + vhw)
2
.

and

cμ

βk

s

μ

cd

βk

sk

cμ

d

β



ρ =air density, in kg/m3

Cw=coefficient of aerodynamic drag

A =largest cross − section of the car, in kg/m2

FSt = G sin α = mg sin α.

The motive force, F, available at the drive wheels is:

F = ηtot =

where

T =motive torque

P =motive power

itot=total transmission ratio

r =tire radius

ηtot =total drive − train efficiency.

The surplus force, F − Fw, accelerates the vehicle (or retards it

when Fw > F). Letting a = , where a is the acceleration and
km is a coefficient that compensates for the apparent increase in
vehicle mass due to rotating masses (wheels, flywheel,
crankshaft, etc.):

Titot

r

Pηtot

v

F−Fw

km⋅m



FIGURE P2.29 Running resistances4

a. Show that car acceleration,5 a, may be determined from
the equation:

F = fmg cos α + mg sin α + 0.5ρCwA(v + vhw)
2

+ km ma

b. Assuming constant acceleration and using the average
value for speed, find the average motive force, Fav (in N), and
power, Pav (in kW) the car needs to accelerate from 40 to 60
km/h in 4 seconds on a level road, (α = 0°), under windless
conditions, where vhw = 0. You are given the following
parameters: m = 1590 kg, A = 2 m2, f = 0.011, ρ =1.2 kg/m3,
Cw = 0.3, ηtot = 0.9, km = 1.2. Furthermore, calculate the
additional power, Padd, the car needs after reaching 60 km/h
to maintain its speed while climbing a hill with a gradient α =
5°.

c. The equation derived in Part a describes the nonlinear car
motion dynamics where F(t) is the input to the system, and
v(t) the resulting output. Given that the aerodynamic drag is



proportional to v2 under windless conditions, linearize the
resulting equation of motion around an average speed, vo =
50 km/h, when the car travels on a level road,6 where α = 0°.
(Hint: Expand v2 − v2

0 in a truncated Taylor series). Write
that equation of motion and represent it with a block diagram
in which the block Gv represents the vehicle dynamics. The
output of that block is the car speed, v(t), and the input is the
excess motive force, Fe(t), defined as: Fe = F − FSt − FRo + Fo,
where Fo is the constant component of the linearized
aerodynamic drag.

d. Use the equation in Part c to find the vehicle transfer
function: Gv(s) = V(s)/Fe(s).

53. Parabolic trough collector. In a significant number of
cases, the open-loop transfer function from fluid flow to fluid
temperature in a parabolic trough collector can be approximated
(Camacho, 2012) by:

P(s) = e−sT

a. Write an analytic expression for the unit step response of
the open-loop system assuming that h(t) represents the
output temperature and q(t) the input fluid flow.

b. Make a sketch of the unit step response of the open-loop
system. Indicate on your figure the time delay, the settling
time, the initial and final values of the response, and the value
of the response when t = τ + T .

c. Call the output temperature h(t) and the input fluid flow 
q(t). Find the differential equation that represents the open-
loop system.

K

1 + τs)
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education by INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS; IEEE EDUCATION GROUP; IEEE EDUCATION
SOCIETY Reproduced with permission of INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS, in the format
Republish in a book via Copyright Clearance Center.

4 Robert Bosch GmbH, Bosch Automotive Handbook, 7th ed. John
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Chapter 2 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Find the Laplace transform of time functions and the inverse Laplace transform (Sections 2.1–2.2)

Find the transfer function from a differential equation and solve the differential equation using the
transfer function (Section 2.3)

Find the transfer function for linear, time-invariant electrical networks (Section 2.4)

Find the transfer function for linear, time-invariant translational mechanical systems (Section 2.5)

Find the transfer function for linear, time-invariant rotational mechanical systems (Section 2.6)

Find the transfer functions for gear systems with loss and for gear systems with no loss (Section 2.7)

Find the transfer function for linear, time-invariant electromechanical systems (Section 2.8)

Produce analogous electrical and mechanical circuits (Section 2.9)

Linearize a nonlinear system in order to find the transfer function (Sections 2.10–2.11)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case studies as follows:

Given the antenna azimuth position control system shown in Appendix A2, you will be able to find
the transfer function of each subsystem.

Given a model of a human leg or a nonlinear electrical circuit, you will be able to linearize the model
and then find the transfer function.

2.1 Introduction



In Chapter 1 we discussed the analysis and design sequence that included obtaining the system's
schematic and demonstrated this step for a position control system. To obtain a schematic, the control
systems engineer must often make many simplifying assumptions in order to keep the ensuing model
manageable and still approximate physical reality.

The next step is to develop mathematical models from schematics of physical systems. We will discuss
two methods: (1) transfer functions in the frequency domain and (2) state equations in the time domain.
These topics are covered in this chapter and in Chapter 3, respectively. As we proceed, we will notice that
in every case the first step in developing a mathematical model is to apply the fundamental physical laws
of science and engineering. For example, when we model electrical networks, Ohm's law and Kirchhoff's
laws, which are basic laws of electric networks, will be applied initially. We will sum voltages in a loop or
sum currents at a node. When we study mechanical systems, we will use Newton's laws as the
fundamental guiding principles. Here we will sum forces or torques. From these equations we will obtain
the relationship between the system's output and input.

In Chapter 1 we saw that a differential equation can describe the relationship between the input and
output of a system. The form of the differential equation and its coefficients are a formulation or
description of the system. Although the differential equation relates the system to its input and output, it
is not a satisfying representation from a system perspective. Looking at Eq. (1.2), a general, nth-order,
linear, time-invariant differential equation, we see that the system parameters, which are the
coefficients, appear throughout the equation. In addition, the output, c(t), and the input, r(t), also
appear throughout the equation.

We would prefer a mathematical representation such as that shown in Figure 2.1(a), where the input,
output, and system are distinct and separate parts. Also, we would like to represent conveniently the
interconnection of several subsystems. For example, we would like to represent cascaded
interconnections, as shown in Figure 2.1(b), where a mathematical function, called a transfer function, is
inside each block, and block functions can easily be combined to yield Figure 2.1(a) for ease of analysis
and design. This convenience cannot be obtained with the differential equation.

FIGURE 2.1 a. Block diagram representation of a system; b. block diagram
representation of an interconnection of subsystems

2.2 Laplace Transform Review
A system represented by a differential equation is difficult to model as a block diagram. Thus, we now
lay the groundwork for the Laplace transform, with which we can represent the input, output, and
system as separate entities. Further, their interrelationship will be simply algebraic. Let us first define
the Laplace transform and then show how it simplifies the representation of physical systems (Nilsson,
1996).

The Laplace transform is defined as



(2.1)

(2.2)

L [ f (t)] = F (s) = ∫
∞

0−
f (t) e−stdt

where s = σ + jω, a complex variable. Thus, knowing f(t) and that the integral in Eq. (2.1) exists, we can
find a function, F(s), that is called the Laplace transform of f(t).1

The notation for the lower limit means that even if f(t) is discontinuous at t = 0, we can start the
integration prior to the discontinuity as long as the integral converges. Thus, we can find the Laplace
transform of impulse functions. This property has distinct advantages when applying the Laplace
transform to the solution of differential equations where the initial conditions are discontinuous at t = 0.
Using differential equations, we have to solve for the initial conditions after the discontinuity knowing
the initial conditions before the discontinuity. Using the Laplace transform we need only know the initial
conditions before the discontinuity. See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(t) given F(s), is

L
−1 [F (s)] = ∫

σ+j∞

σ−j∞
F (s) estds = f (t)u (t)

where

u (t) = 1 t > 0

= 0 t < 0

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is zero for t < 0.

Using Eq. (2.1), it is possible to derive a table relating f(t) to F(s) for specific cases. Table 2.1 shows the
results for a representative sample of functions. If we use the tables, we do not have to use Eq. (2.2),
which requires complex integration, to find f(t) given F(s).

In the following example we demonstrate the use of Eq. (2.1) to find the Laplace transform of a time
function.

TABLE 2.1

Laplace transform table
Item no. f(t) F(s)

1. δ(t) 1

2. u(t)

3. tu(t)

4. tnu(t)

5. e−atu(t)

6. sin ωtu(t)

7. cos ωtu(t)

1

2πj

1
s

1
s2

n!
sn+1

1
s+a

ω

s2+ω2

s

s2+ω2



(2.3)

Example 2.1 Laplace Transform of a Time Function
PROBLEM:

Find the Laplace transform of f(t) = Ae−atu(t).

SOLUTION:
Since the time function does not contain an impulse function, we can replace the lower limit of Eq.
(2.1) with 0. Hence,

F (s) = ∫
∞

0
f (t) e−st dt = ∫

∞

0
Ae−ate−st dt = A∫

∞

0
e−(s+a)t dt

= − e−(s+a)t∣∣
∞

t=0
=

TABLE 2.2

Laplace transform theorems
Item no. Theorem Name

1. L [f (t)] = F (s) = ∫
∞

0− f (t) e−stdt Definition

2. L [kf (t)] = kF (s) Linearity theorem

3. L [f1 (t) + f2 (t)] = F1 (s) + F2 (s) Linearity theorem

4. L [e−atf (t)] = F (s + a) Frequency shift theorem

5. L [f (t − T )] = e−sTF (s) Time shift theorem

6. L [f (at)] = F ( ) Scaling theorem

7. L [ ] = sF (s) − f (0−) Differentiation theorem

8. L [ ] = s2F (s) − sf (0−) − f (0−) Differentiation theorem

9. L [ ] = snF (s) −
n

∑
k=1

sn−kf k−1 (0−) Differentiation theorem

10. L [∫ t

0− f (τ) dτ] = Integration theorem

11. f (∞) = lim
s→0

sF (s) Final value theorem1

12. f (0+) = lim
s→∞

sF (s) Initial value theorem2

1 For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no
more than one can be at the origin.
2 For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their
derivatives at t = 0).

In addition to the Laplace transform table, Table 2.1, we can use Laplace transform theorems, listed in
Table 2.2, to assist in transforming between f(t) and F(s). In the next example, we demonstrate the use
of the Laplace transform theorems shown in Table 2.2 to find f(t) given F(s).

A
s+a

A
s+a

1
a

s
a

df

dt

d2f

dt2

dnf

dtn

F(s)
s



(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Example 2.2 Inverse Laplace Transform
PROBLEM:

Find the inverse Laplace transform of F1(s) = 1/(s + 3)2.

SOLUTION:
For this example we make use of the frequency shift theorem, Item 4 of Table 2.2, and the Laplace
transform of f(t) = tu(t), Item 3 of Table 2.1. If the inverse transform of F(s) = 1/s2 is tu(t), the
inverse transform of F(s + a) = 1/(s + a)2 is e−attu(t). Hence, f1(t) = e−3ttu(t).

Partial-Fraction Expansion
To find the inverse Laplace transform of a complicated function, we can convert the function to a sum of
simpler terms for which we know the Laplace transform of each term. The result is called a partial-
fraction expansion. If F1(s) = N(s)/D(s), where the order of N(s) is less than the order of D(s), then a
partial-fraction expansion can be made. If the order of N(s) is greater than or equal to the order of D(s),
then N(s) must be divided by D(s) successively until the result has a remainder whose numerator is of
order less than its denominator. For example, if

F1 (s) =

we must perform the indicated division until we obtain a remainder whose numerator is of order less
than its denominator. Hence,

F1 (s) = s + 1 +

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the differentiation theorem
(Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain

f1 (t) = + δ (t) + L
−1 [ ]

Using partial-fraction expansion, we will be able to expand functions like F(s) = 2/(s2 + s + 5) into a sum
of terms and then find the inverse Laplace transform for each term. We will now consider three cases
and show for each case how an F(s) can be expanded into partial fractions.

Case 1. Roots of the Denominator of F(s) Are Real and Distinct
An example of an F(s) with real and distinct roots in the denominator is

F (s) =

The roots of the denominator are distinct, since each factor is raised only to unity power. We can write
the partial-fraction expansion as a sum of terms where each factor of the original denominator forms the
denominator of each term, and constants, called residues, form the numerators. Hence,

F (s) = = +

s3 + 2s2 + 6s + 7

s2 + s + 5

2

s2 + s + 5

dδ (t)

dt

2

s2 + s + 5

2

(s + 1) (s + 2)

2

(s + 1) (s + 2)

K1

(s + 1)

K2

(s + 2)



(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

To find K1, we first multiply Eq. (2.8) by (s + 1), which isolates K1. Thus,

= K1 +

Letting s approach −1 eliminates the last term and yields K1 = 2. Similarly, K2 can be found by
multiplying Eq. (2.8) by (s + 2) and then letting s approach −2; hence, K2 = − 2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(t) is the sum of the inverse Laplace
transform of each term, or

f (t) = (2e−t − 2e−2t)u (t)

In general, then, given an F(s) whose denominator has real and distinct roots, a partial-fraction
expansion,

F (s) = =

= + + ⋯ + + ⋯ +

can be made if the order of N(s) is less than the order of D(s). To evaluate each residue, Ki, we multiply
Eq. (2.11) by the denominator of the corresponding partial fraction. Thus, if we want to find Km, we
multiply Eq. (2.11) by (s + pm) and get

(s + pm)F (s)=

= (s + pm) + (s + pm) + ⋯ + Km + ⋯

+ (s + pm)

If we let s approach −pm, all terms on the right-hand side of Eq. (2.12) go to zero except the term Km,
leaving

∣
∣ 
∣
∣s→−pm

= Km

The following example demonstrates the use of the partial-fraction expansion to solve a differential
equation. We will see that the Laplace transform reduces the task of finding the solution to simple
algebra.

2

(s + 2)

(s + 1)K2

(s + 2)

N(s)

D(s)

N(s)

(s+p1)(s+p2)⋯(s+pm)⋯(s+pn)

K1

(s+p1)

K2

(s+p2)

Km

(s+pm)

Kn

(s+pn)

(s+pm)N(s)

(s+p1)(s+p2)⋯(s+pm)⋯(s+pn)

K1

(s+p1)
K2

(s+p2)

Kn

(s+pn)

(s + pm) N (s)

(s + p1) (s + p2) ⋯ (s + pm) ⋯ (s + pn)



(2.14)

(2.15)

(2.16)

(2.17)

(2.18a)

(2.18b)

(2.18c)

(2.19)

(2.20)

Example 2.3 Laplace Transform Solution of a Differential Equation
PROBLEM:
Given the following differential equation, solve for y(t) if all initial conditions are zero. Use the
Laplace transform.

+ 12 + 32y = 32u (t)

SOLUTION:
Substitute the corresponding F(s) for each term in Eq. (2.14), using Item 2 in Table 2.1, Items 7 and
8 in Table 2.2, and the initial conditions of y(t) and dy(t)/dt given by y (0 −) = 0 and 

.

y (0−) = 0,
respectively. Hence, the Laplace transform of Eq. (2.14) is

s2Y (s) + 12sY (s) + 32Y (s) =

Solving for the response, Y(s), yields

Y (s) = =

To solve for y(t), we notice that Eq. (2.16) does not match any of the terms in Table 2.1. Thus, we
form the partial-fraction expansion of the right-hand term and match each of the resulting terms
with F(s) in Table 2.1. Therefore,

Y (s) = = + +

where, from Eq. (2.13),

K1 =
∣
∣
∣s→0

= 1

K2 =
∣
∣
∣s→−4

= −2

K3 =
∣
∣
∣s→−8

= 1

Hence,

Y (s) = − +

Since each of the three component parts of Eq. (2.19) is represented as an F(s) in Table 2.1, y(t) is
the sum of the inverse Laplace transforms of each term. Hence,

y (t) = (1 − 2e−4t + e−8t)u (t)

d2y

dt2

dy

dt

32

s

32

s (s2 + 12s + 32)

32

s (s + 4) (s + 8)

32

s (s + 4) (s + 8)

K1

s

K2

(s + 4)

K3

(s + 8)

32

(s + 4) (s + 8)

32

s (s + 8)

32

s (s + 4)

1

s

2

(s + 4)

1

(s + 8)



(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

 Students who are using MATLAB should now run ch2apB1 through ch2apB8 in
Appendix B. This is your first MATLAB exercise. You will learn how to use MATLAB to

(1) represent polynomials, (2) find roots of polynomials, (3) multiply polynomials,

and (4) find partial-fraction expansions. Finally, Example 2.3 will be solved using

MATLAB.

The u(t) in Eq. (2.20) shows that the response is zero until t = 0. Unless otherwise specified, all inputs to
systems in the text will not start until t = 0. Thus, output responses will also be zero until t = 0. For
convenience, we will leave off the u(t) notation from now on. Accordingly, we write the output response
as

y (t) = 1 − 2e−4t + e−8t

TryIt 2.1
Use the following MATLAB and Control System Toolbox statement to form the linear, time-
invariant (LTI) transfer function of Eq. (2.22).

F=zpk([],[−1 −2 −2],2)

Case 2. Roots of the Denominator of F(s) Are Real and Repeated
An example of an F(s) with real and repeated roots in the denominator is

F (s) =

The roots of (s + 2)2 in the denominator are repeated, since the factor is raised to an integer power
higher than 1. In this case, the denominator root at −2 is a multiple root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each factor of the denominator
forms the denominator of each term. In addition, each multiple root generates additional terms
consisting of denominator factors of reduced multiplicity. For example, if

F (s) = = + +

then K1 = 2, which can be found as previously described. K2 can be isolated by multiplying Eq. (2.23) by
(s + 2)2, yielding

= (s + 2)2 + K2 + (s + 2)K3

Letting s approach −2, K2 = − 2. To find K3 we see that if we differentiate Eq. (2.24) with respect to s,

= K1 + K3

K3 is isolated and can be found if we let s approach −2. Hence, K3 = − 2.

Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(t) is the sum of the inverse Laplace
transform of each term, or

2

(s + 1) (s + 2)2

2

(s + 1) (s + 2)2

K1

(s + 1)

K2

(s + 2)2

K3

(s + 2)

2

s + 1

K1

(s + 1)

−2

(s + 1)2

(s + 2) s

(s + 1)2

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_2.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_2.zip


(2.26)

(2.27)

(2.28)

(2.29)

f (t) = 2e−t − 2te−2t − 2e−2t

If the denominator root is of higher multiplicity than 2, successive differentiation would isolate each
residue in the expansion of the multiple root.

TryIt 2.2
Use the following MATLAB statements to help you get Eq. (2.26).

numf=2;
denf=poly([−1 −2 −2]);
[K,p,k]=residue...
(numf,denf)

In general, then, given an F(s) whose denominator has real and repeated roots, a partial-fraction
expansion

F (s)=

=

= + + ⋯ + + + ⋯ +

can be made if the order of N(s) is less than the order of D(s) and the repeated roots are of multiplicity r
at −p1. To find K1 through Kr for the roots of multiplicity greater than unity, first multiply Eq. (2.27) by 
(s + p1)r getting F1(s), which is

F1 (s)= (s + p1)rF (s)

=

= K1 + (s + p1)K2 + (s + p1)2
K3 + ⋯ + (s + p1)r−1

Kr

+ + ⋯ +

Immediately, we can solve for K1 if we let s approach −p1. We can solve for K2 if we differentiate Eq.
(2.28) with respect to s and then let s approach −p1. Subsequent differentiation will allow us to find K3
through Kr. The general expression for K1 through Kr for the multiple roots is

Ki =
∣
∣
∣s→−p1

i = 1, 2, …, r; 0! = 1

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary

TryIt 2.3
Use the following MATLAB and Control System Toolbox statement to form the LTI transfer
function of Eq. (2.30).

F=tf([3],[1 2 5 0])

An example of F(s) with complex roots in the denominator is

N(s)

D(s)

N(s)

(s+p1)r(s+p2)⋯(s+pn)

K1

(s+p1)r
K2

(s+p1)r−1

Kr

(s+p1)

Kr+1

(s+p2)

Kn

(s+pn)

(s+p1)rN(s)

(s+p1)r(s+p2)⋯(s+pn)

Kr+1(s+p1)r

(s+p2)

Kn(s+p1)r

(s+pn)

1

(i − 1) !

di−1F1 (s)

dsi−1
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(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

F (s) =

This function can be expanded in the following form:

= +

K1 is found in the usual way to be . K2 and K3 can be found by first multiplying Eq. (2.31) by the lowest

common denominator, s(s2 + 2s + 5), and clearing the fractions. After simplification with K1 = , we
obtain

3 = (K2 + ) s2 + (K3 + ) s + 3

Balancing coefficients, (K2 + ) = 0 and (K3 + ) = 0. Hence K2 = −  and K3 = − . Thus,

F (s) = = −

The last term can be shown to be the sum of the Laplace transforms of an exponentially damped sine
and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in Table 2.2, we get

L [Ae−atcos ωt] =

Similarly,

L [Be−atsin ωt] =

Adding Eqs. (2.34) and (2.35), we get

L [Ae−atcos ωt + Be−atsin ωt] =

TryIt 2.4
Use the following MATLAB and Symbolic Math Toolbox statements to get Eq. (2.38) from Eq.
(2.30).

syms s
f=ilaplace...
(3/(s*(s^2+2*s+5)));
pretty(f)

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36) by completing the
squares in the denominator and adjusting terms in the numerator without changing its value. Hence,

F (s) = −

3

s (s2 + 2s + 5)

3

s (s2 + 2s + 5)

K1

s

K2s + K3

s2 + 2s + 5

3
5

3
5

3

5

6

5

3
5

6
5

3
5

6
5

3

s (s2 + 2s + 5)

3/5

s

3

5

s + 2

s2 + 2s + 5

A (s + a)

(s + a)2 + ω2

Bω

(s + a)2 + ω2

A (s + a) + Bω

(s + a)2 + ω2

3/5

s

3

5

(s + 1) + (1/2) (2)

(s + 1)2 + 22

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_2.zip


(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find

f (t) = − e−t(cos 2t + sin 2t)

In order to visualize the solution, an alternate form of f(t), obtained by trigonometric identities, is

preferable. Using the amplitudes of the cos and sin terms, we factor out √12 + (1/2)2 from the term in
parentheses and obtain

f (t) = − √12 + (1/2)2
e−t

⎛
⎜ ⎜
⎝

cos 2t + sin 2t
⎞
⎟ ⎟
⎠

Letting 1/√12 + (1/2)2 = cos ϕ and (1/2) /√12 + (1/2)2 = sin ϕ,

f (t) = − √12 + (1/2)2
e−t (cos ϕ cos 2t + sin ϕ sin 2t)

or

f (t) = 0.6 − 0.671e−tcos (2t − ϕ)

where ϕ = arctan 0.5 = 26.57°. Thus, f(t) is a constant plus an exponentially damped sinusoid.

In general, then, given an F(s) whose denominator has complex or purely imaginary roots, a partial-
fraction expansion,

F (s) = =

= + + ⋯

can be made if the order of N(s) is less than the order of D(s) p1 is real, and (s2 + as + b) has complex or
purely imaginary roots. The complex or imaginary roots are expanded with (K2s + K3) terms in the
numerator rather than just simply Ki, as in the case of real roots. The Ki's in Eq. (2.42) are found
through balancing the coefficients of the equation after clearing fractions. After completing the squares
on (s2 + as + b) and adjusting the numerator, (K2s + K3)/(s2 + as + b) can be put into the form shown
on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a = 0 in Eq. (2.42). The calculations are the same.

Another method that follows the technique used for the partial-fraction expansion of F(s) with real roots
in the denominator can be used for complex and imaginary roots. However, the residues of the complex
and imaginary roots are themselves complex conjugates. Then, after taking the inverse Laplace
transform, the resulting terms can be identified as

= cos θ

and

= sin θ

3

5

3

5

1

2

3

5

3

5

1

√12 + (1/2)2

1/2

√12 + (1/2)2

3

5

3

5

N(s)

D(s)

N(s)

(s+p1)(s2+as+b)⋯

K1

(s+p1)

(K2s+K3)

(s2+as+b)

ejθ + e−jθ

2

ejθ − e−jθ

2j



(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

For example, the previous F(s) can also be expanded in partial fractions as

F (s) = =

= + +

Finding K2,

K2 =
∣
∣
∣s→−1−j2

= − (2 + j1)

Similarly, K3 is found to be the complex conjugate of K2, and K1 is found as previously described. Hence,

F (s) = − ( + )

from which

f (t)= − [(2 + j1) e−(1+j2)t + (2 − j1) e−(1−j2)t]

= − e−t [4( )+ 2( )]

Using Eqs. (2.43) and (2.44), we get

f (t) = − e−t(cos 2t + sin 2t) = 0.6 − 0.671e−tcos (2t − ϕ)

where ϕ = arctan 0.5 = 26.57°.

 Students who are performing the MATLAB exercises and want to explore the added
capability of MATLAB's Symbolic Math Toolbox should now run ch2apF1 and ch2apF2 in Appendix F at

www.wiley.com/go/Nise/ControlSystemsEngineering8e. You will learn how to construct symbolic

objects and then find the inverse Laplace and Laplace transforms of frequency and time

functions, respectively. The examples in Case 2 and Case 3 in this section will be solved using

the Symbolic Math Toolbox.

TryIt 2.5
Use the following MATLAB statements to help you get Eq. (2.47).

numf=3
denf=[1250]
[K,p,k]=residue...
(numf, denf)

Skill-Assessment Exercise 2.1
PROBLEM:

Find the Laplace transform of f(t) = te−5t.

ANSWER:
The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

3
s(s2+2s+5)

3
s(s+1+j2)(s+1−j2)

K1

s

K2

s+1+j2
K3

s+1−j2

3

s (s + 1 − j2)

3

20

3/5

s

3

20

2 + j1

s + 1 + j2

2 − j1

s + 1 − j2

3
5

3
20

3
5

3
20

ej2t+e−j2t

2
ej2t−e−j2t

2j

3

5

3

5

1

2
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http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_2.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

Skill-Assessment Exercise 2.2
PROBLEM:

Find the inverse Laplace transform of F(s) = 10/[s(s + 2)(s + 3)2].

ANSWER:

f (t) = − 5e−2t + te−3t + e−3t

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.3 The Transfer Function
In the previous section we defined the Laplace transform and its inverse. We presented the idea of the
partial-fraction expansion and applied the concepts to the solution of differential equations. We are now
ready to formulate the system representation shown in Figure 2.1 by establishing a viable definition for a
function that algebraically relates a system's output to its input. This function will allow separation of
the input, system, and output into three separate and distinct parts, unlike the differential equation. The
function will also allow us to algebraically combine mathematical representations of subsystems to yield
a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential equation,

an + an−1 + ⋯ + a0c (t) = bm + bm−1 + ⋯ + b0r (t)

where c(t) is the output, r(t) is the input, and the ai's, bi's, and the form of the differential equation
represent the system. Taking the Laplace transform of both sides,

ans
nC (s) + an−1s

n−1C (s) + ⋯ + a0C (s) + initial condition terms involving c (t)

= bms
mR (s) + bm−1s

m−1R (s) + ⋯ + b0R (s) + initial condition terms involving r (t)

Equation (2.51) is a purely algebraic expression. If we assume that all initial conditions are zero, Eq.
(2.51) reduces to

(ansn + an−1s
n−1 + ⋯ + a0)C (s) = (bmsm + bm−1s

m−1 + ⋯ + b0)R (s)

Now form the ratio of the output transform, C(s), divided by the input transform, R(s):

= G (s) =

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, which is the ratio of
polynomials in s on the right. We call this ratio, G(s), the transfer function and evaluate it with zero
initial conditions.

The transfer function can be represented as a block diagram, as shown in Figure 2.2, with the input on
the left, the output on the right, and the system transfer function inside the block. Notice that the
denominator of the transfer function is identical to the characteristic polynomial of the differential
equation. Also, we can find the output, C(s) by using

C (s) = R (s)G (s)

5

9

10

3

40

9

dnc (t)

dtn
dn−1c (t)

dtn−1

dmr (t)

dtm
dm−1r (t)

dtm−1

C (s)

R (s)

(bmsm + bm−1s
m−1 + ⋯ + b0)

(ansn + an−1sn−1 + ⋯ + a0)
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(2.55)

(2.56)

(2.57)

Let us apply the concept of a transfer function to an example and then use the result to find the response
of the system.

FIGURE 2.2 Block diagram of a transfer function

Example 2.4 Transfer Function for a Differential Equation
PROBLEM:
Find the transfer function represented by

+ 2c (t) = r (t)

SOLUTION:
Taking the Laplace transform of both sides, assuming zero initial conditions, we have

sC (s) + 2C (s) = R (s)

The transfer function, G(s), is

G (s) = =

 Students who are using MATLAB should now run ch2apB9 through ch2apB12 in Appendix B. You
will learn how to use MATLAB to create transfer functions with numerators and denominators in

polynomial or factored form. You will also learn how to convert between polynomial and factored

forms. Finally, you will learn how to use MATLAB to plot time functions.

 Students who are performing the MATLAB exercises and want to explore the added
capability of MATLAB's Symbolic Math Toolbox should now run ch2apF3 in Appendix F at

www.wiley.com/go/Nise/ControlSystemsEngineering8e. You will learn how to use the Symbolic Math

Toolbox to simplify the input of complicated transfer functions as well as improve readability.

You will learn how to enter a symbolic transfer function and convert it to a linear, time-

invariant (LTI) object as presented in Appendix B, ch2apB9.

dc (t)

dt

C (s)

R (s)

1

s + 2
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(2.58)

(2.59)

(2.60)

Example 2.5 System Response from the Transfer Function
PROBLEM:
Use the result of Example 2.4 to find the response, c(t) to an input, r(t) = u(t), a unit step, assuming
zero initial conditions.

TryIt 2.6
Use the following MATLAB and Symbolic Math Toolbox statements to help you get Eq. (2.60).

syms s
C=1/(s*(s + 2))
C=ilaplace(C)

TryIt 2.7
Use the following MATLAB statements to plot Eq. (2.60) for t from 0 to 1 sat intervals of 0.01
s.

t=0:0.01:3; plot...
(t,(1/2 -1/2*exp (-2*t)))

SOLUTION:
To solve the problem, we use Eq. (2.54), where G(s) = 1/(s + 2) as found in Example 2.4. Since r(t)
= u(t), R(s) = 1/s, from Table 2.1. Since the initial conditions are zero,

C (s) = R (s)G (s) =

Expanding by partial fractions, we get

C (s) = −

Finally, taking the inverse Laplace transform of each term yields

c (t) = − e−2t

1

s (s + 2)

1/2

s

1/2

s + 2

1

2

1

2
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Skill-Assessment Exercise 2.3
PROBLEM:
Find the transfer function, G(s) = C(s)/R(s), corresponding to the differential equation 

+ 3 + 7 + 5c = + 4 + 3r.

ANSWER:

G (s) = =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Skill-Assessment Exercise 2.4
PROBLEM:
Find the differential equation corresponding to the transfer function,

G (s) =

ANSWER:

+ 6 + 2c = 2 + r

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Skill-Assessment Exercise 2.5
PROBLEM:
Find the ramp response for a system whose transfer function is

G (s) =

ANSWER:

c (t) = − e−4t + e−8t

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In general, a physical system that can be represented by a linear, time-invariant differential equation can
be modeled as a transfer function. The rest of this chapter will be devoted to the task of modeling
individual subsystems. We will learn how to represent electrical networks, translational mechanical
systems, rotational mechanical systems, and electromechanical systems as transfer functions. As the
need arises, the reader can consult the Bibliography at the end of the chapter for discussions of other
types of systems, such as pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

d3c

dt3

d2c

dt2

dc

dt

d2r

dt2

dr

dt

C (s)

R (s)

s2 + 4s + 3

s3 + 3s2 + 7s + 5

2s + 1

s2 + 6s + 2

d2c

dt2

dc

dt

dr

dt

s

(s + 4) (s + 8)

1

32

1

16

1

32
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2.4 Electrical Network Transfer Functions
In this section, we formally apply the transfer function to the mathematical modeling of electric circuits
including passive networks and operational amplifier circuits. Subsequent sections cover mechanical
and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of three passive linear
components: resistors, capacitors, and inductors.2 Table 2.3 summarizes the components and the
relationships between voltage and current and between voltage and charge under zero initial conditions.

TABLE 2.3

Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors,
and inductors

Component Voltage–current Current–voltage Voltage–
charge

Impedance
Z(s) =

V(s)/I(s)

Admittance
Y(s) =

I(s)/V(s)

v (t) = ∫ 1
0 i (τ) dτ i (t) = C v (t) = q (t) Cs

v(t) = Ri(t) i (t) = v (t) v (t) = R R = G

v (t) = L i (t) = ∫ 1
0 v (τ) dτ v (t) = L Ls

Note: The following set of symbols and units is used throughout this book: v(t) − V (volts), i(t) − A (amps), q(t) − Q
(coulombs), C − F (farads), R − Ω (ohms), G − Ω (mhos), L − H (henries).

We now combine electrical components into circuits, decide on the input and output, and find the
transfer function. Our guiding principles are Kirchhoff's laws. We sum voltages around loops or sum
currents at nodes, depending on which technique involves the least effort in algebraic manipulation, and
then equate the result to zero. From these relationships we can write the differential equations for the
circuit. Then we can take the Laplace transforms of the differential equations and finally solve for the
transfer function.

Simple Circuits via Mesh Analysis
Transfer functions can be obtained using Kirchhoff's voltage law and summing voltages around loops or
meshes.3 We call this method loop or mesh analysis and demonstrate it in the following example.

1
C

dv(t)

dt
1
C

1
Cs

1
R

dq(t)

dt
1
R

di(t)

dt

1
L

d2q(t)

dt2
1
Ls



(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

Example 2.6 Transfer Function—Single Loop via the Differential
Equation
PROBLEM:
Find the transfer function relating the capacitor voltage, VC(s), to the input voltage, V(s) in Figure
2.3.

FIGURE 2.3 RLC network

SOLUTION:
In any problem, the designer must first decide what the input and output should be. In this
network, several variables could have been chosen to be the output—for example, the inductor
voltage, the capacitor voltage, the resistor voltage, or the current. The problem statement, however,
is clear in this case: We are to treat the capacitor voltage as the output and the applied voltage as
the input.

Summing the voltages around the loop, assuming zero initial conditions, yields the integro-
differential equation for this network as

L + Ri (t) + ∫
t

0
i (τ) dτ = v (t)

Changing variables from current to charge using i(t) = dq(t)/dt yields

L + R + q (t) = v (t)

From the voltage–charge relationship for a capacitor in Table 2.3,

q (t) = CvC (t)

Substituting Eq. (2.63) into Eq. (2.62) yields

LC + RC + vC (t) = v (t)

Taking the Laplace transform assuming zero initial conditions, rearranging terms, and simplifying
yields

(LCs2 + RCs + 1)VC (s) = V (s)

Solving for the transfer function, VC(s)/V(s), we obtain

=

di (t)

dt

1

C

d2q (t)

dt2

dq (t)

dt

1

C

d2vC (t)

dt2

dvC (t)

dt

VC (s)

V (s)

1/LC

s2 + s +R

L

1
LC



(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

as shown in Figure 2.4.

FIGURE 2.4 Block diagram of series RLC electrical network

Let us now develop a technique for simplifying the solution for future problems. First, take the Laplace
transform of the equations in the voltage-current column of Table 2.3 assuming zero initial conditions.

For the capacitor,

V (s) = I (s)

For the resistor,

V (s) = RI (s)

For the inductor,

V (s) = LsI (s)

Now define the following transfer function:

= Z (s)

Notice that this function is similar to the definition of resistance, that is, the ratio of voltage to current.
But, unlike resistance, this function is applicable to capacitors and inductors and carries information on
the dynamic behavior of the component, since it represents an equivalent differential equation. We call
this particular transfer function impedance. The impedance for each of the electrical elements is shown
in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution for the transfer function.
The Laplace transform of Eq. (2.61), assuming zero initial conditions, is

(Ls + R + ) I (s) = V (s)

Notice that Eq. (2.71), which is in the form

[Sum of impedances] I (s) = [Sum of applied voltages]

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of Figure 2.5 could have been
obtained immediately from the circuit of Figure 2.3 simply by replacing each element with its
impedance. We call this altered circuit the transformed circuit. Finally, notice that the transformed
circuit leads immediately to Eq. (2.71) if we add impedances in series as we add resistors in series. Thus,
rather than writing the differential equation first and then taking the Laplace transform, we can draw
the transformed circuit and obtain the Laplace transform of the differential equation simply by applying
Kirchhoff's voltage law to the transformed circuit. We summarize the steps as follows:

1

Cs

V (s)

I (s)

1

Cs



(2.73)

(2.74)

(2.75)

1. Redraw the original network showing all time variables, such as v(t), i(t), and vC(t), as Laplace
transforms V(s), I(s), and VC(s), respectively.

2. Replace the component values with their impedance values. This replacement is similar to the case
of dc circuits, where we represent resistors with their resistance values.

We now redo Example 2.6 using the transform methods just described and bypass the writing of the
differential equation.

Example 2.7 Transfer Function—Single Loop via Transform Methods
PROBLEM:
Repeat Example 2.6 using mesh analysis and transform methods without writing a differential
equation.

SOLUTION:
Using Figure 2.5 and writing a mesh equation using the impedances as we would use resistor
values in a purely resistive circuit, we obtain

(Ls + R + ) I (s) = V (s)

Solving for I(s)/V(s),

=

But the voltage across the capacitor, VC(s), is the product of the current and the impedance of the
capacitor. Thus,

VC (s) = I (s)

Solving Eq. (2.75) for I(s) substituting I(s) into Eq. (2.74), and simplifying yields the same result as
Eq. (2.66).

FIGURE 2.5 Laplace-transformed network

Simple Circuits via Nodal Analysis
Transfer functions also can be obtained using Kirchhoff's current law and summing currents flowing
from nodes. We call this method nodal analysis. We now demonstrate this principle by redoing Example
2.6 using Kirchhoff's current law and the transform methods just described to bypass writing the
differential equation.

1

Cs

I (s)

V (s)

1

Ls + R + 1
Cs

1

Cs



(2.76)

(2.77)

Example 2.8 Transfer Function—Single Node via Transform Methods
PROBLEM:
Repeat Example 2.6 using nodal analysis and without writing a differential equation.

SOLUTION:
The transfer function can be obtained by summing currents flowing out of the node whose voltage
is VC(s) in Figure 2.5. We assume that currents leaving the node are positive and currents entering
the node are negative. The currents consist of the current through the capacitor and the current
flowing through the series resistor and inductor. From Eq. (2.70), each I(s) = V(s)/Z(s). Hence,

+ = 0

where VC(s)/(1/Cs) is the current flowing out of the node through the capacitor, and [VC(s) −
V(s)]/(R + Ls) is the current flowing out of the node through the series resistor and inductor.
Solving Eq. (2.76) for the transfer function, VC(s)/V(s), we arrive at the same result as Eq. (2.66).

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed network. We now
demonstrate this technique.

Example 2.9 Transfer Function—Single Loop via Voltage Division
PROBLEM:
Repeat Example 2.6 using voltage division and the transformed circuit.

SOLUTION:
The voltage across the capacitor is some proportion of the input voltage, namely the impedance of
the capacitor divided by the sum of the impedances. Thus,

VC (s) = V (s)

Solving for the transfer function, VC(s)/V(s), yields the same result as Eq. (2.66).

Review Examples 2.6 through 2.9. Which method do you think is easiest for this circuit?

The previous example involves a simple, single-loop electrical network. Many electrical networks consist
of multiple loops and nodes, and for these circuits we must write and solve simultaneous differential
equations in order to find the transfer function, or solve for the output.

Complex Circuits via Mesh Analysis
To solve complex electrical networks—those with multiple loops and nodes—using mesh analysis, we can
perform the following steps:

1. Replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform.

VC (s)

1/Cs

VC (s) − V (s)

R + Ls

1/Cs

(Ls + R + )1
Cs



3. Assume a transform current and a current direction in each mesh.

4. Write Kirchhoff's voltage law around each mesh.

5. Solve the simultaneous equations for the output.

6. Form the transfer function.

Let us look at an example.



(2.78)

(2.79)

(2.80a)

Example 2.10 Transfer Function—Multiple Loops
PROBLEM:
Given the network of Figure 2.6(a), find the transfer function, I2(s)/V(s).

FIGURE 2.6 a. Two-loop electrical network; b. transformed two-loop electrical
network; c. block diagram

SOLUTION:
The first step in the solution is to convert the network into Laplace transforms for impedances and
circuit variables, assuming zero initial conditions. The result is shown in Figure 2.6(b). The circuit
with which we are dealing requires two simultaneous equations to solve for the transfer function.
These equations can be found by summing voltages around each mesh through which the assumed
currents, I1(s) and I2(s), flow. Around Mesh 1, where I1(s) flows,

R1I1 (s) + LsI1 (s) − LsI2 (s) = V (s)

Around Mesh 2, where I2(s) flows,

LsI2 (s) + R2I2 (s) + I2 (s) − LsI1 (s) = 0

Combining terms, Eqs. (2.78) and (2.79) become simultaneous equations in I1(s) and I2(s):

(R1 + Ls)I1 (s) − LsI2 (s) = V (s)

1

Cs



(2.80b)

(2.81)

(2.82)

(2.83a)

(2.83b)

−LsI1 (s) + (Ls + R2 + ) I2 (s) = 0

We can use Cramer's rule (or any other method for solving simultaneous equations) to solve Eq.
(2.80) for I2(s).4 Hence,

I2 (s) = =

where

Δ =
∣
∣ 
∣
∣

(R1 + Ls) −Ls

−Ls (Ls + R2 + )

∣
∣ 
∣
∣

Forming the transfer function, G(s), yields

G (s) = = =

as shown in Figure 2.6(c).

We have succeeded in modeling a physical network as a transfer function: The network of Figure
2.6(a) is now modeled as the transfer function of Figure 2.6(c). Before leaving the example, we
notice a pattern first illustrated by Eq. (2.72). The form that Eqs. (2.80) take is

⎡
⎢
⎣

Sum of

impedances

around Mesh 1

⎤
⎥
⎦
I1 (s) −

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

common to the

two meshes

⎤
⎥ ⎥ ⎥ ⎥
⎦

I2 (s) =
⎡
⎢
⎣

Sum of applied

voltages around

Mesh 1

⎤
⎥
⎦

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

common to the

two meshes

⎤
⎥ ⎥ ⎥ ⎥
⎦

I1 (s) +
⎡
⎢
⎣

Sum of

impedances

around Mesh 2

⎤
⎥
⎦
I2 (s) =

⎡
⎢
⎣

Sum of applied

voltages around

Mesh 2

⎤
⎥
⎦

Recognizing the form will help us write such equations rapidly; for example, mechanical equations
of motion (covered in Sections 2.5 and 2.6) have the same form.

 Students who are performing the MATLAB exercises and want to explore the added
capability of MATLAB's Symbolic Math Toolbox should now run ch2apF4 in Appendix F at

www.wiley.com/go/Nise/ControlSystemsEngineering8e, where Example 2.10 is solved. You will

learn how to use the Symbolic Math Toolbox to solve simultaneous equations using Cramer's

rule. Specifically, the Symbolic Math Toolbox will be used to solve for the transfer

function in Eq. (2.82) using Eq. (2.80).

Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than mesh analysis.
The number of simultaneous differential equations that must be written is equal to the number of nodes
whose voltage is unknown. In the previous example we wrote simultaneous mesh equations using

1

Cs

∣
∣
∣

(R1 + Ls) V (s)

−Ls 0

∣
∣
∣

Δ

LsV (s)

Δ

1
Cs

I2 (s)

V (s)

Ls

Δ

LCs2

(R1 + R2)LCs2 + (R1R2C + L) s + R1

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_for_Appendix_F.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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(2.85a)

(2.85b)

(2.86a)

(2.86b)

(2.87)

Kirchhoff's voltage law. For multiple nodes we use Kirchhoff's current law and sum currents flowing
from each node. Again, as a convention, currents flowing from the node are assumed to be positive, and
currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the reciprocal of impedance, or

Y (s) = =

When writing nodal equations, it can be more convenient to represent circuit elements by their
admittance. Admittances for the basic electrical components are shown in Table 2.3. Let us look at an
example.

Example 2.11 Transfer Function—Multiple Nodes
PROBLEM:
Find the transfer function, VC(s)/V(s), for the circuit in Figure 2.6(b). Use nodal analysis.

SOLUTION:
For this problem, we sum currents at the nodes rather than sum voltages around the meshes. From
Figure 2.6(b) the sum of currents flowing from the nodes marked VL(s) and VC(s) are, respectively,

+ + = 0

CsVC (s) + = 0

Rearranging and expressing the resistances as conductances,5 G1 = 1/R1 and G2 = 1/R2, we obtain,

(G1 + G2 + )VL (s) − G2VC (s) = V (s)G1

−G2VL (s) + (G2 + Cs)VC (s) = 0

Solving for the transfer function, VC(s)/V(s), yields Eq. (2.87) as shown in Figure 2.7.

=

FIGURE 2.7 Block diagram of the network of Figure 2.6

Another way to write node equations is to replace voltage sources by current sources. A voltage source
presents a constant voltage to any load; conversely, a current source delivers a constant current to any
load. Practically, a current source can be constructed from a voltage source by placing a large resistance
in series with the voltage source. Thus, variations in the load do not appreciably change the current

1

Z (s)

I (s)

V (s)

VL (s) − V (s)

R1

VL (s)

Ls

VL (s) − VC (s)

R2

VC (s) − VL (s)

R2

1

Ls

VC (s)

V (s)

s
G1G2

C

(G1 + G2) s2 + s +G1G2L+C

LC

G2

LC



because the current is determined approximately by the large series resistor and the voltage source.
Theoretically, we rely on Norton's theorem, which states that a voltage source, V(s), in series with an
impedance, Zs(s), can be replaced by a current source, I(s) = V(s)/Zs(s), in parallel with Zs(s).

In order to handle multiple-node electrical networks, we can perform the following steps:

1. Replace passive element values with their admittances.

2. Replace all sources and time variables with their Laplace transform.

3. Replace transformed voltage sources with transformed current sources.

4. Write Kirchhoff's current law at each node.

5. Solve the simultaneous equations for the output.

6. Form the transfer function.

Let us look at an example.



(2.88)

(2.89)

(2.90a)

(2.90b)

Example 2.12 Transfer Function—Multiple Nodes with Current Sources
PROBLEM:
For the network of Figure 2.6, find the transfer function, VC(s)/V(s), using nodal analysis and a
transformed circuit with current sources.

SOLUTION:
Convert all impedances to admittances and all voltage sources in series with an impedance to
current sources in parallel with an admittance using Norton's theorem.

Redrawing Figure 2.6(b) to reflect the changes, we obtain Figure 2.8, where G1 = 1/R1, G2 = 1/R2,
and the node voltages—the voltages across the inductor and the capacitor—have been identified as
VL(s) and VC(s), respectively. Using the general relationship, I(s) = Y(s) V(s), and summing
currents at the node VL(s),

G1VL (s) + VL (s) + G2 [VL (s) − VC (s)] = V (s)G1

Summing the currents at the node VC(s) yields

CsVC (s) + G2 [VC (s) − VL (s)] = 0

Combining terms, Eqs. (2.88) and (2.89) become simultaneous equations in VC(s) and VL(s), which
are identical to Eq. (2.86) and lead to the same solution as Eq. (2.87).

FIGURE 2.8 Transformed network ready for nodal analysis

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its direct relationship to
Figure 2.8, namely

[ Sum of admittances

connected to Node 1
]VL (s) −

⎡
⎢
⎣

Sum of admittances

common to the two

nodes

⎤
⎥
⎦
VC (s) = [ Sum of applied

currents at Node 1
]

−
⎡
⎢
⎣

Sum of admittances

common to the two

nodes

⎤
⎥
⎦
VL (s) + [ Sum of admittances

connected to Node 2
]VC (s) = [ Sum of applied

currents at Node 2
]

A Problem-Solving Technique
In all of the previous examples, we have seen a repeating pattern in the equations that we can use to our
advantage. If we recognize this pattern, we need not write the equations component by component; we
can sum impedances around a mesh in the case of mesh equations or sum admittances at a node in the

1

Ls



case of node equations. Let us now look at a three-loop electrical network and write the mesh equations
by inspection to demonstrate the process.



(2.91)

(2.92)

Example 2.13 Mesh Equations via Inspection
PROBLEM:
Write, but do not solve, the mesh equations for the network shown in Figure 2.9.

FIGURE 2.9 Three-loop electrical network

SOLUTION:
Each of the previous problems has illustrated that the mesh equations and nodal equations have a
predictable form. We use that knowledge to solve this three-loop problem. The equation for Mesh 1
will have the following form:

⎡
⎢
⎣

Sum of

impedances

around Mesh 1

⎤
⎥
⎦
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⎡
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Similarly, Meshes 2 and 3, respectively, are
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(2.94b)

(2.94c)

and
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⎦

Substituting the values from Figure 2.9 into Eqs. (2.91) through (2.93) yields

+ (2s + 2) I1 (s) − (2s + 1) I2 (s) − I3 (s) = V (s)

− (2s + 1) I1 (s) + (9s + 1) I2 (s) − 4sI3 (s) = 0

−I1 (s) − 4sI2 (s) + (4s + 1 + ) I3 (s) = 0

which can be solved simultaneously for any desired transfer function, for example, I3(s)/V(s).

TryIt 2.8
Use the following MATLAB and Symbolic Math Toolbox statements to help you solve for the
electrical currents in Eq. (2.94).

syms s I1 I2 I3 V
A=[(2*s + 2) −(2*s + 1)...
−1 −(2*s + 1) (9*s + 1)...
−4*s −1 −4*s...(4*s + 1 + 1/s)];
B=[I1;I2;I3];
C=[V;0;0];
B=inv(A)*C;
pretty(B)

Passive electrical circuits were the topic of discussion up to this point. We now discuss a class of active
circuits that can be used to implement transfer functions. These are circuits built around an operational
amplifier.

Operational Amplifiers
An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as a basic
building block to implement transfer functions. It has the following characteristics:

1. Differential input, v2(t) − v1(t)

2. High input impedance, Zi = ∞ (ideal)

3. Low output impedance, Zo = 0 (ideal)

4. High constant gain amplification, A = ∞ (ideal)

1

s

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_2.zip
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FIGURE 2.10 a. Operational amplifier; b. schematic for an inverting operational
amplifier; c. inverting operational amplifier configured for transfer function
realization. Typically, the amplifier gain, A, is omitted.

The output, vo(t), is given by

vo (t) = A(v2 (t) − v1 (t))

Inverting Operational Amplifier
If v2(t) is grounded, the amplifier is called an inverting operational amplifier, as shown in Figure
2.10(b). For the inverting operational amplifier, we have

vo (t) = −Av1 (t)

If two impedances are connected to the inverting operational amplifier as shown in Figure 2.10(c), we
can derive an interesting result if the amplifier has the characteristics mentioned in the beginning of this
subsection. If the input impedance to the amplifier is high, then by Kirchhoff's current law Ia(s) = 0 and
I1(s) = − I2(s). Also, since the gain A is large, v1(t) ≈ 0. Thus, I1(s) = Vi(s)/Z1(s), and −I2(s)
=−Vo(s)/Z2(s). Equating the two currents, Vo(s)/Z2(s) = − Vi(s)/Z1(s), or the transfer function of the
inverting operational amplifier configured as shown in Figure 2.10(c) is

= −
Vo (s)

Vi (s)

Z2 (s)

Z1 (s)



(2.98)

(2.99)

(2.100)

(2.101)

Example 2.14 Transfer Function—Inverting Operational Amplifier
Circuit
PROBLEM:
Find the transfer function, Vo(s)/Vi(s), for the circuit given in Figure 2.11.

FIGURE 2.11 Inverting operational amplifier circuit for Example 2.14

SOLUTION:
The transfer function of the operational amplifier circuit is given by Eq. (2.97). Since the
admittances of parallel components add, Z1(s) is the reciprocal of the sum of the admittances, or

Z1 (s) = = =

For Z2(s) the impedances add, or

Z2 (s) = R2 + = 220 × 103 +

Substituting Eqs. (2.98) and (2.99) into Eq. (2.97) and simplifying, we get

= −1.232

The resulting circuit is called a PID controller and can be used to improve the performance of a
control system. We explore this possibility further in Chapter 9.

Noninverting Operational Amplifier
Another circuit that can be analyzed for its transfer function is the noninverting operational amplifier
circuit shown in Figure 2.12. We now derive the transfer function. We see that

Vo (s) = A(Vi (s) − V1 (s))

But, using voltage division,

1

C1s + 1
R1

1

5.6 + 10−6s + 1

360×103

360 × 103

2.016s + 1

1

C2s

107

s

Vo (s)

Vi (s)

s2 + 45.95s + 22.55

s



(2.102)

(2.103)

(2.104)

V1 (s) = Vo (s)

Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

=

For large A, we disregard unity in the denominator and Eq. (2.103) becomes

=

Let us now look at an example.

FIGURE 2.12 General noninverting operational amplifier circuit

Z1 (s)

Z1 (s) + Z2 (s)

Vo (s)

Vi (s)

A

1 + AZ1 (s) / (Z1 (s) + Z2 (s))

Vo (s)

Vi (s)

Z1 (s) + Z2 (s)

Z1 (s)
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Example 2.15 Transfer Function—Noninverting Operational Amplifier
Circuit
PROBLEM:
Find the transfer function, Vo(s)/Vi(s), for the circuit given in Figure 2.13.

FIGURE 2.13 Noninverting operational amplifier circuit for Example 2.15

SOLUTION:
We find each of the impedance functions, Z1(s) and Z2(s), and then substitute them into Eq.
(2.204). Thus,

Z1 (s) = R1 +

and

Z2 (s) =

Substituting Eqs. (2.105) and (2.106) into Eq. (2.104) yields

=

1

C1s

R2 (1/C2s)

R2 + (1/C2s)

Vo (s)

Vi (s)

C2C1R2R1s
2 + (C2R2 + C1R2 + C1R1) s + 1

C2C1R2R1s
2 + (C2R2 + C1R1) s + 1



Skill-Assessment Exercise 2.6
PROBLEM:
Find the transfer function, G(s) = VL(s)/V(s), for the circuit given in Figure 2.14. Solve the problem
two ways—mesh analysis and nodal analysis. Show that the two methods yield the same result.

FIGURE 2.14 Electric circuit for Skill-Assessment Exercise 2.6

ANSWER:

VL (s) /V (s) = (s2 + 2s + 1) / (s2 + 5s + 2)

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Skill-Assessment Exercise 2.7
PROBLEM:
If Z1(s) is the impedance of a 10 μF capacitor and Z2(s) is the impedance of a 100 kΩ resistor, find
the transfer function, G(s) = Vo(s)/Vi(s), if these components are used with (a) an inverting
operational amplifier and (b) a noninverting amplifier as shown in Figures 2.10(c) and 2.12,
respectively.

ANSWER:
G(s) = − s for an inverting operational amplifier; G(s) = s + 1 for a noninverting operational
amplifier.

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we found transfer functions for multiple-loop and multiple-node electrical networks, as
well as operational amplifier circuits. We developed mesh and nodal equations, noted their form, and
wrote them by inspection. In the next section we begin our work with mechanical systems. We will see
that many of the concepts applied to electrical networks can also be applied to mechanical systems via
analogies—from basic concepts to writing the describing equations by inspection. This revelation will
give you the confidence to move beyond this textbook and study systems not covered here, such as
hydraulic or pneumatic systems.

2.5 Translational Mechanical System Transfer Functions
We have shown that electrical networks can be modeled by a transfer function, G(s), that algebraically
relates the Laplace transform of the output to the Laplace transform of the input. Now we will do the

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


same for mechanical systems. In this section we concentrate on translational mechanical systems. In the
next section we extend the concepts to rotational mechanical systems. Notice that the end product,
shown in Figure 2.2, will be mathematically indistinguishable from an electrical network. Hence, an
electrical network can be interfaced to a mechanical system by cascading their transfer functions,
provided that one system is not loaded by the other.6

Mechanical systems parallel electrical networks to such an extent that there are analogies between
electrical and mechanical components and variables. Mechanical systems, like electrical networks, have
three passive, linear components. Two of them, the spring and the mass, are energy-storage elements;
one of them, the viscous damper, dissipates energy. The two energy-storage elements are analogous to
the two electrical energy-storage elements, the inductor and capacitor. The energy dissipator is
analogous to electrical resistance. Let us take a look at these mechanical elements, which are shown in
Table 2.4. In the table, K, fv, and M are called spring constant, coefficient of viscous friction, and mass,
respectively.

TABLE 2.4

Force–velocity, force–displacement, and impedance translational relationships for
springs, viscous dampers, and mass

Component Force–velocity Force–displacement ImpedanceZM(s) = F (s)/X (s)

f (t) = K ∫
t

0
v (τ) dτ f(t) = Kx(t) K

f(t) = fvv(t) f (t) = fv fvs

f (t) = M f (t) = M Ms2

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s
(meters/second), K = N/m (newtons/meter), fv = N-s/m (newton-seconds/meter), M = kg (kilograms = newton-

seconds2/meter).

We now create analogies between electrical and mechanical systems by comparing Tables 2.3 and 2.4.
Comparing the force–velocity column of Table 2.4 to the voltage–current column of Table 2.3, we see
that mechanical force is analogous to electrical voltage and mechanical velocity is analogous to electrical
current. Comparing the force–displacement column of Table 2.4 with the voltage–charge column of
Table 2.3 leads to the analogy between the mechanical displacement and electrical charge. We also see
that the spring is analogous to the capacitor, the viscous damper is analogous to the resistor, and the
mass is analogous to the inductor. Thus, summing forces written in terms of velocity is analogous to
summing voltages written in terms of current, and the resulting mechanical differential equations are
analogous to mesh equations. If the forces are written in terms of displacement, the resulting

dx(t)

dt

dv(t)

dt

d2x(t)

dt2



mechanical equations resemble, but are not analogous to, the mesh equations. We, however, will use this
model for mechanical systems so that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force–velocity column of Table 2.4 to the current–
voltage column of Table 2.3 in reverse order. Here the analogy is between force and current and between
velocity and voltage. Also, the spring is analogous to the inductor, the viscous damper is analogous to the
resistor, and the mass is analogous to the capacitor. Thus, summing forces written in terms of velocity is
analogous to summing currents written in terms of voltage and the resulting mechanical differential
equations are analogous to nodal equations. We will discuss these analogies in more detail in Section
2.9.

We are now ready to find transfer functions for translational mechanical systems. Our first example,
shown in Figure 2.15(a), is similar to the simple RLC network of Example 2.6 (see Figure 2.3). The
mechanical system requires just one differential equation, called the equation of motion, to describe it.
We will begin by assuming a positive direction of motion, for example, to the right. This assumed
positive direction of motion is similar to assuming a current direction in an electrical loop. Using our
assumed direction of positive motion, we first draw a free-body diagram, placing on the body all forces
that act on the body either in the direction of motion or opposite to it. Next we use Newton's law to form
a differential equation of motion by summing the forces and setting the sum equal to zero. Finally,
assuming zero initial conditions, we take the Laplace transform of the differential equation, separate the
variables, and arrive at the transfer function. An example follows.

FIGURE 2.15 a. Mass, spring, and damper system; b. block diagram
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Example 2.16 Transfer Function—One Equation of Motion
PROBLEM:
Find the transfer function, X(s)/F(s), for the system of Figure 2.15(a).

SOLUTION:
Begin the solution by drawing the free-body diagram shown in Figure 2.16(a). Place on the mass all
forces felt by the mass. We assume the mass is traveling toward the right. Thus, only the applied
force points to the right; all other forces impede the motion and act to oppose it. Hence, the spring,
viscous damper, and the force due to acceleration point to the left.

FIGURE 2.16 a. Free-body diagram of mass, spring, and damper system; b.
transformed free-body diagram

We now write the differential equation of motion using Newton's law to sum to zero all of the forces
shown on the mass in Figure 2.16(a):

M + fv + Kx (t) = f (t)

Taking the Laplace transform, assuming zero initial conditions,

Ms2X (s) + fvsX (s) + KX (s) = F (s)

or

(Ms2 + fvs + K)X (s) = F (s)

Solving for the transfer function yields

G (s) = =

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the writing of differential
equations and by defining impedances for mechanical components? If so, we can apply to mechanical
systems the problem-solving techniques learned in the previous section. Taking the Laplace transform of
the force–displacement column in Table 2.4, we obtain for the spring,

F (s) = KX (s)

for the viscous damper,

d2x (t)

dt2

dx (t)

dt

X (s)

F (s)

1

Ms2 + fvs + K



(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

F (s) = fvsX (s)

and for the mass,

F (s) = Ms2X (s)

If we define impedance for mechanical components as

ZM (s) =

and apply the definition to Eqs. (2.112) through (2.114), we arrive at the impedances of each component
as summarized in Table 2.4 (Raven, 1995).7

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the format

F (s) = ZM (s)X (s)

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immediately without writing
the differential equation. From now on we use this approach.

Finally, notice that Eq. (2.110) is of the form

[Sum of impedances]X (s) = [Sum of applied forces]

which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node electrical networks, where
more than one simultaneous differential equation is required to describe the system. In mechanical
systems, the number of equations of motion required is equal to the number of linearly independent
motions. Linear independence implies that a point of motion in a system can still move if all other points
of motion are held still. Another name for the number of linearly independent motions is the number of
degrees of freedom. This discussion is not meant to imply that these motions are not coupled to one
another; in general, they are. For example, in a two-loop electrical network, each loop current depends
on the other loop current, but if we open-circuit just one of the loops, the other current can still exist if
there is a voltage source in that loop. Similarly, in a mechanical system with two degrees of freedom, one
point of motion can be held still while the other point of motion moves under the influence of an applied
force.

In order to work such a problem, we draw the free-body diagram for each point of motion and then use
superposition. For each free-body diagram we begin by holding all other points of motion still and
finding the forces acting on the body due only to its own motion. Then we hold the body still and activate
the other points of motion one at a time, placing on the original body the forces created by the adjacent
motion.

Using Newton's law, we sum the forces on each body and set the sum to zero. The result is a system of
simultaneous equations of motion. As Laplace transforms, these equations are then solved for the output
variable of interest in terms of the input variable from which the transfer function is evaluated. Example
2.17 demonstrates this problem-solving technique.

F (s)

X (s)



Example 2.17 Transfer Function—Two Degrees of Freedom
PROBLEM:
Find the transfer function, X2(s)/F(s), for the system of Figure 2.17(a).

Virtual Experiment 2.1 Vehicle Suspension
Put theory into practice exploring the dynamics of another two-degrees-of-freedom system—a
vehicle suspension system driving over a bumpy road and demonstrated with the Quanser
Active Suspension System modeled in LabVIEW.

Run Experiment 2.1

FIGURE 2.17 a. Two-degrees-of-freedom translational mechanical system;8 b. block
diagram

SOLUTION:
The system has two degrees of freedom, since each mass can be moved in the horizontal direction
while the other is held still. Thus, two simultaneous equations of motion will be required to
describe the system. The two equations come from free-body diagrams of each mass. Superposition
is used to draw the free-body diagrams. For example, the forces on M1 are due to (1) its own motion
and (2) the motion of M2 transmitted to M1 through the system. We will consider these two sources
separately.

If we hold M2 still and move M1 to the right, we see the forces shown in Figure 2.18(a). If we hold
M1 still and move M2 to the right, we see the forces shown in Figure 2.18(b). The total force on M1
is the superposition, or sum, of the forces just discussed. This result is shown in Figure 2.18(c). For

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp01.zip


(2.118a)

(2.118b)

(2.119)

M2, we proceed in a similar fashion: First we move M2 to the right while holding M1 still; then we
move M1 to the right and hold M2 still. For each case we evaluate the forces on M2. The results
appear in Figure 2.19.

FIGURE 2.18 a. Forces on M1 due only to motion of M1; b. forces on M1 due only to
motion of M2; c. all forces on M1

FIGURE 2.19 a. Forces on M2 due only to motion of M2; b. forces on M2 due only to
motion of M1; c. all forces on M2

The Laplace transform of the equations of motion can now be written from Figures 2.18(c) and
2.19(c) as

[M1s
2 (Fv1 + fv3) s + (K1 + K2)]X1 (s) − (fv3s + K2)X2 (s) = F (s)

− (fv3
s + K2)X1 (s) + [M2s

2 + (fv2
+ fv3

) s + (K2 + K3)]X2 (s) = 0

From this, the transfer function, X2(s)/F(s), is

= G (s) =

as shown in Figure 2.17(b) where

X2 (s)

F (s)

(fv3
s + K2)

Δ



(2.120a)

(2.120b)

Δ =
∣
∣
∣

[M1s
2 + (fv1 + fv3) s + (K1 + K2)] − (fv3s + K2)

− (fv3s + K2) [M2s
2 + (fv2 + fv3) s + (K2 + K3)]

∣
∣
∣

Notice again, in Eq. (2.118), that the form of the equations is similar to electrical mesh equations:

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

connected

to the motion

at x1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

X1 (s)−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x2

⎤
⎥ ⎥ ⎥ ⎥
⎦
X2 (s)=

⎡
⎢
⎣

Sum of

applied forces

at x1

⎤
⎥
⎦

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x2

⎤
⎥ ⎥ ⎥ ⎥
⎦
X1 (s)+

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

connected

to the motion

at x2

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

X2 (s)=
⎡
⎢
⎣

Sum of

applied forces

at x2

⎤
⎥
⎦

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept to write the
equations of motion of a three-degrees-of-freedom mechanical network by inspection, without drawing
the free-body diagram.



(2.121)

(2.122)

Example 2.18 Equations of Motion by Inspection
PROBLEM:
Write, but do not solve, the equations of motion for the mechanical network of Figure 2.20.

FIGURE 2.20 Three-degrees-of-freedom translational mechanical system

SOLUTION:
The system has three degrees of freedom, since each of the three masses can be moved
independently while the others are held still. The form of the equations will be similar to electrical
mesh equations. For M1,

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

connected

to the motion

at x1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

X1 (s)−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x2

⎤
⎥ ⎥ ⎥ ⎥
⎦

X2 (s)

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x3

⎤
⎥ ⎥ ⎥ ⎥
⎦
X3 (s) =

⎡
⎢
⎣

Sum of

applied forces

at x1

⎤
⎥
⎦

Similarly, for M2 and M3, respectively,

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x2

⎤
⎥ ⎥ ⎥ ⎥
⎦

X1 (s) +

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

connected

to the motion

at x2

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

X2 (s)

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x2 and x3

⎤
⎥ ⎥ ⎥ ⎥
⎦

X3 (s)=
⎡
⎢
⎣

Sum of

applied forces

at x2

⎤
⎥
⎦



(2.123)

(2.124)

(2.125)

(2.126)

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

Sum of

impedances

between

x1 and x3

⎤
⎥ ⎥ ⎥ ⎥
⎦

X1 (s) −

⎡
⎢ ⎢ ⎢ ⎢
⎣
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impedances
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x2 and x3

⎤
⎥ ⎥ ⎥ ⎥
⎦

X2 (s)

+

⎡
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⎣
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connected

to the motion

at x3

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

X3 (s) =
⎡
⎢
⎣

Sum of

applied forces

at x3

⎤
⎥
⎦

M1 has two springs, two viscous dampers, and mass associated with its motion. There is one spring
between M1 and M2 and one viscous damper between M1 and M3. Thus, using Eq. (2.121),

[M1s
2 + (fv1 + fv3) s + (K1 + K2)]X1 (s) − K2X2 (s) − fv3sX3 (s) = 0

Similarly, using Eq. (2.122) for M2,

−K2X1 (s) + [M2s
2 + (fv2

+ fv4
) s + K2]X2 (s) − fv4

sX3 (s) = F (s)

and using Eq. (2.123) for M3,

−fv3sX1 (s) − fv4sX2 (s) + [M3s
2 + (fv3 + fv4) s]X3 (s) = 0

Equations (2.124) through (2.126) are the equations of motion. We can solve them for any
displacement, X1(s), X2(s), or X3(s), or transfer function.



Skill-Assessment Exercise 2.8
PROBLEM:
Find the transfer function, G(s) = X2(s)/F(s), for the translational mechanical system shown in
Figure 2.21.

FIGURE 2.21 Translational mechanical system for Skill-Assessment Exercise 2.8

ANSWER:

G (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.6 Rotational Mechanical System Transfer Functions
Having covered electrical and translational mechanical systems, we now move on to consider rotational
mechanical systems. Rotational mechanical systems are handled the same way as translational
mechanical systems, except that torque replaces force and angular displacement replaces translational
displacement. The mechanical components for rotational systems are the same as those for translational
systems, except that the components undergo rotation instead of translation. Table 2.5 shows the
components along with the relationships between torque and angular velocity, as well as angular
displacement. Notice that the symbols for the components look the same as translational symbols, but
they are undergoing rotation and not translation.

3s + 1

s (s3 + 7s2 + 5s + 1)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


TABLE 2.5

Torque–angular velocity, torque–angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Component Torque–angular
velocity

Torque–angular
displacement

Impedance
ZM(s) = T (s)/θ

(s)

T (t) = K ∫
t

0
ω (τ) dτ T(t) = Kθ(t) K

T(t) = Dω(t) T (t) = D Ds

T (t) = J T (t) = J Js2

Note: The following set of symbols and units is used throughout this book: T(t) − N-m (newton-meters), θ(t) − rad (radians),
ω(t) − rad/s (radians/second), K − N-m/rad (newton-meters/radian), D − N-m-s/rad(newton-meters-seconds/radian). J −
kg-m2 (kilograms-meters2 − newton-meters-seconds2/radian).

Also notice that the term associated with the mass is replaced by inertia. The values of K, D, and J are
called spring constant, coefficient of viscous friction, and moment of inertia, respectively. The
impedances of the mechanical components are also summarized in the last column of Table 2.5. The
values can be found by taking the Laplace transform, assuming zero initial conditions, of the torque-
angular displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except that we test a point of
motion by rotating it while holding still all other points of motion. The number of points of motion that
can be rotated while all others are held still equals the number of equations of motion required to
describe the system.

Writing the equations of motion for rotational systems is similar to writing them for translational
systems; the only difference is that the free-body diagram consists of torques rather than forces. We
obtain these torques using superposition. First, we rotate a body while holding all other points still and
place on its free-body diagram all torques due to the body's own motion. Then, holding the body still, we
rotate adjacent points of motion one at a time and add the torques due to the adjacent motion to the
free-body diagram. The process is repeated for each point of motion. For each free-body diagram, these
torques are summed and set equal to zero to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one uses free-body
diagrams; the second uses the concept of impedances to write the equations of motion by inspection.

dθ(t)

dt

dω(t)

dt

d2θ(t)

dt2



Example 2.19 Transfer Function—Two Equations of Motion
PROBLEM:
Find the transfer function, θ2(s)/T(s), for the rotational system shown in Figure 2.22(a). The rod is
supported by bearings at either end and is undergoing torsion. A torque is applied at the left, and
the displacement is measured at the right.

FIGURE 2.22 a. Physical system; b. schematic; c. block diagram

SOLUTION:
First, obtain the schematic from the physical system. Even though torsion occurs throughout the
rod in Figure 2.22(a),9 we approximate the system by assuming that the torsion acts like a spring
concentrated at one particular point in the rod, with an inertia J1 to the left and an inertia J2 to the
right.10 We also assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can be rotated while
the other is held still. Hence, it will take two simultaneous equations to solve the system.

Next, draw a free-body diagram of J1, using superposition. Figure 2.23(a) shows the torques on J1
if J2 is held still and J1 rotated. Figure 2.23(b)b) shows the torques on J1 if J1 is held still and J2
rotated. Finally, the sum of Figures 2.23(a) and 2.23(b) is shown in Figure 2.23(c), the final free-
body diagram for J1. The same process is repeated in Figure 2.24 for J2.

TryIt 2.9
Use the following MATLAB and Symbolic Math Toolbox statements to help you get Eq.
(2.128).

syms s J1 D1 K T J2 D2... theta1 theta2
A=[(J1*s^2+D1*s+K) −K −K (J2*s^2+D2*s +K)];
B=[theta1 theta2];
C=[T 0];
B=inv(A)*C;
theta2 = B(2);
'theta2'
pretty (theta2)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_2.zip


(2.127a)

(2.127b)

(2.128)

FIGURE 2.23 a. Torques on J1 due only to the motion of J1; b. torques on J1 due
only to the motion of J2; c. final free-body diagram for J1

FIGURE 2.24 a. Torques on J2 due only to the motion of J2; b. torques on J2 due
only to the motion of J1; c. final free-body diagram for J2

Summing torques, respectively, from Figures 2.23(c) and 2.24(c) we obtain the equations of
motion,

(J1s
2 + D1s + K) θ1 (s) − Kθ2 (s) = T (s)

−Kθ1 (s) + (J2s
2 + D2s + K) θ2 (s) = 0

from which the required transfer function is found to be

=

as shown in Figure 2.22(c), where

Δ =
∣
∣
∣

(J1s
2 + D1s + K) −K

−K (J2s
2 + D2s + K)

∣
∣
∣

Notice that Eqs. (2.127) have that now well-known form

θ2 (s)

T (s)

K

Δ



(2.129a)

(2.129b)
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(2.130a)

(2.130b)

Example 2.20 Equations of Motion by Inspection
PROBLEM:
Write, but do not solve, the Laplace transform of the equations of motion for the system shown in
Figure 2.25.

FIGURE 2.25 Three-degrees-of-freedom rotational system

SOLUTION:
The equations will take on the following form, similar to electrical mesh equations:
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(2.130c)

(2.131a,b,c)
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Hence,

(J1s
2 + D1s + K) θ1 (s) −Kθ2 (s) −0θ3 (s)=T (s)

−Kθ1 (s)+ (J2s
2 + D2s + K) θ2 (s) −D2sθ3 (s)=0

−0θ1 (s) −D2sθ2 (s)+ (J3s
2 + D3s + D2s) θ3 (s)=0

Skill-Assessment Exercise 2.9
PROBLEM:
Find the transfer function, G(s) = θ2(s)/T(s), for the rotational mechanical system shown in Figure
2.26.

FIGURE 2.26 Rotational mechanical system for Skill-Assessment Exercise 2.9

ANSWER:

G (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.7 Transfer Functions for Systems with Gears
Now that we are able to find the transfer function for rotational systems, we realize that these systems,
especially those driven by motors, are rarely seen without associated gear trains driving the load. This
section covers this important topic.

1

2s2 + s + 1

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(2.133)

(2.134)

(2.135)

(2.132)

Gears provide mechanical advantage to rotational systems. Anyone who has ridden a 10-speed bicycle
knows the effect of gearing. Going uphill, you shift to provide more torque and less speed. On the
straightaway, you shift to obtain more speed and less torque. Thus, gears allow you to match the drive
system and the load—a trade-off between speed and torque.

For many applications, gears exhibit backlash, which occurs because of the loose fit between two
meshed gears. The drive gear rotates through a small angle before making contact with the meshed gear.
The result is that the angular rotation of the output gear does not occur until a small angular rotation of
the input gear has occurred. In this section, we idealize the behavior of gears and assume that there is no
backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An input gear with radius r1 and
N1 teeth is rotated through angle θ1(t) due to a torque, T1(t). An output gear with radius r2 and N2 teeth
responds by rotating through angle θ2(t) and delivering a torque, T2(t). Let us now find the relationship
between the rotation of Gear 1, θ1(t), and Gear 2, θ2(t).

FIGURE 2.27 A gear system

From Figure 2.27, as the gears turn, the distance traveled along each gear's circumference is the same.
Thus,

r1θ1 = r2θ2

or

= =

since the ratio of the number of teeth along the circumference is in the same proportion as the ratio of
the radii. We conclude that the ratio of the angular displacement of the gears is inversely proportional to
the ratio of the number of teeth.

What is the relationship between the input torque, T1, and the delivered torque, T2? If we assume the
gears are lossless, that is, they do not absorb or store energy, the energy into Gear 1 equals the energy
out of Gear 2.11 Since the translational energy of force times displacement becomes the rotational energy
of torque times angular displacement,

T1θ1 = T2θ2

Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133), we get

= =

Thus, the torques are directly proportional to the ratio of the number of teeth. All results are
summarized in Figure 2.28.

θ2

θ1

r1

r2

N1

N2

T2

T1

θ1

θ2

N2

N1



(2.136)

(2.137)

(2.138)

FIGURE 2.28 Transfer functions for a. angular displacement in lossless gears and b.
torque in lossless gears

Let us see what happens to mechanical impedances that are driven by gears. Figure 2.29(a) shows gears
driving a rotational inertia, spring, and viscous damper. For clarity, the gears are shown by an end-on
view. We want to represent Figure 2.29(a) as an equivalent system at θ1 without the gears. In other
words, can the mechanical impedances be reflected from the output to the input, thereby eliminating the
gears?

FIGURE 2.29 a. Rotational system driven by gears; b. equivalent system at the output
after reflection of input torque; c. equivalent system at the input after reflection of
impedances

From Figure 2.28(b), T1 can be reflected to the output by multiplying by N2/N1. The result is shown in
Figure 2.29(b), from which we write the equation of motion as

(Js2 + Ds + K) θ2 (s) = T1 (s)

Now convert θ2(s) into an equivalent θ1(s), so that Eq. (2.136) will look as if it were written at the input.
Using Figure 2.28(a) to obtain θ2(s) in terms of θ1(s), we get

(Js2 + Ds + K) θ1 (s) = T1 (s)

After simplification,

[J( )
2

s2 + D( )
2

s + K( )
2

] θ1 (s) = T1 (s)

N2

N1

N1

N2

N2

N1

N1

N2

N1

N2

N1

N2



which suggests the equivalent system at the input and without gears shown in Figure 2.29(c). Thus, the
load can be thought of as having been reflected from the output to the input.

Generalizing the results, we can make the following statement: Rotational mechanical impedances can
be reflected through gear trains by multiplying the mechanical impedance by the ratio

⎛
⎜ ⎜ ⎜ ⎜
⎝

⎞
⎟ ⎟ ⎟ ⎟
⎠

2

where the impedance to be reflected is attached to the source shaft and is being reflected to the
destination shaft. The next example demonstrates the application of the concept of reflected impedances
as we find the transfer function of a rotational mechanical system with gears.

Number of teeth of

gear on destination shaft

Number of teeth of

gear on source shaft
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Example 2.21 Transfer Function—System with Lossless Gears
PROBLEM:
Find the transfer function, θ2(s)/T1(s), for the system of Figure 2.30(a).

FIGURE 2.30 a. Rotational mechanical system with gears; b. system after reflection
of torques and impedances to the output shaft; c. block diagram

SOLUTION:
It may be tempting at this point to search for two simultaneous equations corresponding to each
inertia. The inertias, however, do not undergo linearly independent motion, since they are tied
together by the gears. Thus, there is only one degree of freedom and hence one equation of motion.

Let us first reflect the impedances (J1 and D1) and torque (T1) on the input shaft to the output as
shown in Figure 2.30(b), where the impedances are reflected by (N2/N1)2 and the torque is
reflected by (N2/N1). The equation of motion can now be written as

(Jes2 + Des + Ke) θ2 (s) = T1 (s)

where

Je = J1( )
2

+ J2; De = D1( )
2

+ D2; Ke = K2

Solving for θ2(s)/T1(s), the transfer function is found to be

G (s) = =

as shown in Figure 2.30(c).

In order to eliminate gears with large radii, a gear train is used to implement large gear ratios by
cascading smaller gear ratios. A schematic diagram of a gear train is shown in Figure 2.31. Next to each
rotation, the angular displacement relative to θ1 has been calculated. From Figure 2.31,

θ4 = θ1

For gear trains, we conclude that the equivalent gear ratio is the product of the individual gear ratios.
We now apply this result to solve for the transfer function of a system that does not have lossless gears.

N2

N1

N2

N1

N2

N1

θ2 (s)

T1 (s)

N2/N1

Jes
2 + Des + Ke

N1N3N5

N2N4N6



FIGURE 2.31 Gear train
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Example 2.22 Transfer Function—Gears with Loss
PROBLEM:
Find the transfer function, θ1(s)/T1(s), for the system of Figure 2.32(a).

FIGURE 2.32 a. System using a gear train; b. equivalent system at the input; c.
block diagram

SOLUTION:
This system, which uses a gear train, does not have lossless gears. All of the gears have inertia, and
for some shafts there is viscous friction. To solve the problem, we want to reflect all of the
impedances to the input shaft, θ1. The gear ratio is not the same for all impedances. For example,
D2 is reflected only through one gear ratio as D2(N1/N2)2, whereas J4 plus J5 is reflected through

two gear ratios as (J4 + J5) [(N3/N4) (N1/N2)]2. The result of reflecting all impedances to θ1 is
shown in Figure 2.32(b), from which the equation of motion is

(Jes2 + Des) θ1 (s) = T1 (s)

where

Je = J1 + (J2 + J3)( )
2

+ (J4 + J5)( )
2

and

De = D1 + D2( )
2

From Eq. (2.142), the transfer function is

G (s) = =

as shown in Figure 2.32(c).

N1

N2

N1N3

N2N4

N1

N2

θ1 (s)

T1 (s)

1

Jes2 + Des



Skill-Assessment Exercise 2.10
PROBLEM:
Find the transfer function, G(s) = θ2(s)/T(s), for the rotational mechanical system with gears
shown in Figure 2.33.

FIGURE 2.33 Rotational mechanical system with gears for Skill-Assessment
Exercise 2.10

ANSWER:

G (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.8 Electromechanical System Transfer Functions
In the last section we talked about rotational systems with gears, which completed our discussion of
purely mechanical systems. Now, we move to systems that are hybrids of electrical and mechanical
variables, the electromechanical systems. We have seen one application of an electromechanical system
in Chapter 1, the antenna azimuth position control system. Other applications for systems with
electromechanical components are robot controls, sun and star trackers, and computer tape and disk-
drive position controls. An example of a control system that uses electromechanical components is
shown in Figure 2.34.

1/2

s2 + s + 1

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 2.34 NASA flight simulator robot arm with electromechanical control system
components

A motor is an electromechanical component that yields a displacement output for a voltage input, that
is, a mechanical output generated by an electrical input. We will derive the transfer function for one
particular kind of electromechanical system, the armature-controlled dc servomotor (Mablekos, 1980).
The motor's schematic is shown in Figure 2.35(a), and the transfer function we will derive appears in
Figure 2.35(b).

FIGURE 2.35 DC motor: a. schematic;12 b. block diagram

In Figure 2.35(a) a magnetic field is developed by stationary permanent magnets or a stationary
electromagnet called the fixed field. A rotating circuit called the armature, through which current ia(t)
flows, passes through this magnetic field at right angles and feels a force, F = Blia(t), where B is the
magnetic field strength and l is the length of the conductor. The resulting torque turns the rotor, the
rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at right angles to a
magnetic field generates a voltage at the terminals of the conductor equal to e = Blv, where e is the
voltage and v is the velocity of the conductor normal to the magnetic field. Since the current-carrying
armature is rotating in a magnetic field, its voltage is proportional to speed. Thus,
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(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

(2.152)

vb (t) = Kb

We call vb(t) the back electromotive force(back emf); Kb is a constant of proportionality called the
back emf constant; and dθm(t)/dt = ωm(t) is the angular velocity of the motor. Taking the Laplace
transform, we get

Vb (s) = Kbsθm (s)

The relationship between the armature current, ia(t), the applied armature voltage, ea(t), and the back
emf, vb(t), is found by writing a loop equation around the Laplace transformed armature circuit (see
Figure 3.5:

RaIa (s) + LasIa (s) + Vb (s) = Ea (s)

The torque developed by the motor is proportional to the armature current; thus,

Tm (s) = KtIa (s)

where Tm is the torque developed by the motor, and Kt is a constant of proportionality, called the motor
torque constant, which depends on the motor and magnetic field characteristics. In a consistent set of
units, the value of Kt is equal to the value of Kb. Rearranging Eq. (2.147) yields

Ia (s) = Tm (s)

To find the transfer function of the motor, we first substitute Eqs. (2.145) and (2.148) into (2.146),
yielding

+ Kbsθm (s) = Ea (s)

Now we must find Tm(s) in terms of θm(s) if we are to separate the input and output variables and obtain
the transfer function, θm(s)/Ea(s).

Figure 2.36 shows a typical equivalent mechanical loading on a motor. Jm is the equivalent inertia at the
armature and includes both the armature inertia and, as we will see later, the load inertia reflected to the
armature. Dm is the equivalent viscous damping at the armature and includes both the armature viscous
damping and, as we will see later, the load viscous damping reflected to the armature. From Figure 2.36,

Tm (s) = (Jms2 + Dms) θm (s)

Substituting Eq. (2.150) into Eq. (2.149) yields

+ Kbsθm (s) = Ea (s)

If we assume that the armature inductance, La, is small compared to the armature resistance, Ra, which
is usual for a dc motor, Eq. (2.151) becomes

[ (Jms + Dm) + Kb] sθm (s) = Ea (s)

dθm (t)

dt

1

Kt

(Ra + Las)Tm (s)

Kt

(Ra + Las) (Jms2 + Dms) θm (s)

Kt

Ra

Kt
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(2.154)

(2.155)14

(2.156)

(2.157)

After simplification, the desired transfer function, θm(s)/Ea(s), is found to be

=

Even though the form of Eq. (2.153) is relatively simple, namely

=

the reader may be concerned about how to evaluate the constants.

FIGURE 2.36 Typical equivalent mechanical loading on a motor

Let us first discuss the mechanical constants, Jm and Dm. Consider Figure 2.37, which shows a motor
with inertia Ja and damping Da at the armature driving a load consisting of inertia JL and damping DL.
Assuming that all inertia and damping values shown are known, JL and DL can be reflected back to the
armature as some equivalent inertia and damping to be added to Ja and Da, respectively. Thus, the
equivalent inertia, Jm, and equivalent damping, Dm, at the armature are

Jm = Ja + JL( )
2

; Dm = Da + DL( )
2

FIGURE 2.37 DC motor driving a rotational mechanical load

Now that we have evaluated the mechanical constants, Jm and Dm, what about the electrical constants in
the transfer function of Eq. (2.153)? We will show that these constants can be obtained through a
dynamometer test of the motor, where a dynamometer measures the torque and speed of a motor under
the condition of a constant applied voltage. Let us first develop the relationships that dictate the use of a
dynamometer.

Substituting Eqs. (2.145) and (2.148) into Eq. (2.146), with La = 0, yields

Tm (s) + Kbsθm (s) = Ea (s)

Taking the inverse Laplace transform, we get

Tm (t) + Kbωm (t) = ea (t)

θm (s)

Ea (s)

Kt/ (RaJm)

s [s + (Dm + )]1
Jm

KtKb

Ra

θm (s)

Ea (s)

K

s (s + α)

N1

N2

N1

N2

Ra

Kt

Ra

Kt
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where the inverse Laplace transform of sθm(s) is dθm(t)/dt or, alternately, ωm(t).

If a dc voltage, ea, is applied, the motor will turn at a constant angular velocity, ωm, with a constant
torque, Tm. Hence, dropping the functional relationship based on time from Eq. (2.157), the following
relationship exists when the motor is operating at steady state with a dc voltage input:

Tm + Kbωm = ea

Solving for Tm yields

Tm = − ωm + ea

Equation (2.159) is a straight line, Tm vs. ωm, and is shown in Figure 2.38. This plot is called the
torque–speed curve. The torque axis intercept occurs when the angular velocity reaches zero. That
value of torque is called the stall torque, Tstall. Thus,

Tstall = ea

The angular velocity occurring when the torque is zero is called the no-load speed, ωno-load. Thus,

ωno−load =

The electrical constants of the motor's transfer function can now be found from Eqs. (2.160) and (2.161)
as

=

and

Kb =

The electrical constants, Kt/Ra and Kb, can be found from a dynamometer test of the motor, which
would yield Tstall and ωno-load for a given ea.

Ra

Kt

KbKt

Ra

Kt

Ra

Kt

Ra

ea

Kb

Kt

Ra

Tstall

ea

ea

ωno−load



FIGURE 2.38 Torque–speed curves with an armature voltage, ea, as a parameter
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Example 2.23 Transfer Function—DC Motor and Load
PROBLEM:
Given the system and torque–speed curve of Figure 2.39(a) and (b), find the transfer function,
θL(s)/Ea(s).

Virtual Experiment 2.2 Open-Loop Servo Motor
Put theory into practice exploring the dynamics of the Quanser Rotary Servo System modeled
in LabVIEW. It is particularly important to know how a servo motor behaves when using them
in high-precision applications such as hard disk drives.

Run Experiment 2.2

FIGURE 2.39 a. DC motor and load; b. torque–speed curve; c. block diagram

SOLUTION:
Begin by finding the mechanical constants, Jm and Dm, in Eq. (2.153). From Eq. (2.155), the total
inertia at the armature of the motor is

Jm = Ja + JL( )
2

= 5 + 700( )
2

= 12

and the total damping at the armature of the motor is

Dm = Da + DL( )
2

= 2 + 800( )
2

= 10

Now we will find the electrical constants, Kt/Ra and Kb. From the torque–speed curve of Figure
2.39(b),

N1

N2

1

10

N1

N2

1

10

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp02.zip
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(2.170)

(2.171)

(2.172)

(2.166)

(2.167)

(2.168)

Tstall = 500

ωno−load = 50

ea = 100

Hence the electrical constants are

= = = 5

and

Kb = = = 2

Substituting Eqs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield

= =

In order to find θL(s)/Ea(s), we use the gear ratio, N1/N2 = 1/10, and find

=

as shown in Figure 2.39(c).

Skill-Assessment Exercise 2.11
PROBLEM:
Find the transfer function, G(s) = θL(s)/Ea(s), for the motor and load shown in Figure 2.40. The
torque–speed curve is given by Tm = − 8ωm + 200 when the input voltage is 100 volts.

FIGURE 2.40 Electromechanical system for Skill-Assessment Exercise 2.11

ANSWER:

G (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystems Engineering8e.

Kt

Ra

Tstall

ea

500

100

ea

ωno−load

100

50

θm (s)

Ea (s)

5/12

s{s + [10 + (5) (2)]}1
12

0.417

s (s + 1.667)

θL (s)

Ea (s)

0.0417

s (s + 1.667)

1/20

s [s + (15/2)]
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2.9 Electric Circuit Analogs
In this section, we show the commonality of systems from the various disciplines by demonstrating that
the mechanical systems with which we worked can be represented by equivalent electric circuits. We
have pointed out the similarity between the equations resulting from Kirchhoff's laws for electrical
systems and the equations of motion of mechanical systems. We now show this commonality even more
convincingly by producing electric circuit equivalents for mechanical systems. The variables of the
electric circuits behave exactly as the analogous variables of the mechanical systems. In fact, converting
mechanical systems to electrical networks before writing the describing equations is a problem-solving
approach that you may want to pursue.

An electric circuit that is analogous to a system from another discipline is called an electric circuit
analog. Analogs can be obtained by comparing the describing equations, such as the equations of
motion of a mechanical system, with either electrical mesh or nodal equations. When compared with
mesh equations, the resulting electrical circuit is called a series analog. When compared with nodal
equations, the resulting electrical circuit is called a parallel analog.

Series Analog
Consider the translational mechanical system shown in Figure 2.41(a), whose equation of motion is

(Ms2 + fvs + K)X (s) = F (s)

Kirchhoff's mesh equation for the simple series RLC network shown in Figure 2.41(b) is

(Ls + R + ) I (s) = E (s)

FIGURE 2.41 Development of series analog: a. mechanical system; b. desired electrical
representation; c. series analog; d. parameters for series analog

As we previously pointed out, Eq. (2.173) is not directly analogous to Eq. (2.174) because displacement
and current are not analogous. We can create a direct analogy by operating on Eq. (2.173) to convert
displacement to velocity by dividing and multiplying the left-hand side by s, yielding

1

Cs



(2.175)

(2.176a)

(2.176b)

(2.177)

sX (s) = (Ms + fv + )V (s) = F (s)

Comparing Eqs. (2.174) and (2.175), we recognize the sum of impedances and draw the circuit shown in
Figure 2.41(c). The conversions are summarized in Figure 2.41(d).

When we have more than one degree of freedom, the impedances associated with a motion appear as
series electrical elements in a mesh, but the impedances between adjacent motions are drawn as series
electrical impedances between the two corresponding meshes. We demonstrate with an example.

Example 2.24 Converting a Mechanical System to a Series Analog
PROBLEM:
Draw a series analog for the mechanical system of Figure 2.17(a).

SOLUTION:
Equations (2.118) are analogous to electrical mesh equations after conversion to velocity. Thus,

[M1s + (fv1 + fv3) + ]V1 (s) − (fv3 + )V2 (s) = F (s)

−(fv3 + )V1 (s) + [M2s + (fv2 + fv3) + ]V2 (s) = 0

Coefficients represent sums of electrical impedance. Mechanical impedances associated with M1
form the first mesh, where impedances between the two masses are common to the two loops.
Impedances associated with M2 form the second mesh. The result is shown in Figure 2.42, where
v1(t) and v2(t) are the velocities of M1 and M2, respectively.

FIGURE 2.42 Series analog of mechanical system of Figure 2.17(a)

Parallel Analog
A system can also be converted to an equivalent parallel analog. Consider the translational mechanical
system shown in Figure 2.43(a), whose equation of motion is given by Eq. (2.175). Kirchhoff's nodal
equation for the simple parallel RLC network shown in Figure 2.43(b) is

(Cs + + )E (s) = I (s)

Ms2 + fvs + K

s

K

s

(K1 + K2)

s

K2

s

K2

s

(K2 + K3)

s

1

R

1

Ls



Comparing Eqs. (2.175) and (2.177), we identify the sum of admittances and draw the circuit shown in
Figure 2.43(c). The conversions are summarized in Figure 2.43(d).

FIGURE 2.43 Development of parallel analog: a. mechanical system; b. desired
electrical representation; c. parallel analog; d. parameters for parallel analog

When we have more than one degree of freedom, the components associated with a motion appear as
parallel electrical elements connected to a node. The components of adjacent motions are drawn as
parallel electrical elements between two corresponding nodes. We demonstrate with an example.

Example 2.25 Converting a Mechanical System to a Parallel Analog
PROBLEM:
Draw a parallel analog for the mechanical system of Figure 2.17(a).

SOLUTION:
Equation (2.176) is also analogous to electrical node equations. Coefficients represent sums of
electrical admittances. Admittances associated with M1 form the elements connected to the first
node, where mechanical admittances between the two masses are common to the two nodes.
Mechanical admittances associated with M2 form the elements connected to the second node. The
result is shown in Figure 2.44, where v1(t) and v2(t) are the velocities of M1 and M2, respectively.

FIGURE 2.44 Parallel analog of mechanical system of Figure 2.17(a)



Skill-Assessment Exercise 2.12
PROBLEM:
Draw a series and parallel analog for the rotational mechanical system of Figure 2.22.

ANSWER:
The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.10 Nonlinearities
The models thus far are developed from systems that can be described approximately by linear, time-
invariant differential equations. An assumption of linearity was implicit in the development of these
models. In this section, we formally define the terms linear and nonlinear and show how to distinguish
between the two. In Section 2.11, we show how to approximate a nonlinear system as a linear system so
that we can use the modeling techniques previously covered in this chapter (Hsu, 1968).

A linear system possesses two properties: superposition and homogeneity. The property of
superposition means that the output response of a system to the sum of inputs is the sum of the
responses to the individual inputs. Thus, if an input of r1(t) yields an output of c1(t) and an input of r2(t)
yields an output of c2(t), then an input of r1(t) + r2(t) yields an output of c1(t) + c2(t). The property of
homogeneity describes the response of the system to a multiplication of the input by a scalar.
Specifically, in a linear system, the property of homogeneity is demonstrated if for an input of r1(t) that
yields an output of c1(t), an input of Ar1(t) yields an output of Ac1(t); that is, multiplication of an input
by a scalar yields a response that is multiplied by the same scalar.

We can visualize linearity as shown in Figure 2.45. Figure 2.45(a) is a linear system where the output is
always one half the input, or f(x) = 0.5x, regardless of the value of x. Thus each of the two properties of
linear systems applies. For example, an input of 1 yields an output of  and an input of 2 yields an
output of 1. Using superposition, an input that is the sum of the original inputs, or 3, should yield an
output that is the sum of the individual outputs, or 1.5. From Figure 2.45(a), an input of 3 does indeed
yield an output of 1.5.

FIGURE 2.45 a. Linear system; b. nonlinear system

To test the property of homogeneity, assume an input of 2, which yields an output of 1. Multiplying this
input by 2 should yield an output of twice as much, or 2. From Figure 2.45(a), an input of 4 does indeed
yield an output of 2. The reader can verify that the properties of linearity certainly do not apply to the
relationship shown in Figure 2.45(b).

Figure 2.46 shows some examples of physical nonlinearities. An electronic amplifier is linear over a
specific range but exhibits the nonlinearity called saturation at high input voltages. A motor that does
not respond at very low input voltages due to frictional forces exhibits a nonlinearity called dead zone.
Gears that do not fit tightly exhibit a nonlinearity called backlash: The input moves over a small range
without the output responding. The reader should verify that the curves shown in Figure 2.46 do not fit

1
2
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the definitions of linearity over their entire range. Another example of a nonlinear subsystem is a phase
detector, used in a phase-locked loop in an FM radio receiver, whose output response is the sine of the
input.

FIGURE 2.46 Some physical nonlinearities

A designer can often make a linear approximation to a nonlinear system. Linear approximations simplify
the analysis and design of a system and are used as long as the results yield a good approximation to
reality. For example, a linear relationship can be established at a point on the nonlinear curve if the
range of input values about that point is small and the origin is translated to that point. Electronic
amplifiers are an example of physical devices that perform linear amplification with small excursions
about a point.

2.11 Linearization
The electrical and mechanical systems covered thus far were assumed to be linear. However, if any
nonlinear components are present, we must linearize the system before we can find the transfer
function. In the last section, we defined and discussed nonlinearities; in this section, we show how to
obtain linear approximations to nonlinear systems in order to obtain transfer functions.

The first step is to recognize the nonlinear component and write the nonlinear differential equation.
When we linearize a nonlinear differential equation, we linearize it for small-signal inputs about the
steady-state solution when the small-signal input is equal to zero. This steady-state solution is called
equilibrium and is selected as the second step in the linearization process. For example, when a
pendulum is at rest, it is at equilibrium. The angular displacement is described by a nonlinear
differential equation, but it can be expressed with a linear differential equation for small excursions
about this equilibrium point.

Next we linearize the nonlinear differential equation, and then we take the Laplace transform of the
linearized differential equation, assuming zero initial conditions. Finally, we separate input and output
variables and form the transfer function. Let us first see how to linearize a function; later, we will apply
the method to the linearization of a differential equation.

If we assume a nonlinear system operating at point A, [x0, f(x0)] in Figure 2.47, small changes in the
input can be related to changes in the output about the point by way of the slope of the curve at the point
A. Thus, if the slope of the curve at point A is ma, then small excursions of the input about point A, δx,
yield small changes in the output, δf(x), related by the slope at point A. Thus,

[f (x) − f (x0)] ≈ ma (x − x0)

from which

δf (x) ≈ maδx

and

f (x) ≈ f (x0) + ma (x − x0) ≈ f (x0) + maδx



This relationship is shown graphically in Figure 2.47, where a new set of axes, δx and δf(x), is created at
the point A, and f(x) is approximately equal to f(x0), the ordinate of the new origin, plus small
excursions, maδx, away from point A. Let us look at an example.

FIGURE 2.47 Linearization about point A
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Example 2.26 Linearizing a Function
PROBLEM:
Linearize f(x) = 5 cos x about x = π/2.

SOLUTION:
We first find that the derivative of f(x) is df/dx = (− 5 sin x). At x = π/2, the derivative is −5. Also
f(x0) = f(π/2) = 5 cos (π/2) = 0. Thus, from Eq. (2.180), the system can be represented as f(x) = − 5
δx for small excursions of x about π/2. The process is shown graphically in Figure 2.48, where the
cosine curve does indeed look like a straight line of slope −5 near π/2.

FIGURE 2.48 Linearization of 5 cos x about x = π/2

The previous discussion can be formalized using the Taylor series expansion, which expresses the value
of a function in terms of the value of that function at a particular point, the excursion away from that
point, and derivatives evaluated at that point. The Taylor series is shown in Eq. (2.181).

f (x) = f (x0) +
∣
∣
∣x=x0

+
∣
∣
∣x=x0

+ ⋯

For small excursions of x from x0, we can neglect higher-order terms. The resulting approximation
yields a straight-line relationship between the change in f(x) and the excursions away from x0.
Neglecting the higher-order terms in Eq. (2.181), we get

f (x) − f (x0) ≈
∣
∣
∣x=x0

(x − x0)

or

δf (x) ≈ m|x=x0
δx

df

dx

(x − x0)

1!

d2f

dx2

(x − x0)2

2!

df

dx



which is a linear relationship between δf(x) and δx for small excursions away from x0. It is interesting to
note that Eqs. (2.182) and (2.183) are identical to Eqs. (2.178) and (2.179), which we derived intuitively.
The following examples illustrate linearization. The first example demonstrates linearization of a
differential equation, and the second example applies linearization to finding a transfer function.
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Example 2.27 Linearizing a Differential Equation
PROBLEM:
Linearize Eq. (2.184) for small excursions about x = π/4.

+ 2 + cos x = 0

SOLUTION:
The presence of the term cos x makes this equation nonlinear. Since we want to linearize the
equation about x = π/4, we let x = δx + π/4, where δx is the small excursion about π/4, and
substitute x into Eq. (2.184):

+ 2 + cos(δx + ) = 0

But

=

and

=

Finally, the term cos (δx + (π/4)) can be linearized with the truncated Taylor series. Substituting
f(x) = cos δx + (π/4), f(x0) = f(π/4) = cos (π/4),and (x − x0) =δx into Eq. (2.182) yields

cos(δx + )− cos( ) =
∣
∣
∣x=

δx = −sin( ) δx

Solving Eq. (2.188) for cos δx + (π/4), we get

cos(δx + ) = cos( )− sin( ) δx = − δx

Substituting Eqs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following linearized
differential equation:

+ 2 − δx = −

This equation can now be solved for δx, from which we can obtain x = δx + (π/4).

Even though the nonlinear Eq. (2.184) is homogeneous, the linearized Eq. (2.190) is not
homogeneous. Eq. (2.190) has a forcing function on its right-hand side. This additional term can be
thought of as an input to a system represented by Eq. (2.184).

Another observation about Eq. (2.190) is the negative sign on the left-hand side. The study of
differential equations tells us that since the roots of the characteristic equation are positive, the
homogeneous solution grows without bound instead of diminishing to zero. Thus, this system,
linearized around x = π/4, is not stable.
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Example 2.28 Transfer Function—Nonlinear Electrical Network
PROBLEM:
Find the transfer function, VL(s)/V(s), for the electrical network shown in Figure 2.49, which
contains a nonlinear resistor whose voltage–current relationship is defined by ir = 2e0.1vr , where ir
and vr are the resistor current and voltage, respectively. Also, v(t) in Figure 2.49 is a small-signal
source.

FIGURE 2.49 Nonlinear electrical network

SOLUTION:
We will use Kirchhoff's voltage law to sum the voltages in the loop to obtain the nonlinear
differential equation, but first we must solve for the voltage across the nonlinear resistor. Taking
the natural log of the resistor's current-voltage relationship, we get vr = 10 ln ir. Applying
Kirchhoff's voltage law around the loop, where ir = i, yields

L + 10 ln i − 20 = v (t)

Next, let us evaluate the equilibrium solution. First, set the small-signal source, v(t), equal to zero.
Now evaluate the steady-state current. With v(t) = 0, the circuit consists of a 20 V battery in series
with the inductor and nonlinear resistor. In the steady state, the voltage across the inductor will be
zero, since vL(t) = Ldi/dt and di/dt is zero in the steady state, given a constant battery source.
Hence, the resistor voltage, vr, is 20 V. Using the characteristics of the resistor, ir = 2e0.1vr , we find
that ir = i = 14.78 amps. This current, i0, is the equilibrium value of the network current. Hence i =
i0 + δi. Substituting this current into Eq. (2.191) yields

L + 10 ln (i0 + δi) − 20 = v (t)

Using Eq. (2.182) to linearize ln (i0 + δi), we get

ln (i0 + δi) − ln i0 =
∣
∣ ∣
∣i=i0

δi =
∣
∣
∣i=i0

δi = δi

or

ln (i0 + δi) = ln + δi

1
2

di

dt
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1
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1
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Substituting into Eq. (2.192), the linearized equation becomes

L + 10 (ln + δi) − 20 = v (t)

Letting L = 1 and i0 = 14.78, the final linearized differential equation is

+ 0.677δi = v (t)

Taking the Laplace transform with zero initial conditions and solving for δi(s), we get

δi (s) =

But the voltage across the inductor about the equilibrium point is

vL (t) = L (i0 + δi) = L

Taking the Laplace transform,

VL (s) = Lsδi (s) = sδi (s)

Substituting Eq. (2.197) into Eq. (2.199) yields

VL (s) = s

from which the final transfer function is

=

for small excursions about i = 14.78 or, equivalently, about v(t) = 0.
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dt
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2
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Skill-Assessment Exercise 2.13
PROBLEM:
Find the linearized transfer function, G(s) = V(s)/I(s), for the electrical network shown in Figure
2.50. The network contains a nonlinear resistor whose voltage–current relationship is defined by 
ir = evr . The current source, i(t), is a small-signal generator.

FIGURE 2.50 Nonlinear electric circuit for Skill-Assessment Exercise 2.13

ANSWER:
G (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

1
s+2

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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Case Studies Antenna Control: Transfer Functions
This chapter showed that physical systems can be modeled mathematically with transfer functions.
Typically, systems are composed of subsystems of different types, such as electrical, mechanical,
and electromechanical.

The first case study uses our ongoing example of the antenna azimuth position control system to
show how to represent each subsystem as a transfer function.

PROBLEM:
Find the transfer function for each subsystem of the antenna azimuth position control system
schematic shown in Appendix A2. Use Configuration 1.

SOLUTION:
First, we identify the individual subsystems for which we must find transfer functions; they are
summarized in Table 2.6. We proceed to find the transfer function for each subsystem.

TABLE 2.6

Subsystems of the antenna azimuth position control system
Subsystem Input Output

Input potentiometer Angular rotation from user, θi(t) Voltage to preamp, vi(t)

Preamp Voltage from potentiometers, ve(t) = vi(t) −
v0(t)

Voltage to power amp, vp(t)

Power amp Voltage from preamp, vp(t) Voltage to motor, ea(t)

Motor Voltage from power amp, ea(t) Angular rotation to load,
θ0(t)

Output
potentiometer

Angular rotation from load, θ0(t) Voltage to preamp, v0(t)

Input Potentiometer; Output Potentiometer
Since the input and output potentiometers are configured in the same way, their transfer functions
will be the same. We neglect the dynamics for the potentiometers and simply find the relationship
between the output voltage and the input angular displacement. In the center position the output
voltage is zero. Five turns toward either the positive 10 volts or the negative 10 volts yields a voltage
change of 10 volts. Thus, the transfer function, Vi(s)/θi(s), for the potentiometers is found by
dividing the voltage change by the angular displacement:

= =

Preamplifier; Power Amplifier
The transfer functions of the amplifiers are given in the problem statement. Two phenomena are
neglected. First, we assume that saturation is never reached. Second, the dynamics of the
preamplifier are neglected, since its speed of response is typically much greater than that of the
power amplifier. The transfer functions of both amplifiers are given in the problem statement and
are the ratio of the Laplace transforms of the output voltage divided by the input voltage. Hence,
for the preamplifier,

Vi (s)

θi (s)

10

10π

1

π
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= K

and for the power amplifier,

=

Motor and Load
The motor and its load are next. The transfer function relating the armature displacement to the
armature voltage is given in Eq. (2.153). The equivalent inertia, Jm, is

Jm = Ja + JL( )
2

= 0.02 + 1 = 0.03

where JL = 1 is the load inertia at θ0. The equivalent viscous damping, Dm, at the armature is

Dm = Da + DL( )
2

= 0.01 + 1 = 0.02

where DL is the load viscous damping at θ0. From the problem statement, Kt = 0.5 N-m/A, Kb =
0.5 V-s/rad, and the armature resistance Ra = 8 ohms. These quantities along with Jm and Dm are
substituted into Eq. (2.153), yielding the transfer function of the motor from the armature voltage
to the armature displacement, or

= =

To complete the transfer function of the motor, we multiply by the gear ratio to arrive at the
transfer function relating load displacement to armature voltage:

= 0.1 =

The results are summarized in the block diagram and table of block diagram parameters
(Configuration 1) shown in Appendix A2. An animation PowerPoint presentation (PPT)
demonstrating this system is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See Antenna (Ch. 2).

CHALLENGE:
We now give you a problem to test your knowledge of this chapter's objectives: Referring to the
antenna azimuth position control system schematic shown in Appendix A2, evaluate the transfer
function of each subsystem. Use Configuration 2. Record your results in the table of block diagram
parameters shown in Appendix A2 for use in subsequent chapters' case study challenges.

Transfer Function of a Human Leg
In this case study we find the transfer function of a biological system. The system is a human leg,
which pivots from the hip joint. In this problem, the component of weight is nonlinear, so the
system requires linearization before the evaluation of the transfer function.

PROBLEM:

Vp (s)

Ve (s)

Ea (s)

Vp (s)

100

s + 100

25

250

1

100

25

250

1

100

θm (s)

Ea (s)

Kt/ (RaJm)

s [s + (Dm + )]1
Jm

KtKb

Ra

2.083

s (s + 1.71)

θ0 (s)

Ea (s)

θm (s)

Ea (s)

0.2083

s (s + 1.71)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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The transfer function of a human leg relates the output angular rotation about the hip joint to the
input torque supplied by the leg muscle. A simplified model for the leg is shown in Figure 2.51. The
model assumes an applied muscular torque, Tm(t), viscous damping, D, at the hip joint, and
inertia, J, around the hip joint.15 Also, a component of the weight of the leg, Mg, where M is the
mass of the leg and g is the acceleration due to gravity, creates a nonlinear torque. If we assume
that the leg is of uniform density, the weight can be applied at L/2, where L is the length of the leg
(Milsum, 1966). Do the following:

a. Evaluate the nonlinear torque.

b. Find the transfer function, θ(s)/Tm(s), for small angles of rotation, where θ(s) is the angular
rotation of the leg about the hip joint.

FIGURE 2.51 Cylinder model of a human leg

SOLUTION:
First, calculate the torque due to the weight. The total weight of the leg is Mg acting vertically. The
component of the weight in the direction of rotation is Mg sin θ. This force is applied at a distance
L/2 from the hip joint. Hence the torque in the direction of rotation, TW(t), is Mg (L/2) sin θ. Next,
draw a free-body diagram of the leg, showing the applied torque, Tm(t), the torque due to the
weight, TW(t), and the opposing torques due to inertia and viscous damping (see Figure 2.52).

FIGURE 2.52 Free-body diagram of leg model

Summing torques, we get

J + D + Mg sin θ = Tm (t)

We linearize the system about the equilibrium point, θ = 0, the vertical position of the leg. Using
Eq. (2.182), we get

sinθ − sin0 = (cos0) δ θ

d2θ

dt2

dθ

dt

L

2
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from which, sin θ = δθ. Also, Jd2θ/dt2 = Jd2δθ/dt2 and Ddθ/dt = Ddδθ/dt. Hence Eq. (2.212)
becomes

J + D + Mg δθ = Tm (t)

Notice that the torque due to the weight approximates a spring torque on the leg. Taking the
Laplace transform with zero initial conditions yields

(Js2 + Ds + Mg ) δθ (s) = Tm (s)

from which the transfer function is

=

for small excursions about the equilibrium point, θ = 0.

CHALLENGE:
We now introduce a case study challenge to test your knowledge of this chapter's objectives.
Although the physical system is different from a human leg, the problem demonstrates the same
principles: linearization followed by transfer function evaluation.

Given the nonlinear electrical network shown in Figure 2.53, find the transfer function relating the
output nonlinear resistor voltage, Vr(s), to the input source voltage, V(s).

FIGURE 2.53 Nonlinear electric circuit

Summary
In this chapter, we discussed how to find a mathematical model, called a transfer function, for linear,
time-invariant electrical, mechanical, and electromechanical systems. The transfer function is defined as
G(s) = C(s)/R(s), or the ratio of the Laplace transform of the output to the Laplace transform of the
input. This relationship is algebraic and also adapts itself to modeling interconnected subsystems.

We realize that the physical world consists of more systems than we illustrated in this chapter. For
example, we could apply transfer function modeling to hydraulic, pneumatic, heat, and even economic
systems. Of course, we must assume these systems to be linear, or make linear approximations, in order
to use this modeling technique.

Now that we have our transfer function, we can evaluate its response to a specified input. System
response will be covered in Chapter 4. For those pursuing the state-space approach, we continue our
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discussion of modeling in Chapter 3, where we use the time domain rather than the frequency domain.

Review Questions
1. What mathematical model permits easy interconnection of physical systems?

2. To what classification of systems can the transfer function be best applied?

3. What transformation turns the solution of differential equations into algebraic manipulations?

4. Define the transfer function.

5. What assumption is made concerning initial conditions when dealing with transfer functions?

6. What do we call the mechanical equations written in order to evaluate the transfer function?

7. If we understand the form the mechanical equations take, what step do we avoid in evaluating the
transfer function?

8. Why do transfer functions for mechanical networks look identical to transfer functions for electrical
networks?

9. What function do gears perform?

10. What are the component parts of the mechanical constants of a motor's transfer function?

11. The motor's transfer function relates armature displacement to armature voltage. How can the
transfer function that relates load displacement and armature voltage be determined?

12. Summarize the steps taken to linearize a nonlinear system.

Cyber Exploration Laboratory

EXPERIMENT 2.1
Objectives
To learn to use MATLAB to (1) generate polynomials, (2) manipulate polynomials, (3) generate transfer
functions, (4) manipulate transfer functions, and (5) perform partial-fraction expansions.

Minimum Required Software Packages
MATLAB and the Control System Toolbox

Prelab

1. Calculate the following by hand or with a calculator:

a. The roots of P1 = s6 + 7s5 + 2s4 + 9s3 + 10s2 + 12s + 15

b. The roots of P2 = s6 + 9s5 + 8s4 + 9s3 + 12s2 + 15s + 20

c. P3 = P1 + P2; P4 = P1 − P2; P5 = P1P2

2. Calculate by hand or with a calculator the polynomial

P6 = (s + 7) (s + 8) (s + 3) (s + 5) (s + 9) (s + 10)

3. Calculate by hand or with a calculator the following transfer functions:

a. G1 (s) = , represented as a numerator polynomial divided by a

denominator polynomial.

b. G2 (s) = , expressed as factors in the numerator divided by
factors in the denominator, similar to the form of G1(s) in Prelab 3a.

20(s+2)(s+3)(s+6)(s+8)

s(s+7)(s+9)(s+10)(s+15)

s4+17s3+99s2+223s+140
s5+32s4+363s3+2092s2+5052s+4320



c. G3(s) = G1(s) + G2(s); G4(s) = G1(s) − G2(s); G5(s) = G1(s) G2(s) expressed as factors divided by
factors and expressed as polynomials divided by polynomials.

4. Calculate by hand or with a calculator the partial-fraction expansion of the following transfer
functions:

a. G6 =

b. G7 =

c. G8 =

Lab

1. Use MATLAB to find P3, P4, and P5 in Prelab 1.

2. Use only one MATLAB command to find P6 in Prelab 2.

3. Use only two MATLAB commands to find G1(s) in Prelab 3a represented as a polynomial divided by
a polynomial.

4. Use only two MATLAB commands to find G2(s) expressed as factors in the numerator divided by
factors in the denominator.

5. Using various combinations of G1(s) and G2(s), find G3(s), G4(s), and G5(s). Various combinations
implies mixing and matching G1(s) and G2(s) expressed as factors and polynomials. For example, in
finding G3(s), G1(s) can be expressed in factored form and G2(s) can be expressed in polynomial
form. Another combination is G1(s) and G2(s) both expressed as polynomials. Still another
combination is G1(s)and G2(s) both expressed in factored form.

6. Use MATLAB to evaluate the partial fraction expansions shown in Prelab 4.

Postlab

1. Discuss your findings for Lab 5. What can you conclude?

2. Discuss the use of MATLAB to manipulate transfer functions and polynomials. Discuss any
shortcomings in using MATLAB to evaluate partial fraction expansions.

EXPERIMENT 2.2
Objectives
To learn to use MATLAB and the Symbolic Math Toolbox to (1) find Laplace transforms for time
functions, (2) find time functions from Laplace transforms, (3) create LTI transfer functions from
symbolic transfer functions, and (4) perform solutions of symbolic simultaneous equations.

Minimum Required Software Packages
MATLAB, the Symbolic Math Toolbox, and the Control System Toolbox

Prelab

1. Using a hand calculation, find the Laplace transform of:

f (t) = 0.0075 − 0.00034e−2.5tcos (22t) + 0.087e−2.5tsin (22t) − 0.0072e−8t

2. Using a hand calculation, find the inverse Laplace transform of

5(s+2)

s(s2+8s+15)

5(s+2)

s(s2+6s+9)

5(s+2)

s(s2+6s+34)



F (s) =

3. Use a hand calculation to solve the circuit for the Laplace transforms of the loop currents shown in
Figure 2.54.

FIGURE 2.54

Lab

1. Use MATLAB and the Symbolic Math Toolbox to

a. Generate symbolically the time function f(t) shown in Prelab 1.

b. Generate symbolically F(s) shown in Prelab 2. Obtain your result symbolically in both factored
and polynomial forms.

c. Find the Laplace transform of f(t) shown in Prelab 1.

d. Find the inverse Laplace transform of F(s) shown in Prelab 2.

e. Generate an LTI transfer function for your symbolic representation of F(s) in Prelab 2 in both
polynomial form and factored form. Start with the F(s) you generated symbolically.

f. Solve for the Laplace transforms of the loop currents in Prelab 3.

Postlab

1. Discuss the advantages and disadvantages between the Symbolic Math Toolbox and MATLAB alone
to convert a transfer function from factored form to polynomial form and vice versa.

2. Discuss the advantages and disadvantages of using the Symbolic Math Toolbox to generate LTI
transfer functions.

3. Discuss the advantages of using the Symbolic Math Toolbox to solve simultaneous equations of the
type generated by the electrical network in Prelab 3. Is it possible to solve the equations via
MATLAB alone? Explain.

4. Discuss any other observations you had using the Symbolic Math Toolbox.

EXPERIMENT 2.3
Objectives
To learn to use LabVIEW to generate and manipulate polynomials and transfer functions.

Minimum Required Software Packages
LabVIEW and the LabVIEW Control Design and Simulation Module.

2 (s + 3) (s + 5) (s + 7)

s (s + 8) (s2 + 10s + 100)



Prelab

1. Study Appendix D, Sections D.1 through Section D.4, Example D.1.

2. Perform by hand the calculations stated in Prelab 1 of Experiment 2.1.

3. Find by a hand calculation the polynomial whose roots are: −7, − 8, − 3, − 5,−9, and − 10.

4. Perform by hand a partial-fraction expansion of G(s)= .

5. Find by a hand calculation G1(s) + G2(s), G1(s) − G2(s), and G1(s)G2(s), where 
G1(s)= and G2(s)= .

Lab

1. Open the LabVIEW functions palette and select the Mathematics/Polynomial palette.

2. Generate the polynomials enumerated in Prelab 1a and lb of Experiment 2.1.

3. Generate the polynomial operations stated in Prelab 1c of Experiment 2.1.

4. Generate a polynomial whose roots are those stated in Prelab 3 of this experiment.

5. Generate the partial-fraction expansion of the transfer function given in Prelab 4 of this experiment.

6. Using the Control Design and Simulation/Control Design/Model Construction palette,
construct the two transfer functions enumerated in Prelab 5.

7. Using the Control Design and Simulation/Control Design/Model Interconnection
palette, display the results of the mathematical operations enumerated in Prelab 5 of this
experiment.

Postlab

1. Compare the polynomial operations obtained in Lab 3 to those obtained in Prelab 2.

2. Compare the polynomial displayed in Lab 4 with that calculated in Prelab 3.

3. Compare the partial-fraction expansion obtained in Lab 5 with that calculated in Prelab 4.

4. Compare the results of the mathematical operations found in Lab 7 to those calculated in Prelab 5.

Hardware Interface Laboratory
Note: Before performing experiments in this section, please study Appendix D (LabVIEW
Tutorial), including the section discussing myDAQ. When an experiment indicates a
provided file, the file is obtained at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

EXPERIMENT 2.4 Programming with LabVIEW Part 1
Objectives

1. To learn how to program LabVIEW, Part 1

2. To learn how to write basic LabVIEW programs and understand LabVIEW flow

Material Required
Computer with LabVIEW Installed

Prelab
Go to the website http://www.learnni.com/getting-started/. Complete modules 0-7.

Lab

5s+10
s3+8s2+15s

1
s2+s+2

s+1
s2+4s+3

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Hardware_Interface_Laboratory_Files_for_Chapter_2.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


1. Write a LabVIEW program that executes an equivalent of the following C-like code, where x is an
input and y is an output (Formula Nodes are not allowed):

if(abs(x)< 0.1)
          y = 1;
else
          if(x>=0)
       y = 0;
          else
       y = 2;

Run your program for the following inputs: x = 0.05, −0.05, 1, −1.

2. Write a LabVIEW program that receives three colors representing a resistor's value and returns the
numeric resistor value in ohms. Your interface should be similar to the one shown in Figure 2.55.
The third band should include silver and gold colors.

FIGURE 2.55

Run your program at least for the following inputs:

Red Red Black

Brown Black Orange

Orange White Gold

EXPERIMENT 2.5 Programming with LabVIEW Part 2
Objectives

1. To learn how to program LabVIEW, Part 2

2. To learn how to use loops, do basic math inside loops, and graph numerical information using
LabVIEW

Material Required
Computer with LabVIEW Installed

Prelab
Go to the website http://www.learnni.com/getting-started/. Complete modules 8-10.



Lab

1. It is well known that 1 + x + x2 + x3 + ⋯ = when ∣∣x∣∣ < 1.

Write a LabVIEW program that takes as an input a value for x, and a number of iterations. The
program will use a loop to calculate the sum of the geometric series for the specified number of
operations. It will also calculate the closed-form expression for the series. The program will display
the two results, and will also display the absolute error of the difference.

Demonstrate your program with x = 0.5 and 3, 10, and 200 iterations.

2. Write a LabVIEW program that generates a 50% duty-cycle square-wave signal between 0 and Xmax
volts, where Xmax < 10 V, with a nonzero variable frequency. The amplitude and frequency will be
inputs. Display the waveform on a waveform chart, which will be an output. In this part you are not
allowed to use the LabVIEW-provided function generation blocks.

Demonstrate this program for amplitudes of 1, 5, and 10 V and for 1 Hz and 5 Hz.

EXPERIMENT 2.6 MyDAQ Programming
Objectives
To become familiar with the data acquisition and signal generation capabilities of myDAQ

Material Required
Computer with LabVIEW installed, and myDAQ

Files Provided at www.wiley.com/go/Nise/ControlSystemsEngineering8e
Battery Meter.ctl

Prelab
Go to the website https://decibel.ni.com/content/docs/DOC-11624. Go over Unit 4—DAQ: Lesson 1.
Then go over the measuring voltage tutorial in http://zone.ni.com/devzone/cda/epd/p/id/6436.

Lab

1. Write a battery-tester program using LabVIEW and myDAQ as an acquisition device. The battery
tester should work for three nominal values of batteries: 1.5 V, 6 V, and 9 V. The batteries are
considered dead for voltage values 20% or under the nominal. Between 20% and the nominal value
the batteries are in a warning area, and for values above the nominal the batteries are OK. Your
interface should be similar to the one shown Figure 2.56. A custom control accepting inputs from 0
to 120 has been created under the name Battery Meter.ctl.

1
1−x

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 2.56

2. Use the LabVIEW program that you wrote in Experiment 2.5 to generate a 50% duty-cycle square-
wave signal. Output your signal through one of the myDAQ's analog channels and read the signal
using the myDAQ oscilloscope function (available from myDAQ file: NI ELVISmx Instrument
Launcher) to verify the generated signal. Print two examples using the scope's automatic
measurements.
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Notes
1 The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge if 

∫
∞

0−
|f (t)| e−σ1tdt < ∞. If |f (t)| < Meσ2t, 0 < t < ∞, the integral will converge if ∞ > σ1 > σ2. We



call σ2 the abscissa of convergence, and it is the smallest value of σ, where s = σ + jω, for which the
integral exists.

2 Passive means that there is no internal source of energy.

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.

4 See Appendix G (Section G.4) at www.wiley.com/go/Nise/ControlSystemsEngineering8e for Cramer's
rule.

5 In general, admittance is complex. The real part is called conductance and the imaginary part is called
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real
quantity results. The reciprocal of resistance is called conductance.

6 The concept of loading is explained further in Chapter 5.

7 Notice that the impedance column of TABLE 2.4 is not a direct analogy to the impedance column of
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by
defining mechanical impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient
definition for writing the equations of motion in terms of displacement, rather than velocity. The
alternative, however, is available.

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, fv1
and fv2 are not Coulomb friction, but arise because of a viscous interface.

9 In this case the parameter is referred to as a distributed parameter.

10 The parameter is now referred to as a lumped parameter.

11 This is equivalent to saying that the gears have negligible inertia and damping.

12 See Appendix I at www.wiley.com/go/Nise/ControlSystemsEngineering8e for a derivation of this
schematic and its parameters.

13 The units for the electrical constants are Kt = N-m-A (newton-meters/ampere), and Kb = V-s/rad
(volt-seconds/radian).

14 If the values of the mechanical constants are not known, motor constants can be determined through
laboratory testing using transient response or frequency response data. The concept of transient
response is covered in Chapter 4; frequency response is covered in Chapter 10.

15 For emphasis, J is not around the center of mass, as we previously assumed for inertia in mechanical
rotation.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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Chapter 3 Problems
1. Write a state-space representation for the system in Figure P3.1. Assume
that the system's output is vo(t). [Section: 3.4]

FIGURE P3.1

2. For the circuit of Figure P3.2, the output is across the 2Ω resistor. Find a
state-space representation. [Section: 3.4]

FIGURE P3.2

3. Find a state-space representation for the system in Figure P3.3. Assume
the output is x1(t). [Section: 3.4]



FIGURE P3.3

4. Find a state-space representation for the system in Figure P3.4. Assume
the output is x2(t). [Section: 3.4]

FIGURE P3.4

5. Assuming θ1(t) is the output of the rotational system of Figure P3.5, find a
state-space representation. [Section: 3.4]



FIGURE P3.5

 6. Represent the system shown in Figure P3.6 in state space where the
output is θL(t). [Section: 3.4]

FIGURE P3.6

Check Answer!

 7. Show that the system of Figure 3.7 in the text yields a fourth-order
transfer function if we relate the displacement of either mass to the applied
force, and a third-order one if we relate the velocity of either mass to the
applied force. [Section: 3.4]

Check Answer!

8. For each of the system of Figure P3.7 find a state-space representation in
phase-variable form. [Section: 3.5]



FIGURE P3.7

 9. Repeat Problem 8 using MATLAB. [Section: 3.5]

10. Express each one of the systems in Figure P3.8 in state space phase-
variable form. [Section: 3.5]

FIGURE P3.8

  11. Repeat Problem 10 using MATLAB. [Section: 3.5]

Check Answer!

12. Find a vector-matrix state-space representation for the transfer function.
[Section: 3.5]

T (s) =

13. For each one of the following systems in state space, find the
corresponding transfer function G (s) = Y (s) /R (s). [Section: 3.6]

s(s − 3)

(s + 1) (s2 + 3s + 10)



a. 
⋅x =

⎡
⎢
⎣

0 1 0

0 0 1

−1 −3 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

23

⎤
⎥
⎦
r

y = [ 1 0 0 ] x

b. 
⋅x =

⎡
⎢
⎣

−1 2 −6

−4 −5 0

3 −3 7

⎤
⎥
⎦

x +
⎡
⎢
⎣

5

1

2

⎤
⎥
⎦
r

y = [ 2 0 2 ] x

c. 
⋅x =

⎡
⎢
⎣

−2 8 7

5 −4 2

−9 −3 −1

⎤
⎥
⎦

x +
⎡
⎢
⎣

1

−5

−1

⎤
⎥
⎦
r

y = [ 7 2 1 ] x

14.  Use MATLAB to find the transfer function, G(s)=Y(s)/R(s),
for each of the following systems represented in state space: [Section:

3.6]

a. 
⋅x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 1 5 0

0 0 1 0

0 0 0 1

−7 −9 −2 −3

⎤
⎥ ⎥ ⎥ ⎥
⎦

x +

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

5

8

2

⎤
⎥ ⎥ ⎥ ⎥
⎦

r

y = [ 1 3 6 6 ] x

b. 
⋅x =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

3 1 0 4 −2

−3 5 −5 2 −1

0 1 −1 2 8

−7 6 −3 −4 0

−6 0 4 −3 1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

x +

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

2

7

8

5

4

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

r

y = [ 1 −2 −9 7 6 ] x

 15. Repeat Problem 14 using MATLAB, the Symbolic Math Toolbox,
and Eq. (3.73). [Section: 3.6]

 16. A missile in flight, as shown in Figure P3.9, is subject to four forces:
thrust, lift, drag, and gravity. The missile flies at an angle of attack, α, from its
longitudinal axis, creating lift. For steering, the body angle from vertical, ϕ, is
controlled by rotating the engine at the tail. The transfer function relating the
body angle, ϕ, to the angular displacement, δ, of the engine is of the form



=

FIGURE P3.9 Missile

Represent the missile steering control in state space. [Section: 3.5]

Check Answer!

 17. Given the dc servomotor and load shown in Figure P3.10, represent
the system in state space, where the state variables are the armature current,
ia, load displacement, θL, and load angular velocity, ωL. Assume that the
output is the angular displacement of the armature. Do not neglect armature
inductance. [Section: 3.4]

Φ (s)

δ (s)

Kas + Kb

K3s3 + K2s2 + K1s + K0



FIGURE P3.10 Motor and load

Check Answer!

18. Image-based homing for robots can be implemented by generating
heading command inputs to a steering system based on the following
guidance algorithm. Suppose the robot shown in Figure P3.11(a) is to go from
point R to a target, point T, as shown in Figure P3.11(b). If Rx, Ry, and Rz are
vectors from the robot to each landmark, X, Y, Z, respectively, and Tx, Ty,
and Tz are vectors from the target to each landmark, respectively, then
heading commands would drive the robot to minimize 
Rx − Tx, Ry − Ty, and Rz − Tz simultaneously, since the differences will
be zero when the robot arrives at the target (Hong, 1992). If Figure P3.11(c)
represents the control system that steers the robot, represent each block—the
controller, wheels, and vehicle—in state space. An animation PowerPoint
presentation (PPT) demonstrating this system is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See Robot. [Section:
3.5]

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE P3.11 a. Robot with television imaging system;1 b. vector
diagram showing concept behind image-based homing;1 c.
heading control system

19. Modern robotic manipulators that act directly upon their target
environments must be controlled so that impact forces as well as steady-state
forces do not damage the targets. At the same time, the manipulator must
provide sufficient force to perform the task. In order to develop a control
system to regulate these forces, the robotic manipulator and target
environment must be modeled. Assuming the model shown in Figure P3.12,
represent in state space the manipulator and its environment under the
following conditions (Chiu, 1997). [Section: 3.5]

FIGURE P3.12 Robotic manipulator and target environment2



a. The manipulator is not in contact with its target environment.

b. The manipulator is in constant contact with its target environment.

20. In this chapter, we described the state-space representation of single-
input, single-output systems. In general, systems can have multiple inputs
and multiple outputs. An autopilot is to be designed for a submarine as
shown in Figure P3.13 to maintain a constant depth under severe wave
disturbances. We will see that this system has two inputs and two outputs
and thus the scaler u becomes a vector, u, and the scaler y becomes a vector,
y, in the state equations.

FIGURE P3.133

It has been shown that the system's linearized dynamics under neutral
buoyancy and at a given constant speed are given by (Liceaga-Castro,
2009):

⋅x = Ax + Bu

y = Cx

where



x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

w

q

z

θ

⎤
⎥ ⎥ ⎥ ⎥
⎦

; y = [ z
θ
] ; u = [ δB

δS
]

A =

⎡
⎢ ⎢ ⎢ ⎢
⎣

−0.038 0.896 0 0.0015

0.0017 −0.092 0 −0.0056

1 0 0 −3.086

0 1 0 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

;

B =

⎡
⎢ ⎢ ⎢ ⎢
⎣

−0.0075 −0.023

0.0017 −0.0022

0 0

0 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

; C = [ 0 0 1 0

0 0 0 1
]

and where

w = the heave velocity

q = the pitch rate

z = the submarine depth

θ = the pitch angle

δB = the bow hydroplane angle

δS = the stern hydroplane angle

Since this system has two inputs and two outputs, four transfer functions are
possible.

a.  Use MATLAB to calculate the system's matrix transfer
function.

b. Using the results from Part a, write the transfer function 
, , , and .

21. Show that the following three state-space representations will result in
the same transfer function. Thus, in general, the state-space representation of
a system is not unique as will be discussed in Chapter 5.

a. 
⋅x = −10x + 4u

y = 9x

z(s)

δB(s)

z(s)

δS(s)

θ(s)

δB(s)

θ(s)

δS(s)



b. 

[
⋅x1
⋅x2

] = [ −10 0

0 −1
] [ x1

x2

] + [ 4

1
]u

y = [ 9 0 ] [ x1

x2

]

c. 

[
⋅x1
⋅x2

] = [ −10 0

0 −1
] [ x1

x2

] + [ 4

0
]u

y = [ 9 4 ] [ x1

x2

]

22. Figure P3.14 shows a schematic description of the global carbon cycle
(Li,). In the figure, mA(t) represents the amount of carbon in gigatons (GtC)
present in the atmosphere of earth; mV(t) the amount in vegetation; ms(t) the
amount in soil; mSO(t) the amount in surface ocean; and mIDO(t) the amount
in intermediate and deep-ocean reservoirs. Let uE(t) stand for the human
generated CO2 emissions (GtC/yr). From the figure, the atmospheric mass
balance in the atmosphere can be expressed as:

(t) = uE(t) − (kO1 + kL1)mA(t) + kL2mV (t) + kO2mSO(t) + kL4mS(t)

where the ks are exchange coefficients (yr−1).

a. Write the remaining reservoir mass balances. Namely, write equations
for , , , and

b. Express the system in state-space form.

dmA

dt

dmSO(t)

dt

dmIDO(t)

dt

dmV (t)

dt

dmS(t)

dt



FIGURE P3.14 Global carbon cycle4

23. Given the photovoltaic system described in Problem 49 in Chapter 2
(Agee, 2012) and defining the following state variables, system input and
output as y = x1 = θm,x2 = θ̇m, x3 = ia, and u = ea, write a state-space
representation of the system in the form ⋅x = Ax + Bu,y = Cx.

 24. A single-pole oil cylinder valve contains a spool that regulates
hydraulic pressure, which is then applied to a piston that drives a load. The
transfer function relating piston displacement, Xp(s) to spool displacement
from equilibrium, Xv(s), is given by (Qu, 2010):

G(s) = =

where A1 = effective area of a the valve's chamber, Kq =  rate of change
of the load flow rate with a change in displacement, and ωh =  the natural
frequency of the hydraulic system. Find the state-space representation of the
system, where the state variables are the phase variables associated with the
piston.

Check Answer!

Xp(s)

Xv(s)

Kqω
2
h/A1

s(s2 + 2ςωhs + ω2
h)



25. Figure P3.15 shows a free-body diagram of an inverted pendulum,
mounted on a cart with a mass, M. The pendulum has a point mass, m,
concentrated at the upper end of a rod with zero mass, a length, l, and a
frictionless hinge. A motor drives the cart, applying a horizontal force, u(t). A
gravity force, mg, acts on m at all times. The pendulum angle relative to the
y-axis, θ, its angular speed, θ̇ ', the horizontal position of the cart, x, and its
speed, x', were selected to be the state variables. The state-space equations
derived were heavily nonlinear.5 They were then linearized around the
stationary point, x0 = 0 and u0 = 0, and manipulated to yield the following
open-loop model written in perturbation form:

δx = Aδx + Bδu

However, since x0 = 0 and u0 = 0, then let: x = x0 + δx =δx and 
u = u0 + δu = δu. Thus the state equation may be rewritten as (Prasad,
2012):

⋅x = Ax + Bu

where

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0

0 0 0

0 0 0 1

− 0 0 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

and B =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0

0

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Assuming the output to be the horizontal position of 
m = xm = x + l sin θ = x + lθ for a small angle, θ, the output equation
becomes:

y = lθ + x = Cx =

⎡
⎢ ⎢ ⎢ ⎢
⎣

l 0 1 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢
⎣

θ
⋅
θ
x

⋅x

⎤
⎥ ⎥ ⎥ ⎥
⎦

 Given that: M = 2.4 kg, m = 0.23 kg, l = 0.36 m, g = 9.81 m/s2,
use MATLAB to find the transfer function, G(s)= Y(s)/U(s)= Xm(s)/U(s).

d

dt

(M+m)g

Ml

mg

M

−1
Ml

1
M



FIGURE P3.15 Motor-driven inverted pendulum cart system6

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
26. Control of HIV/AIDS. Problem 51 in Chapter 2 introduced a model for
HIV infection. If retroviral drugs, RTIs and PIs as discussed in Problem 17 in
Chapter 1, are used, the model is modified as follows (Craig, 2004):

= s − dT − (1 − u1) βTv

= (1 − u1) βTv − μT ∗

= (1 − u2) kT ∗ − cv

where 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 represent the effectiveness of the RTI and PI
medication, respectively.

a. Obtain a state-space representation of the HIV/AIDS model by
linearizing the equations about the

(T0, T ∗
0 , v0) = ( , − , − )

equilibrium with u10 = u20 = 0. This equilibrium represents the
asymptomatic HIV-infected patient. Note that each one of the above
equations is of the form ⋅xi = fi (xi, u1, u2) , i = 1, 2, 3.

b. If Matrices A and B are given by

dT

dt

dT ∗

dt

dv

dt

cμ

βk

s

μ

cd

βk

sk

cμ

d

β



A =

⎡
⎢ ⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥ ⎥
⎦
T0,T ∗

0 ,v0

; B =

⎡
⎢ ⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥ ⎥
⎦
T0,T ∗

0 ,v0

and we are interested in the number of free HIV viruses as the system's
output,

C = [ 0 0 1 ]

show that

A =
⎡
⎢
⎣

− (d + βv0) 0 −βT0

βv0 −μ βT0

0 k −c

⎤
⎥
⎦

; B =
⎡
⎢
⎣

βT0v0 0

−βT0v0 0

0 −kT ∗
0

⎤
⎥
⎦

c. Typical parameter values and descriptions for the HIV/AIDS model
are shown in the following table. Substitute the values from the table
into your model and write as

⋅x = Ax + Bu

y = Cx

Table of HIV/AIDS Model Parameters7

t Time days
d Death of uninfected T cells 0.02/day
k Rate of free viruses produced per infected T

cell
100 counts/cell

s Source term for uninfected T cells 10/mm3/day

β Infectivity rate of free virus particles 2.4 × 10−5/mm3/day

c Death rate of viruses 2.4/day
μ Death rate of infected T cells 0.24/day

27. Hybrid vehicle. For Problem 18 in Chapter 1 we developed the
functional block diagrams for the cruise control of serial, parallel, and split-
power hybrid electric vehicles (HEV). Those diagrams showed that the engine
or electric motor or both may propel the vehicle. When electric motors are

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f3

∂x1

∂f3

∂x2

∂f3

∂x3

∂f1

∂u1

∂f1

∂u2

∂f2

∂u1

∂f2

∂u2

∂f3

∂u1

∂f3

∂u2



the sole providers of the motive force, the forward paths of all HEV
topologies are similar. In general, such a forward path can be represented
(Preitl, 2007) by a block diagram similar to the one of Figure P3.16.

FIGURE P3.16 Block diagram representation of an HEV forward
path8

Assume the motor to be an armature-controlled dc motor. In this diagram,
KA is the power amplifier gain; Ge(s) is the transfer function of the motor
electric circuit and consists of a series inductor and resistor, La and Ra,
respectively; Kt is the motor torque constant; Jtot, is the sum of the motor
inertia, Jm, the inertias of the vehicle, Jveh, and the two driven wheels, Jw,
both of which are reflected to the motor shaft; kf is the coefficient of viscous
friction; and kb is the back emf constant.

The input variables are uc(t), the command voltage from the electronic
control unit and Tc(t), the load torque. The output variables in this block
diagram are the motor angular speed, ω(t), and its armature current, Ia(t).

a. Write the basic time-domain equations that characterize the
relationships between the state, input, and output variables for the block
diagram of Figure P3.16, given that the state variables are the motor
armature current, Ia(t), and angular speed, ω(t).

b. Write the resulting state-space equations and then represent them in
matrix form. Regard the load torque Tc(t) as an extra input to the
system. Thus, in your resulting state-space representation, the system
will have two inputs and two outputs.

28. Parabolic trough collector. A transfer function model from fluid flow
to fluid temperature for a parabolic trough collector was introduced in
Problem 53, Chapter 2. A more detailed model for the response of this system
is given under specific operation conditions (Camacho, 2012) by:



(s) = e−39s

Find an appropriate state-space representation for the system.
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Chapter 3 Readings

 This chapter covers only state-space methods.

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Find a mathematical model, called a state-space representation, for a linear,
time-invariant system (Sections 3.1–3.3)

Model electrical and mechanical systems in state space (Section 3.4)

Convert a transfer function to state space (Section 3.5)

Convert a state-space representation to a transfer function (Section 3.6)

Linearize a state-space representation (Section 3.7)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown in Appendix A2, you
will be able to find the state-space representation of each subsystem.

Given a description of the way a pharmaceutical drug flows through a human
being, you will be able to find the state-space representation to determine drug
concentrations in specified compartmentalized blocks of the process and of the
human body. You will also be able to apply the same concepts to an aquifer to
find water level.

3.1 Introduction
Two approaches are available for the analysis and design of feedback control systems.
The first, which we began to study in Chapter 2, is known as the classical, or
frequency-domain, technique. This approach is based on converting a system's
differential equation to a transfer function, thus generating a mathematical model of
the system that algebraically relates a representation of the output to a
representation of the input. Replacing a differential equation with an algebraic
equation not only simplifies the representation of individual subsystems but also
simplifies modeling interconnected subsystems.

The primary disadvantage of the classical approach is its limited applicability: It can
be applied only to linear, time-invariant systems or systems that can be approximated
as such.

A major advantage of frequency-domain techniques is that they rapidly provide
stability and transient response information. Thus, we can immediately see the
effects of varying system parameters until an acceptable design is met.

With the arrival of space exploration, requirements for control systems increased in
scope. Modeling systems by using linear, time-invariant differential equations and
subsequent transfer functions became inadequate. The state-space approach (also
referred to as the modern, or time-domain, approach) is a unified method for
modeling, analyzing, and designing a wide range of systems. For example, the state-
space approach can be used to represent nonlinear systems that have backlash,
saturation, and dead zone. Also, it can handle, conveniently, systems with nonzero
initial conditions. Time-varying systems (e.g., missiles with varying fuel levels or lift
in an aircraft flying through a wide range of altitudes) can be represented in state
space. Many systems do not have just a single input and a single output. Multiple-
input, multiple-output systems (such as a vehicle with input direction and input
velocity yielding an output direction and an output velocity) can be compactly
represented in state space with a model similar in form and complexity to that used
for single-input, single-output systems. The time-domain approach can be used to
represent systems with a digital computer in the loop or to model systems for digital
simulation. With a simulated system, system response can be obtained for changes in



system parameters—an important design tool. The state-space approach is also
attractive because of the availability of numerous state-space software packages for
the personal computer.

The time-domain approach can also be used for the same class of systems modeled by
the classical approach. This alternate model gives the control systems designer
another perspective from which to create a design. While the state-space approach
can be applied to a wide range of systems, it is not as intuitive as the classical
approach. The designer has to engage in several calculations before the physical
interpretation of the model is apparent, whereas in classical control a few quick
calculations or a graphic presentation of data rapidly yields the physical
interpretation.

In this book, the coverage of state-space techniques is to be regarded as an
introduction to the subject, a springboard to advanced studies, and an alternate
approach to frequency-domain techniques. We will limit the state-space approach to
linear, time-invariant systems or systems that can be linearized by the methods of
Chapter 2. The study of other classes of systems is beyond the scope of this book.
Since state-space analysis and design rely on matrices and matrix operations, you
may want to review this topic in Appendix G, located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e, before continuing.

3.2 Some Observations
We proceed now to establish the state-space approach as an alternate method for
representing physical systems. This section sets the stage for the formal definition of
the state-space representation by making some observations about systems and their
variables. In the discussion that follows, some of the development has been placed in
footnotes to avoid clouding the main issues with an excess of equations and to ensure
that the concept is clear. Although we use two electrical networks to illustrate the
concepts, we could just as easily have used a mechanical or any other physical system.

We now demonstrate that for a system with many variables, such as inductor voltage,
resistor voltage, and capacitor charge, we need to use differential equations only to
solve for a selected subset of system variables because all other remaining system
variables can be evaluated algebraically from the variables in the subset. Our
examples take the following approach:

1. We select a particular subset of all possible system variables and call the
variables in this subset state variables.

2. For an nth-order system, we write n simultaneous, first-order differential
equations in terms of the state variables. We call this system of simultaneous
differential equations state equations.

3. If we know the initial condition of all of the state variables at t0 as well as the
system input for t ≥ t0, we can solve the simultaneous differential equations for
the state variables for t ≥ t0.

4. We algebraically combine the state variables with the system's input and find all
of the other system variables for t ≥ t0. We call this algebraic equation the

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(3.1)

(3.2)

(3.3)

(3.4)

output equation.

5. We consider the state equations and the output equations a viable representation
of the system. We call this representation of the system a state-space
representation.

Let us now follow these steps through an example. Consider the RL network shown in
Figure 3.1 with an initial current of i(0).

FIGURE 3.1 RL network

1. We select the current, i(t), for which we will write and solve a differential
equation using Laplace transforms.

2. We write the loop equation,

L + Ri = v (t)

3. Taking the Laplace transform, using Table 2.2, Item 7, and including the initial
conditions, yields

L [sI (s) − i (0)] + RI (s) = V (s)

Assuming the input, v(t), to be a unit step, u(t), whose Laplace transform is 
V (s) = 1/s, we solve for I(s) and get

I (s) = ( − ) +

from which

i (t) = (1 − e−(R/L)t) + i (0) e−(R/L)t

The function i(t) is a subset of all possible network variables that we are able to
find from Eq. (3.4) if we know its initial condition, i(0), and the input, v(t).
Thus, i(t) is a state variable, and the differential equation (3.1) is a state
equation.

di

dt

1
R

1
s

1

s + R

L

i (0)

s + R

L

1
R



(3.5)

(3.7)2

(3.6)1

(3.8)

4. We can now solve for all of the other network variables algebraically in terms of
i(t) and the applied voltage, v(t). For example, the voltage across the resistor is

vR (t) = Ri (t)

The voltage across the inductor is

vL (t) = v (t) − Ri (t)

The derivative of the current is

= [v (t) − Ri (t)]

Thus, knowing the state variable, i(t), and the input, v(t), we can find the value,
or state, of any network variable at any time, t ≥ t0. Hence, the algebraic
equations, Eqs. (3.5) through (3.7), are output equations.

5. Since the variables of interest are completely described by Eqs. (3.1) and (3.5)
through (3.7), we say that the combined state equation (3.1) and the output
equations (3.5 through 3.7) form a viable representation of the network, which
we call a state-space representation.

Equation (3.1), which describes the dynamics of the network, is not unique. This
equation could be written in terms of any other network variable. For example,
substituting i = vR/R into Eq. (3.1) yields

+ vR = v (t)

which can be solved knowing that the initial condition vR (0) = Ri (0)  and knowing
v(t). In this case, the state variable is vR(t). Similarly, all other network variables can
now be written in terms of the state variable, vR(t), and the input, v(t). Let us now
extend our observations to a second-order system, such as that shown in Figure 3.2.

FIGURE 3.2 RLC network

1. Since the network is of second order, two simultaneous, first-order differential
equations are needed to solve for two state variables. We select i(t) and q(t), the

di

dt

1
L

L

R

dvR

dt



(3.9)

(3.10)

(3.11)

(3.12a)

(3.12b)

(3.13)3

charge on the capacitor, as the two state variables.

2. Writing the loop equation yields

L + Ri + ∫ i dt = v (t)

Converting to charge, using i (t) = dq/dt, we get

L + R + q = v (t)

But an nth-order differential equation can be converted to n simultaneous first-
order differential equations, with each equation of the form

= ai1x1 + ai2x2 + ⋯ + ainxn + bi f (t)

where each xi is a state variable, and the aijs and bi are constants for linear,
time-invariant systems. We say that the right-hand side of Eq. (3.11) is a linear
combination of the state variables and the input, f(t).

We can convert Eq. (3.10) into two simultaneous, first-order differential
equations in terms of i(t) and q(t). The first equation can be dq/dt = i. The
second equation can be formed by substituting ∫ i dt = q into Eq. (3.9) and
solving for di/dt. Summarizing the two resulting equations, we get

= i

= − q − i + v (t)

3. These equations are the state equations and can be solved simultaneously for the
state variables, q(t) and i(t), using the Laplace transform and the methods of
Chapter 2. In addition we must also know the input, v(t), and the initial
conditions for q(t) and i(t).

4. From these two state variables, we can solve for all other network variables. For
example, the voltage across the inductor can be written in terms of the solved
state variables and the input as

vL (t) = − q (t) − Ri (t) + v (t)

Equation (3.13) is an output equation; we say that vL(t) is a linear
combination of the state variables, q(t) and i(t), and the input, v(t).

di

dt

1
C
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dq

dt

1
C
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dq

dt
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1
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(3.14a)4

(3.14b)

(3.16)

(3.15)

5. The combined state equations (3.12) and the output equation (3.13) form a viable
representation of the network, which we call a state-space representation.

Another choice of two state variables can be made, for example, vR(t) and vC(t), the
resistor and capacitor voltages, respectively. The resulting set of simultaneous, first-
order differential equations follows:

= − vR − vC + v (t)

= vR

Again, these differential equations can be solved for the state variables if we know the
initial conditions along with v(t). Further, all other network variables can be found as
a linear combination of these state variables.

Is there a restriction on the choice of state variables? Yes! Typically, the minimum
number of state variables required to describe a system equals the order of the
differential equation. Thus, a second-order system requires a minimum of two state
variables to describe it. We can define more state variables than the minimal set;
however, within this minimal set the state variables must be linearly independent.
For example, if vR(t) is chosen as a state variable, then i(t) cannot be chosen, because
vR(t) can be written as a linear combination of i(t), namely vR (t) = Ri (t). Under
these circumstances we say that the state variables are linearly dependent. State
variables must be linearly independent; that is, no state variable can be written as a
linear combination of the other state variables, or else we would not have enough
information to solve for all other system variables, and we could even have trouble
writing the simultaneous equations themselves.

The state and output equations can be written in vector-matrix form if the system is
linear. Thus, Eq. (3.12), the state equations, can be written as

⋅x = Ax + Bu

where

⋅x = [
dq/dt

di/dt
]; A = [ 0 1

−1/LC −R/L
]

x = [ q
i
]; B = [ 0

1/L
];u = v(t)

Equation (3.13), the output equation, can be written as

y = Cx + Du

dvR

dt

R

L

R

L

R

L

dvC

dt

1
RC



(3.17)

where

y = vL(t); C = [ −1/C −R ] ; x = [ q
i
] ; D = 1; u = v (t)

We call the combination of Eqs. (3.15) and (3.16) a state-space representation of
the network of Figure 3.2. A state-space representation, therefore, consists of (1) the
simultaneous, first-order differential equations from which the state variables can be
solved and (2) the algebraic output equation from which all other system variables
can be found. A state-space representation is not unique, since a different choice of
state variables leads to a different representation of the same system.

In this section, we used two electrical networks to demonstrate some principles that
are the foundation of the state-space representation. The representations developed
in this section were for single-input, single-output systems, where y,D, and u in Eqs.
(3.15) and (3.16) are scalar quantities. In general, systems have multiple inputs and
multiple outputs. For these cases, y and u become vector quantities, and D becomes a
matrix. In Section 3.3, we will generalize the representation for multiple-input,
multiple-output systems and summarize the concept of the state-space
representation.

3.3 The General State-Space Representation
Now that we have represented a physical network in state space and have a good idea
of the terminology and the concept, let us summarize and generalize the
representation for linear differential equations. First, we formalize some of the
definitions that we came across in the last section.

Linear combination. A linear combination of n variables, xi, for i = 1 to n, is
given by the following sum, S:

S = Knxn + Kn−1xn−1 + ⋯ + K1x1

where each Ki is a constant.

Linear independence. A set of variables is said to be linearly independent if none
of the variables can be written as a linear combination of the others. For example,
given x1, x2, and x3, if x2 = 5x1 + 6x3, then the variables are not linearly
independent, since one of them can be written as a linear combination of the other
two. Now, what must be true so that one variable cannot be written as a linear
combination of the other variables? Consider the example K2x2 = K1x1 + K3x3. If
no xi = 0, then any xi can be written as a linear combination of other variables,
unless all Ki = 0. Formally, then, variables xi, for i = 1 to n, are said to be linearly
independent if their linear combination, S, equals zero only if every Ki = 0 and no
xi = 0 for all t ≥ 0.

System variable. Any variable that responds to an input or initial conditions in a
system.



(3.18)

(3.19)

State variables. The smallest set of linearly independent system variables such
that the values of the members of the set at time t0 along with known forcing
functions completely determine the value of all system variables for all t ≥ t0.

State vector. A vector whose elements are the state variables.

State space. The n-dimensional space whose axes are the state variables. This is a
new term and is illustrated in Figure 3.3, where the state variables are assumed to be
a resistor voltage, vR, and a capacitor voltage, vC. These variables form the axes of the
state space. A trajectory can be thought of as being mapped out by the state vector,
x(t), for a range of t. Also shown is the state vector at the particular time t = 4.

FIGURE 3.3 Graphic representation of state space and a state vector

State equations. A set of n simultaneous, first-order differential equations with n
variables, where the n variables to be solved are the state variables.

Output equation. The algebraic equation that expresses the output variables of a
system as linear combinations of the state variables and the inputs.

Now that the definitions have been formally stated, we define the state-space
representation of a system. A system is represented in state space by the following
equations:

⋅x = Ax + Bu

y = Cx + Du

for t ≥ t0 and initial conditions, x(t0), where



(3.20a)

(3.20b)

(3.21)

x = state vector
⋅x = derivative of the state vector with respect to time

y = output vector

u = input or control vector

A = system matrix

B = input matrix

C = output matrix

D = feedforward matrix

Equation (3.18) is called the state equation, and the vector x, the state vector,
contains the state variables. Equation (3.18) can be solved for the state variables,
which we demonstrate in Chapter 4. Equation (3.19) is called the output equation.
This equation is used to calculate any other system variables. This representation of a
system provides complete knowledge of all variables of the system at any t ≥ t0.

As an example, for a linear, time-invariant, second-order system with a single input
v(t), the state equations could take on the following form:

= a11x1 + a12x2 + b1v (t)

= a21x1 + a22x2 + b2v (t)

where x1 and x2 are the state variables. If there is a single output, the output equation
could take on the following form:

y = c1x1 + c2x2 + d1v (t)

The choice of state variables for a given system is not unique. The requirement in
choosing the state variables is that they be linearly independent and that a minimum
number of them be chosen.

3.4 Applying the State-Space Representation
In this section, we apply the state-space formulation to the representation of more
complicated physical systems. The first step in representing a system is to select the
state vector, which must be chosen according to the following considerations:

1. A minimum number of state variables must be selected as components of the
state vector. This minimum number of state variables is sufficient to describe
completely the state of the system.

2. The components of the state vector (i.e., this minimum number of state
variables) must be linearly independent.

dx1

dt

dx2

dt



Let us review and clarify these statements.

Linearly Independent State Variables
The components of the state vector must be linearly independent. For example,
following the definition of linear independence in Section 3.3, if x1, x2, and x3 are
chosen as state variables, but x3 = 5x1 + 4x2, then x3 is not linearly independent of
x1 and x2, since knowledge of the values of x1 and x2 will yield the value of x3.
Variables and their successive derivatives are linearly independent. For example, the
voltage across an inductor, vL, is linearly independent of the current through the
inductor, iL, since vL = LdiL/dt. Thus, vL cannot be evaluated as a linear
combination of the current, iL.

Minimum Number of State Variables
How do we know the minimum number of state variables to select? Typically, the
minimum number required equals the order of the differential equation describing
the system. For example, if a third-order differential equation describes the system,
then three simultaneous, first-order differential equations are required along with
three state variables. From the perspective of the transfer function, the order of the
differential equation is the order of the denominator of the transfer function after
canceling common factors in the numerator and denominator.

In most cases, another way to determine the number of state variables is to count the
number of independent energy-storage elements in the system.5 The number of these
energy-storage elements equals the order of the differential equation and the number
of state variables. In Figure 3.2 there are two energy-storage elements, the capacitor
and the inductor. Hence, two state variables and two state equations are required for
the system.

If too few state variables are selected, it may be impossible to write particular output
equations, since some system variables cannot be written as a linear combination of
the reduced number of state variables. In many cases, it may be impossible even to
complete the writing of the state equations, since the derivatives of the state variables
cannot be expressed as linear combinations of the reduced number of state variables.

If you select the minimum number of state variables but they are not linearly
independent, at best you may not be able to solve for all other system variables. At
worst you may not be able to complete the writing of the state equations.

Often the state vector includes more than the minimum number of state variables
required. Two possible cases exist. Often state variables are chosen to be physical
variables of a system, such as position and velocity in a mechanical system. Cases
arise where these variables, although linearly independent, are also decoupled. That
is, some linearly independent variables are not required in order to solve for any of
the other linearly independent variables or any other dependent system variable.
Consider the case of a mass and viscous damper whose differential equation is 
M dv/dt + Dv = f (t), where v is the velocity of the mass. Since this is a first-order
equation, one state equation is all that is required to define this system in state space



with velocity as the state variable. Also, since there is only one energy-storage
element, mass, only one state variable is required to represent this system in state
space. However, the mass also has an associated position, which is linearly
independent of velocity. If we want to include position in the state vector along with
velocity, then we add position as a state variable that is linearly independent of the
other state variable, velocity. Figure 3.4 illustrates what is happening. The first block
is the transfer function equivalent to M dv (t) /dt + Dv (t) = f (t). The second block
shows that we integrate the output velocity to yield output displacement (see Table
2.2, Item 10). Thus, if we want displacement as an output, the denominator, or
characteristic equation, has increased in order to 2, the product of the two transfer
functions. Many times, the writing of the state equations is simplified by including
additional state variables.

FIGURE 3.4 Block diagram of a mass and damper

Another case that increases the size of the state vector arises when the added variable
is not linearly independent of the other members of the state vector. This usually
occurs when a variable is selected as a state variable but its dependence on the other
state variables is not immediately apparent. For example, energy-storage elements
may be used to select the state variables, and the dependence of the variable
associated with one energy-storage element on the variables of other energy-storage
elements may not be recognized. Thus, the dimension of the system matrix is
increased unnecessarily, and the solution for the state vector, which we cover in
Chapter 4, is more difficult. Also, adding dependent state variables affects the
designer's ability to use state-space methods for design.6

We saw in Section 3.2 that the state-space representation is not unique. The following
example demonstrates one technique for selecting state variables and representing a
system in state space. Our approach is to write the simple derivative equation for
each energy-storage element and solve for each derivative term as a linear
combination of any of the system variables and the input that are present in the
equation. Next we select each differentiated variable as a state variable. Then we
express all other system variables in the equations in terms of the state variables and
the input. Finally, we write the output variables as linear combinations of the state
variables and the input.



(3.22)

(3.23)

Example 3.1 Representing an Electrical Network
PROBLEM:
Given the electrical network of Figure 3.5, find a state-space representation if the
output is the current through the resistor.

FIGURE 3.5 Electrical network for representation in state space

SOLUTION:
The following steps will yield a viable representation of the network in state
space.

Step 1 Label all of the branch currents in the network. These include iL, iR,
and iC, as shown in Figure 3.5.

Step 2 Select the state variables by writing the derivative equation for all
energy-storage elements, that is, the inductor and the capacitor. Thus,

C = iC

L = vL

From Eqs. (3.22) and (3.23), choose the state variables as the quantities
that are differentiated, namely vC and iL. Using Eq. (3.20) as a guide, we see
that the state-space representation is complete if the right-hand sides of
Eqs. (3.22) and (3.23) can be written as linear combinations of the state
variables and the input.

Since iC and vL are not state variables, our next step is to express iC and vL
as linear combinations of the state variables, vC and iL, and the input, v(t).

Step 3 Apply network theory, such as Kirchhoff's voltage and current laws,
to obtain iC and vL in terms of the state variables, vC and iL. At Node 1,

dvC

dt

diL

dt



(3.24)

(3.25)

(3.26a)

(3.26b)

(3.27a)

(3.27b)

(3.28)

(3.29a)

(3.29b)

iC = −iR + iL

= − vC + iL

which yields iC in terms of the state variables, vC and iL.

Around the outer loop,

vL = −vC + v (t)

which yields vL in terms of the state variable, vC, and the source, v(t).

Step 4 Substitute the results of Eqs. (3.24) and (3.25) into Eqs. (3.22) and
(3.23) to obtain the following state equations:

C = − vC + iL

L = −vC + v (t)

or

= − vC + iL

= − vC + v (t)

Step 5 Find the output equation. Since the output is iR(t),

iR = vC

The final result for the state-space representation is found by representing
Eqs. (3.27) and (3.28) in vector-matrix form as follows:

[
⋅vC
⋅
iL

] = [
−1/ (RC) 1/C

−1/L 0
] [ vC

iL
] + [ 0

1/L
] v (t)

iR = [ 1/R 0 ] [ vC
iL

]

where the dot indicates differentiation with respect to time.

In order to clarify the representation of physical systems in state space, we will look
at two more examples. The first is an electrical network with a dependent source.

1
R

dvC

dt

1
R

diL

dt

dvC

dt

1
RC

1
C

diL

dt

1
L

1
L

1
R



Although we will follow the same procedure as in the previous problem, this problem
will yield increased complexity in applying network analysis to find the state
equations. For the second example, we find the state-space representation of a
mechanical system.



(3.30a)

(3.30b)

(3.31)

(3.32)

Example 3.2 Representing an Electrical Network with a
Dependent Source
PROBLEM:
Find the state and output equations for the electrical network shown in Figure
3.6 if the output vector is y = [ vR2 iR2 ]T , where T means transpose.7

FIGURE 3.6 Electrical network for Example 3.2

SOLUTION:
Immediately notice that this network has a voltage-dependent current source.

Step 1 Label all of the branch currents on the network, as shown in Figure
3.6.

Step 2 Select the state variables by listing the voltage–current relationships
for all of the energy-storage elements:

L = vL

C = iC

From Eqs. (3.30) select the state variables to be the differentiated variables.
Thus, the state variables, x1 and x2, are

x1 = iL; x2 = vC

Step 3 Remembering that the form of the state equation is

⋅x = Ax + Bu

we see that the remaining task is to transform the right-hand side of Eq.
(3.30) into linear combinations of the state variables and input source

diL

dt

dvC

dt



(3.33)

(3.34)

(3.35)

(3.36)

(3.37a)

(3.37b)

(3.38)

current. Using Kirchhoff's voltage and current laws, we find vL and iC in
terms of the state variables and the input current source.

Around the mesh containing L and C,

vL = vC + vR2 = vC + iR2R2

But at Node 2, iR2 = iC + 4vL. Substituting this relationship for iR2  into Eq.
(3.33) yields

vL = vC + (iC + 4vL)R2

Solving for vL, we get

vL = (vC + iCR2)

Notice that since vC is a state variable, we only need to find iC in terms of
the state variables. We will then have obtained vL in terms of the state
variables.

Thus, at Node 1 we can write the sum of the currents as

iC = i (t) − iR1 − iL

= i (t) − − iL

= i (t) − − iL

where vR1 = vL. Equations (3.35) and (3.36) are two equations relating vL
and iC in terms of the state variables iL and vC. Rewriting Eqs. (3.35) and
(3.36), we obtain two simultaneous equations yielding vL and iC as linear
combinations of the state variables iL and vC:

(1 − 4R2) vL − R2iC = vC

− vL − iC = iL − i (t)

Solving Eq. (3.37a) simultaneously for vL and iC yields

vL = [R2iL − vC − R2i (t)]

and

1
1 − 4R2

vR1

R1

vL
R1

1
R1

1
Δ



(3.39)

(3.40)

(3.41)

(3.42b)

(3.43)

(3.42a)

iC = [(1 − 4R2) iL + vC − (1 − 4R2) i (t)]

where

Δ = − [(1 − 4R2) + ]

Substituting Eqs. (3.38) and (3.39) into Eq. (3.30), simplifying, and writing
the result in vector-matrix form renders the following state equation:

[
⋅
iL
⋅vC

] = [
R2/ (LΔ) −1/ (LΔ)

(1 − 4R2) / (CΔ) 1/ (R1CΔ)
] [ iL

vC
]

+ [
−R2/ (LΔ)

− (1 − 4R2) / (CΔ)
] i (t)

Step 4 Derive the output equation. Since the specified output variables are 
vR2  and iR2 , we note that around the mesh containing C, L, and R2,

vR2 = −vC + vL

iR2 = iC + 4vL

Substituting Eqs. (3.38) and (3.39) into Eq. (3.42), vR2  and iR2  are obtained
as linear combinations of the state variables, iL and vC. In vector-matrix
form, the output equation is

[
vR2

iR2

] = [
R2/Δ − (1 + 1/Δ)

1/Δ (1 − 4R1) / (ΔR1)
] [ iL

vC
] + [

−R2/Δ

−1/Δ
] i (t)

In the next example, we find the state-space representation for a mechanical system.
It is more convenient when working with mechanical systems to obtain the state
equations directly from the equations of motion rather than from the energy-storage
elements. For example, consider an energy-storage element such as a spring, where 
F = Kx. This relationship does not contain the derivative of a physical variable as in
the case of electrical networks, where i = C dv/dt for capacitors, and v = L di/dt for
inductors. Thus, in mechanical systems we change our selection of state variables to
be the position and velocity of each point of linearly independent motion. In the
example, we will see that although there are three energy-storage elements, there will
be four state variables; an additional linearly independent state variable is included
for the convenience of writing the state equations. It is left to the student to show that
this system yields a fourth-order transfer function if we relate the displacement of

1
Δ

1
R1

R2

R1



either mass to the applied force, and a third-order transfer function if we relate the
velocity of either mass to the applied force.



(3.44)

(3.45)

(3.46a)

(3.46b)

(3.46c)

Example 3.3 Representing a Translational Mechanical
System
PROBLEM:
Find the state equations for the translational mechanical system shown in Figure
3.7.

FIGURE 3.7 Translational mechanical system

SOLUTION:
First write the differential equations for the network in Figure 3.7, using the
methods of Chapter 2 to find the Laplace-transformed equations of motion. Next
take the inverse Laplace transform of these equations, assuming zero initial
conditions, and obtain

M1 + D + Kx1 − Kx2 = 0

−Kx1 + M2 + Kx2 = f (t)

Now let d2x1/dt2 = dv1/dt, and d2x2/dt2 = dv2/dt, and then select x1, v1, x2,
and v2 as state variables. Next form two of the state equations by solving Eq.
(3.44) for dv1/dt and Eq. (3.45) for dv2/dt. Finally, add dx1/dt = v1 and 
dx2/dt = v2 to complete the set of state equations. Hence,

= +v1

= − x1 − v1 + x2

= +v2

d2x1

dt2

dx1

dt

d2x2

dt2

dx1

dt

dv1

dt

K

M1

D

M1

K

M1

dx2

dt



(3.46d)

(3.47)

= + x1 − x2 + f (t)

In vector-matrix form,

⎡
⎢ ⎢ ⎢ ⎢
⎣

⋅x1
⋅v1
⋅x2
⋅v2

⎤
⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0
−K/M1 −D/M1 K/M1 0

0 0 0 1
K/M2 0 −K/M2 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢
⎣

x1

v1

x2

v2

⎤
⎥ ⎥ ⎥ ⎥
⎦

+

⎡
⎢ ⎢ ⎢ ⎢
⎣

0
0
0

1/M2

⎤
⎥ ⎥ ⎥ ⎥
⎦

f (t)

where the dot indicates differentiation with respect to time. What is the output
equation if the output is x(t)?

Skill-Assessment Exercise 3.1
PROBLEM:
Find the state-space representation of the electrical network shown in Figure 3.8.
The output is vo(t).

FIGURE 3.8 Electric circuit for Skill-Assessment Exercise 3.1

ANSWER:

⋅x =
⎡
⎢
⎣

1/C1 1/C1 −1/C1

−1/L 0 0

1/C2 0 −1/C2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
1
0

⎤
⎥
⎦
vi (t)

y = [ 0 0 1 ] x

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

dv2

dt

K
M2

K
M2

1
M2

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Skill-Assessment Exercise 3.2
PROBLEM:
Represent the translational mechanical system shown in Figure 3.9 in state
space, where x3(t) is the output.

FIGURE 3.9 Translational mechanical system for Skill-Assessment
Exercise 3.2

ANSWER:

⋅z =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0 0 0
−1 −1 0 1 0 0

0 0 0 1 0 0
0 1 −1 −1 1 0
0 0 0 0 0 1
0 0 1 0 −1 −1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

z +

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

0
1
0
0
0
0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

f (t)

y = [ 0 0 0 0 1 0 ] z

where

z = [ x1
⋅x1 x2

⋅x2 x3
⋅x3 ]T

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

3.5 Converting a Transfer Function to State Space
In the last section, we applied the state-space representation to electrical and
mechanical systems. We learn how to convert a transfer function representation to a
state-space representation in this section. One advantage of the state-space
representation is that it can be used for the simulation of physical systems on the
digital computer. Thus, if we want to simulate a system that is represented by a
transfer function, we must first convert the transfer function representation to state
space.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(3.48)

(3.49b)

(3.49c)

(3.49d)

(3.50a)

(3.50b)

(3.50c)

(3.50d)

(3.49a)

At first we select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous state variable.
In Chapter 5 we show how to make other choices for the state variables.

Let us begin by showing how to represent a general, nth-order, linear differential
equation with constant coefficients in state space in the phase-variable form. We will
then show how to apply this representation to transfer functions.

Consider the differential equation

+ an−1 + ⋯ + a1 + a0y = b0u

A convenient way to choose state variables is to choose the output, y(t), and its (n − 1)
derivatives as the state variables. This choice is called the phase-variable choice.
Choosing the state variables, xi, we get

x1 = y

x2 =

x3 =

⋮

xn =

and differentiating both sides yields

⋅x1 =

⋅x2 =

⋅x3 =

⋮
⋅xn =

where the dot above the x signifies differentiation with respect to time.

dny

dtn
dn−1y

dtn−1

dy

dt

dy

dt

d2y

dt2

dn−1y

dtn−1

dy

dt

d2y

dt2

d3y

dt3

dny

dtn



(3.51c)

(3.52)

(3.53)

(3.51a)

(3.51b)

(3.51d)

Substituting the definitions of Eq. (3.49) into Eq. (3.50), the state equations are
evaluated as

⋅x1 = x2

⋅x2 = x3

⋮
⋅xn−1 = xn

⋅xn = −a0x1 − a1x2 ⋯ − an−1xn + b0u

where Eq. (3.51d) was obtained from Eq. (3.48) by solving for d ny/dtn and using Eq.
(3.49). In vector-matrix form, Eq. (3.51) become

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

⋅x1
⋅x2
⋅x3

⋮
⋅xn−1
⋅xn

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0 0 0 ⋯ 0
0 0 1 0 0 0 ⋯ 0
0 0 0 1 0 0 ⋯ 0

⋮
0 0 0 0 0 0 ⋯ 1

−a0 −a1 −a2 −a3 −a4 −a5 ⋯ −an−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

x1

x2

x3

⋮
xn−1

xn

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

+

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

0
0
0

⋮
0
b0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

u

Equation (3.52) is the phase-variable form of the state equations. This form is easily
recognized by the unique pattern of 1s and 0s and the negative of the coefficients of
the differential equation written in reverse order in the last row of the system matrix.

Finally, since the solution to the differential equation is y(t), or x1, the output
equation is

y = [ 1 0 0 ⋯ 0 ]

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

x1

x2

x3

⋮

xn−1

xn

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

In summary, then, to convert a transfer function into state equations in phase-
variable form, we first convert the transfer function to a differential equation by
cross-multiplying and taking the inverse Laplace transform, assuming zero initial
conditions. Then we represent the differential equation in state space in phase-
variable form. An example illustrates the process.



(3.54)

(3.55)

(3.56)

Example 3.4 Converting a Transfer Function with a
Constant Term in the Numerator
PROBLEM:
Find the state-space representation in phase-variable form for the transfer
function shown in Figure 3.10(a).

FIGURE 3.10 a. Transfer function; b. equivalent block diagram
showing phase variables. Note: y (t) = c (t).

SOLUTION:

Step 1 Find the associated differential equation. Since

=

cross-multiplying yields

(s3 + 9s2 + 26s + 24)C (s) = 24R (s)

The corresponding differential equation is found by taking the inverse
Laplace transform, assuming zero initial conditions:

c̈ ⋅ + 9c̈ + 26 ⋅c + 24c = 24r

C (s)
R (s)

24
(s3 + 9s2 + 26s + 24)



(3.58a)

(3.58b)

(3.59a)

(3.59b)

(3.57a)

(3.57b)

(3.57c)

(3.58c)

(3.58d)

Step 2 Select the state variables.

Choosing the state variables as successive derivatives, we get

x1 = c

x2 = ⋅c

x3 = c̈

Differentiating both sides and making use of Eq. (3.57) to find ⋅x1 and ⋅x2,
and Eq. (3.56) to find c̃ = ⋅x3, we obtain the state equations. Since the
output is c = x1, the combined state and output equations are

⋅x1 = x2

⋅x2 = x3

⋅x3 = −24x1 − 26x2 − 9x3 + 24r

y = c = x1

In vector-matrix form,

⎡
⎢
⎣

⋅x1
⋅x2
⋅x3

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0
0 0 1

−24 −26 −9

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

+
⎡
⎢
⎣

0
0

24

⎤
⎥
⎦
r

y = [ 1 0 0 ]
⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

Notice that the third row of the system matrix has the same coefficients as
the denominator of the transfer function but negative and in reverse order.

At this point, we can create an equivalent block diagram of the system of Figure
3.10(a) to help visualize the state variables. We draw three integral blocks as
shown in Figure 3.10(b) and label each output as one of the state variables, xi(t),
as shown. Since the input to each integrator is xi(t), use Eqs. (3.58a), (3.58b), and
(3.58c) to determine the combination of input signals to each integrator. Form
and label each input. Finally, use Eq. (3.58d) to form and label the output, 
y (t) = c (t). The final result of Figure 3.10(b) is a system equivalent to Figure
3.10(a) that explicitly shows the state variables and gives a vivid picture of the
state-space representation.



(3.60)

(3.61)

(3.62)

 Students who are using MATLAB should now run ch3apB1 through
ch3apB4 in Appendix B. You will learn how to represent the system matrix

A, the input matrix B, and the output matrix C using MATLAB. You will
learn how to convert a transfer function to the state-space representation

in phase-variable form. Finally, Example 3.4 will be solved using MATLAB.

The transfer function of Example 3.4 has a constant term in the numerator. If a
transfer function has a polynomial in s in the numerator that is of order less than the
polynomial in the denominator, as shown in Figure 3.11(a), the numerator and
denominator can be handled separately. First separate the transfer function into two
cascaded transfer functions, as shown in Figure 3.11(b); the first is the denominator,
and the second is just the numerator. The first transfer function with just the
denominator is converted to the phase-variable representation in state space as
demonstrated in the last example. Hence, phase variable x1 is the output, and the rest
of the phase variables are the internal variables of the first block, as shown in Figure
3.11(b). The second transfer function with just the numerator yields

Y (s) = C (s) = (b2s
2 + b1s + b0) X1 (s)

where, after taking the inverse Laplace transform with zero initial conditions,

y (t) = b2 + b1 + b0x1

But the derivative terms are the definitions of the phase variables obtained in the first
block. Thus, writing the terms in reverse order to conform to an output equation,

y (t) = b0x1 + b1x2 + b2x3

Hence, the second block simply forms a specified linear combination of the state
variables developed in the first block.

From another perspective, the denominator of the transfer function yields the state
equations, while the numerator yields the output equation. The next example
demonstrates the process.

d2x1

dt2

dx1

dt

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_3.zip


FIGURE 3.11 Decomposing a transfer function



Example 3.5 Converting a Transfer Function with a
Polynomial in the Numerator
PROBLEM:
Find the state-space representation of the transfer function shown in Figure
3.12(a).

FIGURE 3.12 a. Transfer function; b. decomposed transfer function;
c. equivalent block diagram. Note: y (t) = c (t).

SOLUTION:



(3.63)

(3.64)

(3.66)

(3.67)

(3.65)

This problem differs from Example 3.4, since the numerator has a polynomial in
s instead of just a constant term.

Step 1 Separate the system into two cascaded blocks, as shown in Figure
3.12(b). The first block contains the denominator and the second block
contains the numerator.

Step 2 Find the state equations for the block containing the denominator.
We notice that the first block's numerator is 1/24 that of Example 3.4. Thus,
the state equations are the same except that this system's input matrix is
1/24 that of Example 3.4. Hence, the state equation is

⎡
⎢
⎣

⋅x1
⋅x2
⋅x3

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0
0 0 1

−24 −26 −9

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

+
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

Step 3 Introduce the effect of the block with the numerator. The second
block of Figure 3.12(b), where b2 = 1, b1 = 7, and b0 = 2, states that

C (s) = (b2s
2 + b1s + b0)X1 (s) = (s2 + 7s + 2)X1 (s)

Taking the inverse Laplace transform with zero initial conditions, we get

c = ẍ1 + 7 ⋅x1 + 2x1

But,

x1 = x1
⋅x1 = x2

ẍ1 = x3

Hence,

y = c (t) = b2x3 + b1x2 + b0x1 = x3 + x2 + 2x1

Thus, the last box of Figure 3.11(b) “collects” the states and generates the output
equation. From Eq. (3.66),

y = [ b0 b1 b2 ]
⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

= [ 2 7 1 ]
⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

Although the second block of Figure 3.12(b) shows differentiation, this block was
implemented without differentiation because of the partitioning that was applied



to the transfer function. The last block simply collected derivatives that were
already formed by the first block.

Once again we can produce an equivalent block diagram that vividly represents
our state-space model. The first block of Figure 3.12(b) is the same as Figure
3.10(a) except for the different constant in the numerator. Thus, in Figure 3.12(c)
we reproduce Figure 3.10(b) except for the change in the numerator constant,
which appears as a change in the input multiplying factor. The second block of
Figure 3.12(b) is represented using Eq. (3.66), which forms the output from a
linear combination of the state variables, as shown in Figure 3.12(c).

TryIt 3.1
Use the following MATLAB statements to form an LTI state-space
representation from the transfer function shown in Figure 3.12(a). The A
matrix and B vector are shown in Eq. (3.63). The C vector is shown in Eq.
(3.67).

num=[1 7 2];
den=[1 9 26 24];
[A,B,C,D]=tf2ss...(num, den);
P=[0 0 1;0 1 0;1 0 0];
A=inv(P)*A*P
B=inv(P)*B
C=C*P

Skill-Assessment Exercise 3.3
PROBLEM:
Find the state equations and output equation for the phase-variable
representation of the transfer function G (s) = .

ANSWER:

⋅x = [ 0 1
−9 −7

]x + [ 0
1
] r (t)

y = [ 1 2 ] x

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

3.6 Converting from State Space to a Transfer Function

2s+1
s2+7s+9

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_3.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(3.68b)

(3.69a)

(3.69b)

(3.70)

(3.71)

(3.72)

(3.73)

(3.68a)

In Chapters 2 and 3, we have explored two methods of representing systems: the
transfer function representation and the state-space representation. In the last
section, we united the two representations by converting transfer functions into state-
space representations. Now we move in the opposite direction and convert the state-
space representation into a transfer function.

Given the state and output equations

⋅x = Ax + Bu

y = Cx + Du

take the Laplace transform assuming zero initial conditions8:

sX (s) = AX (s) + BU (s)

Y (s) = CX (s) + DU (s)

Solving for X(s) in Eq. (3.69a),

(sI − A) X (s) = BU (s)

or

X (s) = (sI − A)−1
BU (s)

where I is the identity matrix.

Substituting Eq. (3.71) into Eq. (3.69b) yields

Y (s) = C(sI − A)−1
BU (s) + DU (s) = [C(sI − A)−1

B + D]U (s)

We call the matrix [C(sI − A)−1
B + D] the transfer function matrix, since it

relates the output vector, Y(s), to the input vector, U(s). However, if U (s) = U (s)
and Y (s) = Y (s) are scalars, we can find the transfer function, Thus,

T (s) = = C(sI − A)−1
B + D

Let us look at an example.

Y (s)

U (s)



(3.74a)

(3.74b)

(3.75)

(3.76)

Example 3.6 State-Space Representation to Transfer
Function
PROBLEM:
Given the system defined by Eq. (3.74), find the transfer function, 
T (s) = Y (s) /U (s), where U(s) is the input and Y(s) is the output.

⋅x =
⎡
⎢
⎣

0 1 0
0 0 1

−1 −2 −3

⎤
⎥
⎦

x +
⎡
⎢
⎣

10
0
0

⎤
⎥
⎦
u

y = [ 1 0 0 ] x

SOLUTION:

The solution revolves around finding the term (sI − A)−1 in Eq. (3.73).9 All
other terms are already defined. Hence, first find (sI − A):

(sI − A) =
⎡
⎢
⎣

s 0 0
0 s 0
0 0 s

⎤
⎥
⎦

−
⎡
⎢
⎣

0 1 0
0 0 1

−1 −2 −3

⎤
⎥
⎦

=
⎡
⎢
⎣

s −1 0
0 s −1
1 2 s + 3

⎤
⎥
⎦

Now form (sI − A)−1:

(sI − A)−1 = =

Substituting (sI − A)−1, B, C, and D into Eq. (3.73), where

B =
⎡
⎢
⎣

10
0
0

⎤
⎥
⎦

C = [ 1 0 0 ]

D = 0

we obtain the final result for the transfer function:

adj (sI − A)
det (sI − A)

⎡
⎢ ⎢
⎣

(s2 + 3s + 2) s + 3 1

−1 s (s + 3) s

−s − (2s + 1) s2

⎤
⎥ ⎥
⎦

s3 + 3s2 + 2s + 1



(3.77)
T (s) =

 Students who are using MATLAB should now run ch3apB5 in Appendix B.
You will learn how to convert a state-space representation to a transfer

function using MATLAB. You can practice by writing a MATLAB program to

solve Example 3.6.

 Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox should now

run ch3apF1 in Appendix F located at

www.wiley.com/go/Nise/ControlSystemsEngineering8e. You will learn how to

use the Symbolic Math Toolbox to write matrices and vectors. You will see

that the Symbolic Math Toolbox yields an alternative way to use MATLAB to

solve Example 3.6.

10 (s2 + 3s + 2)

s3 + 3s2 + 2s + 1

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_3.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_for_Appendix_F_for_Chapter_3.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(3.78a)

(3.78b)

Skill-Assessment Exercise 3.4
PROBLEM:
Convert the state and output equations shown in Eq. (3.78) to a transfer function.

⋅x = [−4 −1.5
4 0

]x + [ 2
0
]u (t)

y = [ 1.5 0.625 ] x

ANSWER:

G (s) =

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 3.2
Use the following MATLAB and the Control System Toolbox statements to
obtain the transfer function shown in Skill-Assessment Exercise 3.4 from the
state-space representation of Eq. (3.78).

A=[−4 −1.5;4 0];
B=[2 0]';
C=[1.50.625];
D=0;
T=ss(A,B,C,D);
T=tf(T)

In Example 3.6, the state equations in phase-variable form were converted to transfer
functions. In Chapter 5, we will see that other forms besides the phase-variable form
can be used to represent a system in state space. The method of finding the transfer
function representation for these other forms is the same as that presented in this
section.

3.7 Linearization
A prime advantage of the state-space representation over the transfer function
representation is the ability to represent systems with nonlinearities, such as the one
shown in Figure 3.13. The ability to represent nonlinear systems does not imply the
ability to solve their state equations for the state variables and the output. Techniques
do exist for the solution of some nonlinear state equations, but this study is beyond
the scope of this course. However, in Appendix H, located at

3s + 5
s2 + 4s + 6

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_3.zip


www.wiley.com/go/Nise/ControlSystemsEngineering8e, you can see how to use the
digital computer to solve state equations. This method also can be used for nonlinear
state equations.

FIGURE 3.13 Walking robots, such as Hannibal shown here, can be
used to explore hostile environments and rough terrain, such as that
found on other planets or inside volcanoes

If we are interested in small perturbations about an equilibrium point, as we were
when we studied linearization in Chapter 2, we can also linearize the state equations
about the equilibrium point. The key to linearization about an equilibrium point is,
once again, the Taylor series. In the following example, we write the state equations
for a simple pendulum, showing that we can represent a nonlinear system in state
space; then we linearize the pendulum about its equilibrium point, the vertical
position with zero velocity.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(3.79)

(3.80b)

(3.80a)

Example 3.7 Representing a Nonlinear System
PROBLEM:
First represent the simple pendulum shown in Figure 3.14(a) (which could be a
simple model for the leg of the robot shown in Figure 3.13) in state space: Mg is
the weight, T is an applied torque in the θ direction, and L is the length of the
pendulum. Assume the mass is evenly distributed, with the center of mass at L/2.
Then linearize the state equations about the pendulum's equilibrium point—the
vertical position with zero angular velocity.

FIGURE 3.14 a. Simple pendulum; b. force components of Mg; c.
free-body diagram

SOLUTION:
First draw a free-body diagram as shown in Figure 3.14(c). Summing the torques,
we get

J + sin θ = T

where J is the moment of inertia of the pendulum around the point of rotation.
Select the state variables x1 and x2 as phase variables. Letting x1 = θ and 
x2 = dθ/dt, we write the state equations as

⋅x1 = x2

⋅x2 = − sin x1 +

where ⋅x2 = d2θ/dt2 is evaluated from Eq. (3.79).

d2θ

dt2

MgL

2

MgL

2J
T

J



(3.82)

(3.84a)

(3.84b)

(3.81a)

(3.81b)

(3.83)

Thus, we have represented a nonlinear system in state space. It is interesting to
note that the nonlinear Eqs. (3.80) represent a valid and complete model of the
pendulum in state space even under nonzero initial conditions and even if
parameters are time varying. However, if we want to apply classical techniques
and convert these state equations to a transfer function, we must linearize them.

Let us proceed now to linearize the equation about the equilibrium point, 
x1 = 0, x2 = 0, that is, θ = 0 and dθ/dt = 0. Let x1 and x2 be perturbed about
the equilibrium point, or

x1 = 0 + δx1

x2 = 0 + δx2

Using Eq. (2.182), we obtain

sin x1 − sin 0 =
∣
∣
∣x1=0

δx1 = δx1

from which

sin x1 = δx1

Substituting Eqs. (3.81) and (3.83) into Eq. (3.80) yields the following state
equations:

⋅
δx1 = δx2

⋅
δx2 = − δx1 +

which are linear and a good approximation to Eq. (3.80) for small excursions
away from the equilibrium point. What is the output equation?

d (sin x1)
dx1

MgL

2J
T

J



Virtual Experiment 3.1 Rotary Inverted Pendulum
Put theory into practice by simulating the linear and non-linear model of the
Quanser Rotary Inverted Pendulum in LabVIEW. The behavior of an
inverted pendulum is similar to a variety of systems, such as Segway
transporters and human posture.

Run Experiment 3.1

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp03.zip


Skill-Assessment Exercise 3.5
PROBLEM:
Represent the translational mechanical system shown in Figure 3.15 in state
space about the equilibrium displacement. The spring is nonlinear, where the
relationship between the spring force, fs(t), and the spring displacement, xs(t), is 
fs (t) = 2x2

s (t). The applied force is f (t) = 10 + δf (t), where δf(t) is a small
force about the 10 N constant value.

FIGURE 3.15 Nonlinear translational mechanical system for Skill-
Assessment Exercise 3.5

Assume the output to be the displacement of the mass, x(t).

ANSWER:

⋅x = [ 0 1

−4√5 0
]x + [ 0

1
] δf (t)

y = [ 1 0 ] x

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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(3.86)

Case Studies Antenna Control: State-Space
Representation
We have covered the state-space representation of individual physical
subsystems in this chapter. In Chapter 5, we will assemble individual subsystems
into feedback control systems and represent the entire feedback system in state
space. Chapter 5 also shows how the state-space representation, via signal-flow
diagrams, can be used to interconnect these subsystems and permit the state-
space representation of the whole closed-loop system. In the following case
study, we look at the antenna azimuth position control system and demonstrate
the concepts of this chapter by representing each subsystem in state space.

PROBLEM:
Find the state-space representation in phase-variable form for each dynamic
subsystem in the antenna azimuth position control system shown in Appendix
A2, Configuration 1. By dynamic, we mean that the system does not reach the
steady state instantaneously. For example, a system described by a differential
equation of first order or higher is a dynamic system. A pure gain, on the other
hand, is an example of a nondynamic system, since the steady state is reached
instantaneously.

SOLUTION:
In the case study problem of Chapter 2, each subsystem of the antenna azimuth
position control system was identified. We found that the power amplifier and
the motor and load were dynamic systems. The preamplifier and the
potentiometers are pure gains and so respond instantaneously. Hence, we will
find the state-space representations only of the power amplifier and of the motor
and load.

Power amplifier:
The transfer function of the power amplifier is given in Appendix A2 as 
G (s) = 100/ (s + 100). We will convert this transfer function to its state-space
representation. Letting vp(t) represent the power amplifier input and ea(t)
represent the power amplifier output,

G (s) = =

Cross-multiplying, (s + 100)Ea (s) = 100Vp (s), from which the differential
equation can be written as

+ 100ea = 100vp (t)

Ea (s)

Vp (s)
100

(s + 100)

dea

dt



(3.87)

(3.89)

(3.90)

(3.91)

(3.92b)

(3.92a)

(3.88)

Rearranging Eq. (3.86) leads to the state equation with ea as the state variable:

= −100ea + 100vp (t)

Since the output of the power amplifier is ea(t), the output equation is

y = ea

Motor and load:
We now find the state-space representation for the motor and load. We could of
course use the motor and load block shown in the block diagram in Appendix A2
to obtain the result. However, it is more informative to derive the state-space
representation directly from the physics of the motor without first deriving the
transfer function. The elements of the derivation were covered in Section 2.8 but
are repeated here for continuity. Starting with Kirchhoff's voltage equation
around the armature circuit, we find

ea (t) = ia (t)Ra + Kb

where ea(t) is the armature input voltage, ia(t) is the armature current, Ra is the
armature resistance, Kb is the armature constant, and θm is the angular
displacement of the armature.

The torque, Tm(t), delivered by the motor is related separately to the armature
current and the load seen by the armature. From Section 2.8,

Tm (t) = Ktia (t) = Jm + Dm

where Jm is the equivalent inertia as seen by the armature, and Dm is the
equivalent viscous damping as seen by the armature.

Solving Eq. (3.90) for ia(t) and substituting the result into Eq. (3.89) yields

ea (t) = ( ) + ( + Kb)

Defining the state variables x1 and x2 as

x1 = θm

x2 =

dea

dt

dθm

dt

d2θm

dt2

dθm

dt

RaJm

Kt

d2θm

dt2

DmRa

Kt

dθm

dt

dθm

dt



(3.93)

(3.94)

(3.95a)

(3.95b)

(3.97a)

(3.97b)

(3.98a)

(3.98b)

(3.96)

and substituting into Eq. (3.91), we get

ea (t) = ( ) + ( + Kb)x2

Solving for dx2/dt yields

= − (Dm + )x2 + ( ) ea (t)

Using Eqs. (3.92) and (3.94), the state equations are written as

= x2

= − (Dm + )x2 + ( ) ea (t)

The output, θo(t), is 1/10 the displacement of the armature, which is x1. Hence,
the output equation is

y = 0.1x1

In vector-matrix form,

⋅x = [
0 1

0 − (Dm + ) ] x + [
0

] ea (t)

y = [ 0.1 0 ] x

But from the case study problem in Chapter 2, Jm = 0.03 and Dm = 0.02. Also, 
Kt/Ra = 0.0625 and Kb = 0.5. Substituting the values into Eq. (3.97a), we
obtain the final state-space representation:

⋅x = [ 0 1
0 −1.71

]x + [ 0
2.083

] ea (t)

y = [ 0.1 0 ] x

CHALLENGE:
You are now given a problem to test your knowledge of this chapter's objectives.
Referring to the antenna azimuth position control system shown in Appendix A2,

RaJm

Kt

dx2

dt

DmRa

Kt

dx2

dt

1
Jm

KtKb

Ra

Kt

RaJm

dx1

dt

dx2

dt

1
Jm

KtKb

Ra

Kt

RaJm

1
Jm

KtKb

Ra

Kt

RaJm



find the state-space representation of each dynamic subsystem. Use
Configuration 2.

Pharmaceutical Drug Absorption
An advantage of state-space representation over the transfer function
representation is the ability to focus on component parts of a system and write n
simultaneous, first-order differential equations rather than attempt to represent
the system as a single, nth-order differential equation, as we have done with the
transfer function. Also, multiple-input, multiple-output systems can be
conveniently represented in state space. This case study demonstrates both of
these concepts.

PROBLEM:
In the pharmaceutical industry we want to describe the distribution of a drug in
the body. A simple model divides the process into compartments: the dosage, the
absorption site, the blood, the peripheral compartment, and the urine. The rate
of change of the amount of a drug in a compartment is equal to the input flow
rate diminished by the output flow rate. Figure 3.16 summarizes the system.
Here each xi is the amount of drug in that particular compartment (Lordi, 1972).
Represent the system in state space, where the outputs are the amounts of drug
in each compartment.

FIGURE 3.16 Pharmaceutical drug-level concentrations in a human

SOLUTION:
The flow rate of the drug into any given compartment is proportional to the
concentration of the drug in the previous compartment, and the flow rate out of a
given compartment is proportional to the concentration of the drug in its own
compartment.

We now write the flow rate for each compartment. The dosage is released to the
absorption site at a rate proportional to the dosage concentration, or



(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104a)

(3.104b)

= −K1x1

The flow into the absorption site is proportional to the concentration of the drug
at the dosage site. The flow from the absorption site into the blood is
proportional to the concentration of the drug at the absorption site. Hence,

= K1x1 − K2x2

Similarly, the net flow rate into the blood and peripheral compartment is

= K2x2 − K3x3 + K4x4 − K5x3

= K5x3 − K4x4

where (K4x4 − K5x3) is the net flow rate into the blood from the peripheral
compartment. Finally, the amount of the drug in the urine is increased as the
blood releases the drug to the urine at a rate proportional to the concentration of
the drug in the blood. Thus,

= K3x3

Equations (3.99) through (3.103) are the state equations. The output equation is
a vector that contains each of the amounts, xi. Thus, in vector-matrix form,

⋅x =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

−K1 0 0 0 0
K1 −K2 0 0 0
0 K2 − (K3 + K5) K4 0

0 0 K5 −K4 0
0 0 K3 0 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

x

y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

x

You may wonder how there can be a solution to these equations if there is no
input. In Chapter 4, when we study how to solve the state equations, we will see

dx1

dt

dx2

dt

dx3

dt

dx4

dt

dx5

dt



that initial conditions will yield solutions without forcing functions. For this
problem, an initial condition on the amount of dosage, x1, will generate drug
quantities in all other compartments.

CHALLENGE:
We now give you a problem to test your knowledge of this chapter's objectives.
The problem concerns the storage of water in aquifers. The principles are similar
to those used to model pharmaceutical drug absorption.

Underground water supplies, called aquifers, are used in many areas for
agricultural, industrial, and residential purposes. An aquifer system consists of a
number of interconnected natural storage tanks. Natural water flows through the
sand and sandstone of the aquifer system, changing the water levels in the tanks
on its way to the sea. A water conservation policy can be established whereby
water is pumped between tanks to prevent its loss to the sea.

A model for the aquifer system is shown in Figure 3.17. In this model, the aquifer
is represented by three tanks, with water level hi called the head. Each qn is the
natural water flow to the sea and is proportional to the difference in head
between two adjoining tanks, or qn = Gn (hn − hn−1), where Gn is a constant of
proportionality and the units of qn are m3/yr.

FIGURE 3.17 Aquifer system model

The engineered flow consists of three components, also measured in m3/yr: (1)
flow from the tanks for irrigation, industry, and homes, qon; (2) replenishing of
the tanks from wells, qin; and (3) flow, q21, created by the water conservation
policy to prevent loss to the sea. In this model, water for irrigation and industry
will be taken only from Tank 2 and Tank 3. Water conservation will take place
only between Tank 1 and Tank 2, as follows. Let H1 be a reference head for Tank
1. If the water level in Tank 1 falls below H1, water will be pumped from Tank 2 to
Tank 1 to replenish the head. If h1 is higher than H1, water will be pumped back
to Tank 2 to prevent loss to the sea. Calling this flow for conservation q21, we can



(3.106)

(3.107)

(3.105)

say this flow is proportional to the difference between the head of Tank 1, h1, and
the reference head, H1, or q21 = G21 (H1 − h1).

The net flow into a tank is proportional to the rate of change of head in each tank.
Thus,

Cndhn/dt = qin − qon + qn+1 − qn + q(n+1)n − qn(n−1)

(Kandel, 1973).

Represent the aquifer system in state space, where the state variables and the
outputs are the heads of each tank.

Summary
This chapter has dealt with the state-space representation of physical systems, which
took the form of a state equation,

⋅x = Ax + Bu

and an output equation,

y = Cx + Du

for t ≥ t0, and initial conditions x(t0). Vector x is called the state vector and
contains variables, called state variables. The state variables can be combined
algebraically with the input to form the output equation, Eq. (3.106), from which any
other system variables can be found. State variables, which can represent physical
quantities such as current or voltage, are chosen to be linearly independent. The
choice of state variables is not unique and affects how the matrices A, B, C, and D
look. We will solve the state and output equations for x and y in Chapter 4.

In this chapter, transfer functions were represented in state space. The form selected
was the phase-variable form, which consists of state variables that are successive
derivatives of each other. In three-dimensional state space, the resulting system
matrix, A, for the phase-variable representation is of the form

⎡
⎢
⎣

0 1 0
0 0 1

−a0 −a1 −a2

⎤
⎥
⎦

where the ais are the coefficients of the characteristic polynomial or denominator of
the system transfer function. We also discussed how to convert from a state-space
representation to a transfer function.

In conclusion, then, for linear, time-invariant systems, the state-space representation
is simply another way of mathematically modeling them. One major advantage of



applying the state-space representation to such linear systems is that it allows
computer simulation. Programming the system on the digital computer and watching
the system's response is an invaluable analysis and design tool. Simulation is covered
in Appendix H located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Review Questions
1. Give two reasons for modeling systems in state space.

2. State an advantage of the transfer function approach over the state-space
approach.

3. Define state variables.

4. Define state.

5. Define state vector.

6. Define state space.

7. What is required to represent a system in state space?

8. An eighth-order system would be represented in state space with how many state
equations?

9. If the state equations are a system of first-order differential equations whose
solution yields the state variables, then the output equation performs what
function?

10. What is meant by linear independence?

11. What factors influence the choice of state variables in any system?

12. What is a convenient choice of state variables for electrical networks?

13. If an electrical network has three energy-storage elements, is it possible to have a
state-space representation with more than three state variables? Explain.

14. What is meant by the phase-variable form of the state equation?

Cyber Exploration Laboratory

EXPERIMENT 3.1
Objectives
To learn to use MATLAB to (1) generate an LTI state-space representation of a system
and (2) convert an LTI state-space representation of a system to an LTI transfer
function.

Minimum Required Software Packages
MATLAB and the Control System Toolbox

Prelab

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


1. Derive the state-space representation of the translational mechanical system
shown in Skill-Assessment Exercise 3.2 if you have not already done so. Consider
the output to be x3(t).

2. Derive the transfer function, , from the equations of motion for the

translational mechanical system shown in Skill-Assessment Exercise 3.2.

Lab

1. Use MATLAB to generate the LTI state-space representation derived in Prelab 1.

2. Use MATLAB to convert the LTI state-space representation found in Lab 1 to the
LTI transfer function found in Prelab 2.

Postlab

1. Compare your transfer functions as found from Prelab 2 and Lab 2.

2. Discuss the use of MATLAB to create LTI state-space representations and the use
of MATLAB to convert these representations to transfer functions.

EXPERIMENT 3.2
Objectives
To learn to use MATLAB and the Symbolic Math Toolbox to (1) find a symbolic
transfer function from the state-space representation and (2) find a state-space
representation from the equations of motion.

Minimum Required Software Packages
MATLAB, the Symbolic Math Toolbox, and the Control System Toolbox

Prelab

1. Perform Prelab 1 and Prelab 2 of Experiment 3.1 if you have not already done so.

2. Using the equation T (s) = C(sI − A)−1
B to find a transfer function from a

state-space representation, write a MATLAB program using the Symbolic Math
Toolbox to find the symbolic transfer function from the state-space
representation of the translational mechanical system shown in Skill-Assessment
Exercise 3.2 and found as a step in Prelab 1.

3. Using the equations of motion of the translational mechanical system shown in
Skill-Assessment Exercise 3.2 and found in Prelab 1, write a symbolic MATLAB
program to find the transfer function, , for this system.

Lab

X3(s)

F(s)

X3(s)

F(s)



1. Run the programs composed in Prelabs 2 and 3 and obtain the symbolic transfer
functions by the two methods.

Postlab

1. Compare the symbolic transfer function obtained from T (s) = C(sI − A)−1
B

with the symbolic transfer function obtained from the equations of motion.

2. Discuss the advantages and disadvantages between the two methods.

3. Describe how you would obtain an LTI state-space representation and an LTI
transfer function from your symbolic transfer function.

EXPERIMENT 3.3
Objectives
To learn to use LabVIEW to (1) generate state-space representations of transfer
functions, (2) generate transfer functions from state-space representations, and (3)
verify that there are multiple state-space representations for a transfer function.

Minimum Required Software Packages
LabVIEW, the LabVIEW Control Design and Simulation Module, and the MathScript
RT Module.

Prelab

1. Study Appendix D, Sections D.1 through D.4, Example D.1.

2. Solve Skill-Assessment Exercise 3.3.

3. Use your solution to Prelab 2 and convert back to the transfer function.

Lab

1. Use LabVIEW to convert the transfer function, G(s) = , into a state-
space representation using both the graphical and MathScript approaches. The
front panel will contain controls for the entry of the transfer function and
indicators of the transfer function and the two state-space results. Functions for
this experiment can be found in the following palettes: (1) Control Design and
Simulation/Control Design/Model Construction, (2) Control Design
and Simulation/Control Design/Model Conversion, and (3)
Programming/Structures Hint: Coefficients are entered in reverse order
when using MathScript with MATLAB.

2. Use LabVIEW to convert all state-space representations found in Lab 1 to a
transfer function. All state-space conversions should yield the transfer function
given in Lab 1. The front panel will contain controls for entering state-space
representations and indicators of the transfer function results as well as the state
equations used.

2s+1
s2+7s+9



Postlab

1. Describe any correlation found between the results of Lab 1 and calculations
made in the Prelab.

2. Describe and account for any differences between the results of Lab 1 and
calculations made in the Prelab.

3. Explain the results of Lab 2 and draw conclusions from the results.
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Notes
1 Since vL (t) = v (t) − vR (t) = v (t) − Ri (t).

2 Since = vL (t) = [v (t) − Ri (t)].

3 Since vL (t) = L (di/dt) = − (1/C) q − Ri + v (t), where di/dt can be found from
Eq. (3.9), and ∫ i dt = q.

4 Since vR (t) = i (t)R, and vC (t) = (1/C) ∫ i dt, differentiating vR(t) yields 
dvR/dt = R(di/dt)= (R/L ) vL =(R/L)[v(t)−vR − vC], and differentiating vC(t)
yields dvC/dt = (1/C) i = (1/RC) vR.

5 Sometimes it is not apparent in a schematic how many independent energy-storage
elements there are. It is possible that more than the minimum number of energy-
storage elements could be selected, leading to a state vector whose components
number more than the minimum required and are not linearly independent.

di

dt

1
L

1
L



Selecting additional dependent energy-storage elements results in a system matrix
of higher order and more complexity than required for the solution of the state
equations.

6 See Chapter 12 for state-space design techniques.

7 See Appendix G for a discussion of the transpose. Appendix G is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8 The Laplace transform of a vector is found by taking the Laplace transform of each
component. Since ⋅x consists of the derivatives of the state variables, the Laplace
transform of ⋅x with zero initial conditions yields each component with the form
sXi(s), where Xi(s) is the Laplace transform of the state variable. Factoring out the
complex variable, s, in each component yields the Laplace transform of ⋅x as s X(s),
where X(s) is a column vector with components Xi(s).

9 See Appendix G. It is located at www.wiley.com/college/nise and discusses the
evaluation of the matrix inverse.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/college/nise
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Chapter 4 Problems
 1. Derive the output responses for all parts of Figure 4.7. [Section: 4.4]

Check Answer!

2. For each one of the systems in Figure P4.1, find an analytic expression for the output. Also
indicate the time constant, rise time, and settling time. [Sections: 4.2, 4.3]

FIGURE P4.1

3. Assuming an uncharged capacitor in Figure P4.2, use Laplace tranform to find an
expression for the voltage across the capacitor after the switch closes at t = 0. Find the time
constant, rise time, and settling time for the calculated voltage. [Sections: 4.2, 4.3]

FIGURE P4.2

 4.  Plot the step response for Problem 3 using MATLAB. From your plots,
find the time constant, rise time, and settling time.

Check Answer!

5. For the system shown in Figure P4.3, (a) find an equation that relates settling time of the
velocity of the mass to M; (b) find an equation that relates rise time of the velocity of the
mass to M. [Sections: 4.2, 4.3]



FIGURE P4.3

6. For each of the transfer functions shown below, find the locations of the poles and zeros,
plot them on the s-plane, and then write an expression for the general form of the step
response without solving for the inverse Laplace transform. State the nature of each
response (overdamped, underdamped, and so on). [Sections: 4.3, 4.4]

a. T (s) =

b. T (s) =

c. T (s) =

d. T (s) =

e. T (s) =

f. T (s) =

7.  Find the poles of T(s)using MATLAB [Section: 4.2]

T (s) =

8. Find the transfer function and the corresponding poles for the following state-space
system: [Section: 4.10]

⋅
x =

⎡
⎢
⎣

8 −2 3

0 1 4

7 9 10

⎤
⎥
⎦

x +
⎡
⎢
⎣

2

1

−5

⎤
⎥
⎦
u (t)

y = [ 2 1 3 ] x; x (0) =
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦

9.  Repeat Problem 8 using MATLAB. [Section: 4.10]

10. Assume in Figure P4.4 that f(t) = u(t). Find x(t). [Section: 4.4]

2
s+2

5
(s+3)(s+6)

10(s+7)

(s+10)(s+20)

20

s2+6s+144

s+2

s2+9

(s+5)

(s+10)2

s2 + 5s + 10

s4 + 7s3 + 3s2 − 6s + 2



FIGURE P4.4

 11. Find the damping ratio and natural frequency for each second-order system of
Problem 6 and show that the value of the damping ratio conforms to the type of response
(underdamped, overdamped, and so on) predicted in that problem. [Section: 4.5]

Check Answer!

12. Using Laplace transforms, find the analytic expression for the output of a system that has
a dc gain of 1, a damping ratio of 0.25, and a natural frequency of 30 rad/sec. The system is
excited with a unit-step input. [Section: 4.6]

13. For each of the second-order systems that follow, find ζ, ωn, Ts, Tp, Tr, and %OS.
[Section: 4.6]

 a. T (s) =

Check Answer!

b. T (s) =

c. T (s) =

14.  Repeat Problem 13 using MATLAB. Have the computer program estimate the
given specifications and plot the step responses. Estimate the rise time from the

plots. [Section: 4.6]

15.  Use MATLAB's Linear System Analyzer and obtain settling time, peak time,
rise time, and percent overshoot for each of the systems in Problem 13. [Section:

4.6]

16. Find the location of the poles of second-order systems with the following specifications:
[Section: 4.6]

a. % OS = 15 %; Ts = 0.5 second

b. % OS = 8 %; Tp = 10 seconds

c. Ts = 1 seconds; Tp = 1.1 seconds

17. Consider the translational mechanical system of Figure P4.5. [Section: 4.6]

a. Find the transfer function G(s) = X(s)/F(s).

b. Assuming a unit step as the input, calculate ζ, ωn, % OS, Ts, Tp, Tr, and Cfinal.

16
s2+3s+16

0.04
s2+0.02s+0.04

1.05×107

s2+1.6×103s+1.05×107



FIGURE P4.5

 18. for the system shown in Figure P4.6, a step torque is applied at θ1 (t). Find:

a. The transfer function, G(s) = θ2 (s)/T(s)

b. The percent overshoot, settling time, and peak time for θ2 (t). [Section: 4.6]

FIGURE P4.6

Check Answer!

19. The derivation of Eq. (4.42) to calculate the settling time for a second-order system
assumed an underdamped system (ζ < 1). In this problem, you will calculate a similar result
for a critically damped system (ζ = 1).

a. Show that the unit-step response for a system with transfer function =  is

c(t) = 1 − e−at(1 + at). (Note: L{ }= te−at. Optional: You can derive this result

similarly to Example 2.2.)

b. Show that the settling time can be found by solving for Ts in e−aTs(1 + aTs) = 0.02.

c.  Use MATLAB to plot e−x(1 + x) = 0.02 vs. x. Use the plot to show that 
Ts = .

20. For the following transfer function with a unit-step input, find the percent overshoot,
settling time, rise time, peak time, and cfinal. T (s) =  [Section: 4.7]

 21. for each of the three unit step responses shown in Figure P4.7, find the transfer
function of the system. [Sections: 4.3, 4.6]

C(s)

R(s)
a2

(s+a)
2

1

(s+a)
2

5.834
a

300
(s2+2.4s+9)(s+25)





FIGURE P4.7

Check Answer!

22. Examine each one of the following response functions to see if it is possible to cancel the
zero with a pole. If it is, determine the approximate response, percent overshoot, settling
time, rise time, and peak time. [Section: 4.8].

a. C (s) =

b. C (s) =

c. C (s) =

d. C (s) =

FIGURE P4.8 Steps in determining the transfer function relating output
physical response to the input visual command

23.  Using MATLAB, plot the time response of Problem 22a and from the plot
determine percent overshoot, settling time, rise time, and peak time. [Section: 4.8]

(s+5)

s(s+1)(s2+3s+10)

(s+5)

s(s+2)(s2+4s+15)

(s+5)

s(s+4.5)(s2+2s+20)

(s+5)

s(s+4.9)(s2+5s+20)



 24. Find peak time, settling time, and percent overshoot for only those responses below
that can be approximated as second-order responses. [Section: 4.8]

a. 

c (t) = 0.003500 − 0.001524e−4t

−0.001976e−3t cos (22.16t)

−0.0005427e−3t sin (22.16t)

b. 

c (t) = 0.05100 − 0.007353e−8t

−0.007647e−6t cos (8t)

−0.01309e−6t sin (8t)

c. 

c (t) = 0.009804 − 0.0001857e−5.1t

−0.009990e−2t cos (9.796t)

−0.001942e−2t sin (9.796t)

d. 

c (t) = 0.007000 − 0.001667e−10t

−0.008667e−2t cos (9.951t)

−0.0008040e−2t sin (9.951t)

Check Answer!

25.  A system is represented by the state and output equations that follow. Without
solving the state equation, find the poles of the system. [Section: 4.10]

ẋ = [−1 3

−4 −2
]x +[ 3

1
]u(t)

y = [ 5 1 ]x

26.  Without solving the state equation, find [Section: 4.10]

a. the characteristic equation and

b. the poles of the system for

⋅
x =

⎡
⎢
⎣

3 2 1

1 1 0

1 5 0

⎤
⎥
⎦

x +
⎡
⎢
⎣

1

1

0

⎤
⎥
⎦
u (t)

y = [ 0 2 3 ] x

 27.  Given the following state-space representation of a system, find Y(s):
[Section: 4.10]

⋅
x = [ 1 2

−3 −1
]x +[ 1

1
]sin 3t

y = [ 1 2 ]x; x (0) =[ 3

1
]



Check Answer!

28.  Given the following system represented in state space, solve for Y(s) using the
Laplace transform method for solution of the state equation: [Section: 4.10]

⋅
x =

⎡
⎢
⎣

0 1 0

−2 −4 1

0 0 −6

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
e−t

y = [ 0 0 1 ]x; x (0) =
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦

29.  Use Laplace transforms to solve the following stage-space equation for y(t) when
the input u(t) is a unit step. [Section: 4.10]

ẋ = [−5 0

−1 −2
]x +[ 3

1
]u(t)

y = [ 1 0 ]x; x(0) =[ 1

0
]

 30. Solve for y(t) for the following system represented in state space, where u(t) is the
unit step. Use the Laplace transform approach to solve the state equation. [Section: 4.10]

⋅
x =

⎡
⎢
⎣

−3 1 0

0 −6 1

0 0 −5

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

1

1

⎤
⎥
⎦
u (t)

y = [ 0 1 1 , ] x; x (0) =
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦

Check Answer!

31.  Use MATLAB to plot the step response of Problem 30. [Section: 4.10]

32.  Repeat Problem 30 using MATLAB's Symbolic Math Toolbox and Eq. (4.96). In
addition, run your program with an initial condition,

x (0) =
⎡
⎢
⎣

1

1

0

⎤
⎥
⎦

. [Section: 4.10]

 33.  Using classical (not Laplace) methods only, solve for the state-transition
matrix, the state vector, and the output of the system represented here. [Section: 4.11]



⋅
x =[ 0 1

−1 −5
]x; y =[ 1 2 ]x;

x (0) =[ 1

0
]

Check Answer!

 34.  Solve for y(t) for the following system represented in state space, where u(t)
is the unit step. Use the classical approach to solve the state equation. [Section: 4.11]

⋅
x =

⎡
⎢
⎣

−2 1 0

0 0 1

0 −6 −1

⎤
⎥
⎦

x +
⎡
⎢
⎣

1

0

0

⎤
⎥
⎦
u (t)

y = [ 1 0 0 ]x; x (0) =
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦

Check Answer!

35. Repeat Problem 34 using MATLAB's Symbolic Math Toolbox and Eq. (4.109). In
addition, run your program with an initial condition,

x (0) =
⎡
⎢
⎣

1

1

0

⎤
⎥
⎦

. [Section: 4.11]

36.  Using methods described in Appendix H.1, simulate the following system and
plot the step response. Verify the expected values of percent overshoot, peak time, and
settling time.

T (s) =

 37. A human responds to a visual cue with a physical response, as shown in Figure P4.8.
The transfer function that relates the output physical response, P(s), to the input visual
command, V(s), is (Stefani, 1973).

G (s) = =

Do the following:

a. Evaluate the output response for a unit step input using the Laplace transform.

b.  Represent the transfer function in state space.

1

s2 + 0.8s + 1

P (s)

V (s)

(s + 0.5)

(s + 2) (s + 5)



c.  Use MATLAB to simulate the system and obtain a plot of the step
response.

Check Answer!

38. Upper motor neuron disorder patients can benefit and regain useful function through the
use of functional neuroprostheses. The design requires a good understanding of muscle
dynamics. In an experiment to determine muscle responses, the identified transfer function
was (Zhou, 1995)

M (s) =

Find the unit step response of this transfer function.

39. When electrodes are attached to the mastoid bones (right behind the ears) and current
pulses are applied, a person will sway forward and backward. It has been found that the
transfer function from the current to the subject's angle (in degrees) with respect to the
vertical is given by (Nashner, 1974)

=

a. Determine whether a dominant pole approximation can be applied to this transfer
function.

b. Find the body sway caused by a 250 μA pulse of 150 msec duration.

40. The response of the deflection of a fluid-filled catheter to changes in pressure can be
modeled using a second-order model. Knowledge of the parameters of the model is
important because in cardiovascular applications the undamped natural frequency should be
close to five times the heart rate. However, due to sterility and other considerations,
measurement of the parameters is difficult. A method to obtain transfer functions using
measurements of the amplitudes of two consecutive peaks of the response and their timing
has been developed (Glantz, 1979). Assume that Figure P4.9 is obtained from catheter
measurements. Using the information shown and assuming a second-order model excited by
a unit step input, find the corresponding transfer function.

2.5e−0.008s (1 + 0.172s) (1 + 0.008s)

(1 + 0.07s)
2
(1 + 0.05s)

2

θ (s)

I (s)

5.8 (0.3s + 1) e−0.1s

(s + 1) (s2/1.22 + 0.6s/1.2 + 1)



FIGURE P4.9

41. Several factors affect the workings of the kidneys. For example, Figure P4.10 shows how a
step change in arterial flow pressure affects renal blood flow in rats. In the “hot tail” part of
the experiment, peripheral thermal receptor stimulation is achieved by inserting the rat's tail
in heated water. Variations between different test subjects are indicated by the vertical lines.
It has been argued that the “control” and “hot tail” responses are identical except for their
steady-state values (DiBona, 2005).

a. Using Figure P4.10, obtain the normalized (Cfinal = 1) transfer functions for both
responses.

b.  Use MATLAB to prove or disprove the assertion about the “control” and
“hot tail” responses.



FIGURE P4.101

42. The transfer function of a nanopositioning device capable of translating biological
samples within a few μm uses a piezoelectric actuator and a linear variable differential
transformer (LDVT) as a displacement sensor. The transfer function from input to
displacement has been found to be (Salapaka, 2002)

G (s) =

Use a dominant-pole argument to find an equivalent transfer function with the same
numerator but only three poles.

 Use MATLAB to find the actual size and approximate system unit step responses,
plotting them on the same graph.

Explain the differences between both responses given that both pairs of poles are so far
apart.

43. At some point in their lives, most people will suffer from at least one onset of low back
pain. This disorder can trigger excruciating pain and temporary disability, but its causes are
hard to diagnose. It is well known that low back pain alters motor trunk patterns; thus it is of
interest to study the causes for these alterations and their extent. Due to the different
possible causes of this type of pain, a “control” group of people is hard to obtain for
laboratory studies. However, pain can be stimulated in healthy people and muscle movement
ranges can be compared. Controlled back pain can be induced by injecting saline solution
directly into related muscles or ligaments. The transfer function from infusion rate to pain
response was obtained experimentally by injecting a 5% saline solution at six different
infusion rates over a period of 12 minutes. Subjects verbally rated their pain every 15 seconds
on a scale from 0 to 10, with 0 indicating no pain and 10 unbearable pain. Several trials were
averaged and the data was fitted to the following transfer function:

G (s) =

9.7 × 104 (s2 − 14400s + 106.6 × 106)

(s2 + 3800s + 23.86 × 106) (s2 + 240s + 2324.8 × 103)

9.72 × 10−8 (s + 0.0001)

(s + 0.009)2 (s2 + 0.018s + 0.0001)



For experimentation, it is desired to build an automatic dispensing system to make the pain
level constant as shown in Figure P4.11. It follows that ideally the injection system transfer
function has to be

M (s) =

to obtain an overall transfer function M(s) G(s) ≈ 1. However, for implementation purposes,
M(s) must have at least one more pole than zeros (Zedka, 1999). Find a suitable transfer
function, M(s) by inverting G(s) and adding poles that are far from the imaginary axis.

FIGURE P4.11

44. An artificial heart works in closed loop by varying its pumping rate according to changes
in signals from the recipient's nervous system. For feedback compensation design, it is
important to know the heart's open-loop transfer function. To identify this transfer function,
an artificial heart is implanted in a calf while the main parts of the original heart are left in
place. Then the atrial pumping rate in the original heart is measured while step input
changes are effected on the artificial heart. It has been found that, in general, the obtained
response closely resembles that of a second-order system. In one such experiment, it was
found that the step response has a %OS = 30% and a time of first peak Tp = 127 sec
(Nakamura, 2002). Find the corresponding transfer function.

45. An observed transfer function from voltage potential to force in skeletal muscles is given
by (Ionescu, 2005)

T (s) =

a. Obtain the system's impulse response.

b. Integrate the impulse response to find the step response.

c. Verify the result in Part b by obtaining the step response using Laplace transform
techniques.

46. In typical conventional aircraft, longitudinal flight model linearization results in transfer
functions with two pairs of complex conjugate poles. Consequently, the natural response for
these airplanes has two modes in their natural response. The “short period” mode is
relatively well-damped and has a high-frequency oscillation. The “plugoid mode” is lightly
damped and its oscillation frequency is relatively low. For example, in a specific aircraft the
transfer function from wing elevator deflection to nose angle (angle of attack) is (McRuer,
1973)

= −

a. Find which of the poles correspond to the short period mode and which to the
phugoid mode.

1

G (s)

450

(s + 5)(s + 20)

θ (s)

δe (s)

26.12 (s + 0.0098) (s + 1.371)

(s2 + 8.99 × 10−3s + 3.97 × 10−3) (s2 + 4.21s + 18.23)



b. Peform a “phugoid approximation” (dominant-pole approximation), retaining the two
poles and the zero closest to the; ω-axis.

c.  Use MATLAB to compare the step responses of the original transfer
function and the approximation.

47.  A crosslapper is a machine that takes as an input a light fiber fabric and
produces a heavier fabric by laying the original fabric in layers rotated by 90

degrees. A feedback system is required in order to maintain consistent product width

and thickness by controlling its carriage velocity. The transfer function from

servomotor torque, Tm(s), to carriage velocity, Y(s), was developed for such a

machine (Kuo, 2008). Assume that the transfer function is:

G(s) = =

a. Use MATLAB to find the partial fraction residues and poles of G(s).

b. Find an approximation to G(s) by neglecting the second-order terms found in a.

c. Use MATLAB to plot on one graph the step response of the transfer function
given above and the approximation found in b. Explain the differences between the
two plots.

48.  Although the use of fractional calculus in control systems is not new, in
the last decade, there is increased interest in its use for several reasons. The most

relevant are that fractional calculus differential equations may model certain

systems with higher accuracy than integer differential equations, and that fractional

calculus compensators might exhibit advantageous properties for control system

design. An example of a transfer function obtained through fractional calculus is:

G(s) =

This function can be approximated with an integer rational transfer function (integer

powers of s) using Oustaloup's method (Xue, 2005). We ask you now to do a little

research and consult the aforementioned reference to find and run an M-file that will

calculate the integer rational transfer function approximation to G(s) and plot its

step response.

49. Mathematical modeling and control of pH processes are quite challenging since the
processes are highly nonlinear, due to the logarithmic relationship between the
concentration of hydrogen ions [H+] and pH level. The transfer function from input pH to
output pH is Ga(s) = = , where we assume a delay of 3.3 seconds. Ga(s) is a

model for the anaerobic process in a wastewater treatment system in which methane
bacteria need the pH to be maintained in its optimal range from 6.8 to 7.2 (Jiayu, 2009).
Similarly, Elarafi (2008) used empirical techniques to model a pH neutralization plant as a
second-order system with a pure delay, yielding the following transfer function relating
output pH to input pH:

Gp(s) = =

Y (s)

Tm(s)

33s4 + 202s3 + 10061s2 + 24332s + 170704

s7 + 8s6 + 464s5 + 2411s4 + 52899s3 + 167829s2 + 913599s + 1076555

1

s2.5 + 4s1.7 + 3s0.5 + 5

Ya(s)

Ya(s)
14.49e−3.3s

1478.26s+1

Yp(s)

Xp(s)

1.716 × 10−5e−25s

s2 + 6.989 × 10−3s + 1.185 × 10−6



where we assume a delay of 25 seconds.

a. Find analytical expressions for the unit-step responses ya(t) and yp(t) for the two
processes, Ga(s) and Gp(s). (Hint: Use the time shift theorem in Table 2.2).

b.  Use Simulink to plot ya(t) and yp(t) on a single graph.

50.  An IPMC (ionic polymer-metal composite) is a Nafion sheet plated with gold on
both sides. An IPMC bends when an electric field is applied across its thickness. IPMCs have
been used as robotic actuators in several applications and as active catheters in biomedical
applications. With the aim of improving actuator settling times, a state-space model has
been developed for a 20 mm × 10 mm × 0.2 mm polymer sample (Mallavarapu, 2001):

[
⋅x1
⋅x2

] =[−8.34 −2.26

1 0
][ x1

x2

]+[ 1

0
]u

y =[ 12.54 2.26 ][ x1

x2

]

where u is the applied input voltage and y is the deflection at one of the material's tips when
the sample is tested in a cantilever arrangement.

a. Find the state-transition matrix for the system.

b. From Eq. (4.109) in the text, it follows that if a system has zero initial conditions, the
system output for any input can be directly calculated from the state-space
representation and the state-transition matrix using

y (t) = Cx (t) = ∫ CΦ (t − τ) Bu (τ) dτ

Use this equation to find the zero initial condition unit step response of the IPMC
material sample.

c.  Use MATLAB to verify that your step response calculation in Part b is
correct.

51. Figure P4.12 shows the free-body diagrams for planetary gear components used in the
variable valve timing (VVT) system of an internal combustion engine (Ren, 2010). Here an
electric motor is used to drive the carrier. Analysis showed that the electric motor with
planetary gear load (Figure P4.12) may be represented by the following equation:

Ωc(s) = Ge(s)Ea(s) + Gm(s)Tcam(s)

where Ωc(s) is the output carrier angular speed in rad/s, Ea(s) is the input voltage applied to
the armature, and Tcam(s) is the input load torque. The voltage input transfer function,
Ge(s), is

Ge(s) ≅ =

and the load torque input transfer function, Gm(s), is

Kτ

Rm(Js + D) + KτKm

45

0.2s + 1



Gm(s) ≅ =

Find an analytical expression for the output carrier angular speed, ωc(t), if a step voltage of
100 volts is applied at t = 0 followed by an equivalent load torque of 10 N-m, applied at t =
0.4 sec.

FIGURE P4.12 Free-body diagrams of planetary gear system components2

52. A drive system with elastically coupled load (Figure P4.13) has a motor that is connected
to the load via a gearbox and a long shaft.

The system parameters are: JM = drive-side inertia = 0.0338 kg-m2, JL = load-side inertia =
0.1287 kg-m2, K = CT = torsional spring constant = 1700 N-m/rad, and D = damping
coefficient = 0.15 N-m-s/rad.

This system can be reduced to a simple two-inertia model that may be represented by the
following transfer function, relating motor shaft speed output, Ω(s), to electromagnetic
torque input (Thomsen, 2011):

G(s) = = ⋅

 Assume the system is at standstill at t = 0, when the electromagnetic torque,
Tem, developed by the motor changes from zero to 50 N-m. Find and plot on one graph,

using MATLAB or any other program, the motor shaft speed, ω(t), rad/sec, for the

following two cases:

a. No load torque is applied and, thus, ω = ωnl.

b. A load torque, TL = 0.2 ω(t) N-m is applied and ω = ωL.

−Rmk

Rm(Js + D) + KτKm

−5

0.2s + 1

Ω(s)

Tem(s)

1

s(JM + JL)

s2 + s + 1
JL

CT

D

CT

s2 + s + 1
JMJL

CT (JM+JL)
D

CT



FIGURE P4.13 Partial topology of a typical motor drive system3

53. An inverted pendulum mounted on a motor-driven cart was presented in Problem 25 of
Chapter 3. The nonlinear state-space equations representing that system were linearized
(Prasad, 2012) around a stationary point corresponding to the pendulum point-mass, m,
being in the upright position (x0 = 0 at t = 0), when the force applied to the cart was zero
(u0 = 0). The state-space model developed in that problem is

ẋ = Ax + Bu

The state variables are the pendulum angle relative to the y-axis, θ, its angular speed, θ′, the
horizontal position of the cart, x, and its speed, x′. The horizontal position of m (for a small
angle, θ), xm = x + lsinθ = x + lθ, was selected to be the output variable.

 Given the state-space model developed in that problem along with the output
equation you developed in that problem, use MATLAB (or any other computer program)

to find and plot the output, xm(t), in meters, for an input force, u(t), equal to a

unit impulse, δ(t), in Newtons.

DESIGN PROBLEMS
54. Consider the translational mechanical system shown in Figure P4.14. A 1-pound force,
f(t), is applied at t = 0. If fv = 1, find K and M such that the response is characterized by a 4-
second settling time and a 1-second peak time. Also, what is the resulting percent overshoot?
[Section: 4.6]

FIGURE P4.14

55. Given the translational mechanical system of Figure P4.14, where K = 1 and f(t) is a unit
step, find the values of M and fv to yield a response with 17% overshoot and a settling time of
10 seconds. [Section: 4.6]

56. Given the system shown in Figure P4.15, find the damping, D, to yield a 30% overshoot
in output angular displacement for a step input in torque. [Section: 4.6]



FIGURE P4.15

57. Find M and K, shown in the system of Figure P4.16, to yield x(t) with 16% overshoot and
20 seconds settling time for a step input in motor torque, Tm (t). [Section: 4.6]

FIGURE P4.16

 58. If vi (t) is a step voltage in the network shown in Figure P4.17, find the value of the
resistor such that a 20% overshoot in voltage will be seen across the capacitor if C = 10−6 F
and L = 1 H. [Section: 4.6]

FIGURE P4.17

Check Answer!

59. If vi (t) is a step voltage in the network shown in Figure P4.17, find the values of R and C
to yield a 20% overshoot and a 1 ms settling time for vc (t) if L = 1 H. [Section: 4.6]



60. Given the circuit of Figure P 4.17, where C = 10μF, find R and L to yield 15% overshoot
with a settling time of 7 ms for the capacitor voltage. The input, v(t), is a unit step. [Section:
4.6]

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

61.  Control of HIV/AIDS. In Chapter 3, Problem 26, we developed a linearized
state-space model of HIV infection. The model assumed that two different drugs were used
to combat the spread of the HIV virus. Since this book focuses on single-input, single-output
systems, only one of the two drugs will be considered. We will assume that only RTIs are
used as an input. Thus, in the equations of Chapter 3, Problem 26, u2 = 0 (Craig, 2004).

a. Show that when using only RTIs in the linearized system of Problem 26, Chapter 3,
and substituting the typical parameter values given in the table of Problem 26c, Chapter
3, the resulting state-space representation for the system is given by

⎡
⎢ ⎢
⎣

⋅
T
⋅
T

∗

⋅v

⎤
⎥ ⎥
⎦

=
⎡
⎢
⎣
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⎦

b. Obtain the transfer function from RTI efficiency to virus count; namely, find .

c. Assuming RTIs are 100% effective, what will be the steady-state change of virus count
in a given infected patient? Express your answer in virus copies per ml of plasma.
Approximately how much time will the medicine take to reach its maximum possible
effectiveness?

62. Hybrid vehicle. Assume that the car motive dynamics for a hybrid electric vehicle
(HEV) can be described by the transfer function

=

where AV is the change of velocity in m/sec and ΔFe is the change in excess motive force in
N necessary to propel the vehicle.

a. Find an analytical expression for Δv(t) for a step change in excess motive force ΔFe = 
2650 N.

b.  Simulate the system using MATLAB. Plot the expression found in Part a
together with your simulated plot.

63. Parabolic trough collector. Figure P4.18 illustrates the results of an open-loop step-
response experiment performed on a parabolic trough collector setup (Camacho, 2012). In

Y (s)

U1(s)

ΔV (s)

ΔFe(s)

1

1908s + 10



this experiment, the fluid flow on the system is suddenly decreased 1 liter/sec at t = 0 hours,
resulting in a temperature increase as shown in Figure P4.18. Use the figure to find an
approximate transfer function for the system. (Note: Since no further information is given
on the system dynamics and due to visual approximations, several solutions are possible.)

FIGURE P4.18

Notes
1 DiBona G.F. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney
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2 Ren Z., and Zhu G. G. Modeling and Control of an Electric Variable Valve Timing System for SI
and HCCI Combustion Mode Transition. American Control Conference, San Francisco, CA,
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Republish in a book via Copyright Clearance Center.

3 Thomsen, S., Hoffmann, N., and Fuchs, F. W. “PI Control, PI-Based State Space Control, and
Model-Based Predictive Control for Drive Systems With Elastically Coupled Loads—A
Comparative Study.” IEEE Transactions On Industrial Electronics, Vol. 58, No. 8, August
2011, pp. 3647–3657. Portion of Figure 1, p. 3648. American Control Conference (ACC), 2011
by IEEE. Reproduced with permission of IEEE in the format Republish in a book via
Copyright Clearance Center.



Chapter 4 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Use poles and zeros of transfer functions to determine the time response of a
control system (Sections 4.1–4.2)

Describe quantitatively the transient response of first-order systems (Section 4.3)

Write the general response of second-order systems given the pole location
(Section 4.4)

Find the damping ratio and natural frequency of a second-order system (Section
4.5)

Find the settling time, peak time, percent overshoot, and rise time for an
underdamped second-order system (Section 4.6)

Approximate higher-order systems and systems with zeros as first- or second-
order systems (Sections 4.7–4.8)

Describe the effects of nonlinearities on the system time response (Section 4.9)

Find the time response from the state-space representation (Sections 4.10–4.11)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown in Appendix A2, you
will be able to (1) predict, by inspection, the form of the open-loop angular
velocity response of the load to a step voltage input to the power amplifier; (2)
describe quantitatively the transient response of the open-loop system; (3) derive
the expression for the open-loop angular velocity output for a step voltage input;
(4) obtain the open-loop state-space representation; and (5) plot the open-loop
velocity step response using a computer simulation.

Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle's pitch control system shown in Appendix A3, you will be able to predict,
find, and plot the response of the vehicle dynamics to a step input command.
Further, you will be able to evaluate the effect of system zeros and higher-order
poles on the response. You also will be able to evaluate the roll response of a ship
at sea.

4.1 Introduction
In Chapter 2, we saw how transfer functions can represent linear, time-invariant
systems. In Chapter 3, systems were represented directly in the time domain via the
state and output equations. After the engineer obtains a mathematical representation
of a subsystem, the subsystem is analyzed for its transient and steady-state responses
to see if these characteristics yield the desired behavior. This chapter is devoted to the
analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the modeling of
closed-loop systems, rather than to break the modeling sequence with the analysis
presented here in Chapter 4. However, the student should not continue too far into
system representation without knowing the application for the effort expended. Thus,
this chapter demonstrates applications of the system representation by evaluating the
transient response from the system model. Logically, this approach is not far from
reality, since the engineer may indeed want to evaluate the response of a subsystem
prior to inserting it into the closed-loop system.

After describing a valuable analysis and design tool, poles, and zeros, we begin
analyzing our models to find the step response of first- and second-order systems. The
order refers to the order of the equivalent differential equation representing the
system—the order of the denominator of the transfer function after cancellation of
common factors in the numerator or the number of simultaneous first-order equations
required for the state-space representation.

4.2 Poles, Zeros, and System Response
The output response of a system is the sum of two responses: the forced response
and the natural response.1 Although many techniques, such as solving a differential



equation or taking the inverse Laplace transform, enable us to evaluate this output
response, these techniques are laborious and time-consuming. Productivity is aided by
analysis and design techniques that yield results in a minimum of time. If the
technique is so rapid that we feel we derive the desired result by inspection, we
sometimes use the attribute qualitative to describe the method. The use of poles and
zeros and their relationship to the time response of a system is such a technique.
Learning this relationship gives us a qualitative “handle” on problems. The concept of
poles and zeros, fundamental to the analysis and design of control systems, simplifies
the evaluation of a system's response. The reader is encouraged to master the concepts
of poles and zeros and their application to problems throughout this book. Let us
begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable, s,
that cause the transfer function to become infinite or (2) any roots of the denominator
of the transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the definition. For
example, the roots of the characteristic polynomial in the denominator are values of s
that make the transfer function infinite, so they are thus poles. However, if a factor of
the denominator can be canceled by the same factor in the numerator, the root of this
factor no longer causes the transfer function to become infinite. In control systems, we
often refer to the root of the canceled factor in the denominator as a pole even though
the transfer function will not be infinite at this value. Hence, we include part (2) of the
definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable, s,
that cause the transfer function to become zero or (2) any roots of the numerator of
the transfer function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this definition. For
example, the roots of the numerator are values of s that make the transfer function
zero and are thus zeros. However, if a factor of the numerator can be canceled by the
same factor in the denominator, the root of this factor no longer causes the transfer
function to become zero. In control systems, we often refer to the root of the canceled
factor in the numerator as a zero even though the transfer function will not be zero at
this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s = − 5, and a zero
exists at −2. These values are plotted on the complex s-plane in Figure 4.1(b), using a 
× for the pole and a ○ for the zero. To show the properties of the poles and zeros, let us
find the unit step response of the system. Multiplying the transfer function of Figure
4.1(a) by a step function yields



(4.1)

(4.2)

C (s) = = + = +

where

A = ∣
∣s→0

=

B = ∣
∣s→−5

=

Thus,

c (t) = + e−5t

From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (i.e., the
pole at the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (i.e.,
the pole at −5 generated e−5t).

3. A pole on the real axis generates an exponential response of the form e−αt, where
−α is the pole location on the real axis. Thus, the farther to the left a pole is on the
negative real axis, the faster the exponential transient response will decay to zero
(again, the pole at −5 generated e−5t; see Figure 4.2 for the general case).

4. The zeros and poles generate the amplitudes for both the forced and natural
responses [this can be seen from the calculation of A and B in Eq. (4.1)].
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FIGURE 4.1 a. System showing input and output; b. pole-zero plot of
the system; c. evolution of a system response. Follow blue arrows to
see the evolution of the response component generated by the pole
or zero.



FIGURE 4.2 Effect of a real axis pole upon transient response.

Let us now look at an example that demonstrates the technique of using poles to
obtain the form of the system response. We will learn to write the form of the response
by inspection. Each pole of the system transfer function that is on the real axis
generates an exponential response that is a component of the natural response. The
input pole generates the forced response.



(4.3)

(4.4)

Example 4.1 Evaluating Response Using Poles
PROBLEM:
Given the system of Figure 4.3, write the output, c(t), in general terms. Specify the
forced and natural parts of the solution.

FIGURE 4.3 System for Example 4.1

SOLUTION:
By inspection, each system pole generates an exponential as part of the natural
response. The input's pole generates the forced response. Thus,

C(s) ≡

└−−┘

Forced

response

+ + +

└−−−−−−−−−−−−−−−−−−−┘

Natural

response

Taking the inverse Laplace transform, we get

c(t) ≡ K1
└−−┘
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(4.5)

(4.6)

Skill-Assessment Exercise 4.1
PROBLEM:

A system has a transfer function, G (s) = . Write, by

inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER:

c (t) ≡ A + Be−t + Ce−7t + De−8t + Ee−10t

In this section, we learned that poles determine the nature of the time response:
Poles of the input function determine the form of the forced response, and poles of
the transfer function determine the form of the natural response. Zeros and poles
of the input or transfer function contribute to the amplitudes of the component
parts of the total response. Finally, poles on the real axis generate exponential
responses.

4.3 First-Order Systems
We now discuss first-order systems without zeros to define a performance
specification for such a system. A first-order system without zeros can be described by
the transfer function shown in Figure 4.4(a). If the input is a unit step, where R(s) =
1/s, the Laplace transform of the step response is C(s), where

C (s) = R (s)G (s) =

Taking the inverse transform, the step response is given by

c (t) = cf (t) + cn (t) = 1 − e−at

where the input pole at the origin generated the forced response cf (t) = 1, and the
system pole at −a, as shown in Figure 4.4(b), generated the natural response cn (t) = −
e−at. Equation (4.6) is plotted in Figure 4.5.
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FIGURE 4.4 a. First-order system; b. Pole plot

FIGURE 4.5 First-order system response to a unit step



(4.7)

(4.8)

Virtual Experiment 4.1 First-Order Transfer Function
Put theory into practice and find a first-order transfer function representing the
Quanser Rotary Servo. Then validate the model by simulating it in LabVIEW.
Such a servo motor is used in mechatronic gadgets such as cameras.

Run Experiment 4.1

Let us examine the significance of parameter a, the only parameter needed to describe
the transient response. When t = 1/a,

e−at ∣∣ t=1/a
= e−1 = 0.37

or

c (t)| t=1/a = 1 − e−at ∣∣ t=1/a = 1 − 0.37 = 0.63

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance
specifications.

Time Constant
We call 1/a the time constant of the response. From Eq. (4.7), the time constant can
be described as the time for e−at to decay to 37% of its initial value. Alternately, from
Eq. (4.8), the time constant is the time it takes for the step response to rise to 63% of
its final value (see Figure 4.5).

The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we
can call the parameter a the exponential frequency. Since the derivative of e−at is −a
when t = 0, a is the initial rate of change of the exponential at t = 0. Thus, the time
constant can be considered a transient response specification for a first-order system,
since it is related to the speed at which the system responds to a step input.

The time constant can also be evaluated from the pole plot [see Figure 4.4(b)]. Since
the pole of the transfer function is at −a, we can say the pole is located at the
reciprocal of the time constant, and the farther the pole from the imaginary axis, the
faster the transient response.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp04.zip


(4.9)

(4.10)

(4.11)

Let us look at other transient response specifications, such as rise time, Tr, and
settling time, Ts, as shown in Figure 4.5.

Rise Time, Tr

Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final
value. Rise time is found by solving Eq. (4.6) for the difference in time at c (t) = 0.9
and c (t) = 0.1. Hence,

Tr = − =

Settling Time, Ts

Settling time is defined as the time for the response to reach, and stay within, 2% of
its final value.2 Letting c (t) = 0.98 in Eq. (4.6) and solving for time, t, we find the
settling time to be

Ts =

First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system's transfer function analytically.
Perhaps the system is closed, and the component parts are not easily identifiable.
Since the transfer function is a representation of the system from input to output, the
system's step response can lead to a representation even though the inner construction
is not known. With a step input, we can measure the time constant and the steady-
state value, from which the transfer function can be calculated.

Consider a simple first-order system, G(s) = K/(s + a), whose step response is

C (s) = = −

If we can identify K and a from laboratory testing, we can obtain the transfer function
of the system.

For example, assume the unit step response given in Figure 4.6. We determine that it
has the first-order characteristics we have seen thus far, such as no overshoot and
nonzero initial slope. From the response, we measure the time constant, that is, the
time for the amplitude to reach 63% of its final value. Since the final value is about
0.72, the time constant is evaluated where the curve reaches 0.63 × 0.72 = 0.45, or
about 0.13 second. Hence, a = 1/0.13 = 7.7.
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FIGURE 4.6 Laboratory results of a system step response test

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-state
value of K/a = 0.72. Substituting the value of a, we find K = 5.54. Thus, the transfer
function for the system is G(s) = 5.54/(s + 7.7). It is interesting to note that the
response of Figure 4.6 was generated using the transfer function G(s) = 5/(s + 7).

Skill-Assessment Exercise 4.2
PROBLEM:

A system has a transfer function, G (s) = . Find the time constant, Tc,
settling time, Ts, and rise time, Tr.

ANSWER:

Tc = 0.02 s, Ts = 0.08 s, and Tr = 0.044 s.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

4.4 Second-Order Systems: Introduction
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http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system's parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form of
the response. For example, a second-order system can display characteristics much
like a first-order system, or, depending on component values, display damped or pure
oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our discussion
in the next section, we take a look at numerical examples of the second-order system
responses shown in Figure 4.7. All examples are derived from Figure 4.7(a), the
general case, which has two finite poles and no zeros. The term in the numerator is
simply a scale or input multiplying factor that can take on any value without affecting
the form of the derived results. By assigning appropriate values to parameters a and b,
we can show all possible second-order transient responses. The unit step response
then can be found using C(s) = R(s) G(s), where R(s) = 1/s, followed by a partial-
fraction expansion and the inverse Laplace transform. Details are left as an end-of-
chapter problem, for which you may want to review Section 2.2.



FIGURE 4.7 Second-order systems, pole plots, and step responses

We now explain each response and show how we can use the poles to determine the
nature of the response without going through the procedure of a partial-fraction
expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,



(4.12)

(4.13)

C (s) = =

This function has a pole at the origin that comes from the unit step input and two real
poles that come from the system. The input pole at the origin generates the constant
forced response; each of the two system poles on the real axis generates an exponential
natural response whose exponential frequency is equal to the pole location. Hence, the
output initially could have been written as c (t) = K1 + K2e−7.854t + K3e−1.146t. This
response, shown in Figure 4.7(b), is called overdamped.3 We see that the poles tell us
the form of the response without the tedious calculation of the inverse Laplace
transform.

Underdamped Response, Figure 4.7 (c)
For this response,

C (s) =

This function has a pole at the origin that comes from the unit step input and two
complex poles that come from the system. We now compare the response of the
second-order system to the poles that generated it. First we will compare the pole
location to the time function, and then we will compare the pole location to the plot.
From Figure 4.7(c), the poles that generate the natural response are at s = −1 ± j√8.
Comparing these values to c(t) in the same figure, we see that the real part of the pole
matches the exponential decay frequency of the sinusoid's amplitude, while the
imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure 4.8 shows a general, damped
sinusoidal response for a second-order system. The transient response consists of an
exponentially decaying amplitude generated by the real part of the system pole times a
sinusoidal waveform generated by the imaginary part of the system pole. The time
constant of the exponential decay is equal to the reciprocal of the real part of the
system pole. The value of the imaginary part is the actual frequency of the sinusoid, as
depicted in Figure 4.8. This sinusoidal frequency is given the name damped
frequency of oscillation, ωd. Finally, the steady-state response (unit step) was
generated by the input pole located at the origin. We call the type of response shown in
Figure 4.8 an underdamped response, one which approaches a steady-state value
via a transient response that is a damped oscillation.
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FIGURE 4.8 Second-order step response components generated by
complex poles

The following example demonstrates how a knowledge of the relationship between the
pole location and the transient response can lead rapidly to the response form without
calculating the inverse Laplace transform.

Example 4.2 Form of Underdamped Response Using Poles
PROBLEM:
By inspection, write the form of the step response of the system in Figure 4.9.

FIGURE 4.9 System for Example 4.3

SOLUTION:
First we determine that the form of the forced response is a step. Next we find the
form of the natural response. Factoring the denominator of the transfer function
in Figure 4.9, we find the poles to be s = − 5 ±j13.23. The real part, −5, is the
exponential frequency for the damping. It is also the reciprocal of the time
constant of the decay of the oscillations. The imaginary part, 13.23, is the radian
frequency for the sinusoidal oscillations. Using our previous discussion and Figure
4.7(c) as a guide, we obtain c (t) = K1 + e−5t (K2 cos 13.23t + K3 sin 13.23t) = K1 +

K4e−5t (cos 13.23t − ϕ), where ϕ = tan−1K3/K2, K4 = √K2
2 + K2

3 , and c(t) is a

constant plus an exponentially damped sinusoid.



(4.14)

(4.15)

We will revisit the second-order underdamped response in Sections 4.5 and 4.6, where
we generalize the discussion and derive some results that relate the pole position to
other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

C (s) =

This function has a pole at the origin that comes from the unit step input and two
imaginary poles that come from the system. The input pole at the origin generates the
constant forced response, and the two system poles on the imaginary axis at ±j3
generate a sinusoidal natural response whose frequency is equal to the location of the
imaginary poles. Hence, the output can be estimated as c (t) = K1 + K4 cos(3t − ϕ). This
type of response, shown in Figure 4.7(d), is called undamped. Note that the absence of
a real part in the pole pair corresponds to an exponential that does not decay.
Mathematically, the exponential is e−0t = 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

C (s) = =

This function has a pole at the origin that comes from the unit step input and two
multiple real poles that come from the system. The input pole at the origin generates
the constant forced response, and the two poles on the real axis at −3 generate a
natural response consisting of an exponential and an exponential multiplied by time,
where the exponential frequency is equal to the location of the real poles. Hence, the
output can be estimated as c (t) = K1 + K2e−3t + K3te−3t. This type of response, shown
in Figure 4.7(e), is called critically damped. Critically damped responses are the
fastest possible without the overshoot that is characteristic of the underdamped
response.

We now summarize our observations. In this section, we defined the following natural
responses and found their characteristics:

1. Overdamped responses
Poles: Two real at −σ1, − σ2

Natural response: Two exponentials with time constants equal to the reciprocal
of the pole locations, or

c (t) = K1e
−σ1t + K2e

−σ2t
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s (s2 + 6s + 9)

9

s(s + 3)2



2. Underdamped responses
Poles: Two complex at −σd ±jωd

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole's real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part
of the poles, or

c (t) = Ae−σdt cos (ωdt − ϕ)

3. Undamped responses
Poles: Two imaginary at ±jω1Natural response: Undamped sinusoid with radian
frequency equal to the imaginary part of the poles, or

c (t) = A cos (ω1t − ϕ)

4. Critically damped responses
Poles: Two real at −σ1

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t, and an
exponential with time constant equal to the reciprocal of the pole location, or

c (t) = K1e
−σ1t + K2te

−σ1t

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division
between the overdamped cases and the underdamped cases and is the fastest response
without overshoot.



FIGURE 4.10 Step responses for second-order system damping cases



Skill-Assessment Exercise 4.3
PROBLEM:
For each of the following transfer functions, write, by inspection, the general form
of the step response:

a. G (s) =

b. G (s) =

c. G (s) =

d. G (s) =

ANSWERS:

a. c (t) = A + Be−6t cos(19.08t + ϕ)

b. c (t) = A + Be−78.54t + Ce−11.46t

c. c (t) = A + Be−15t + Cte−15t

d. c (t) = A + B cos(25t + ϕ)

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In the next section, we will formalize and generalize our discussion of second-order
responses and define two specifications used for the analysis and design of second-
order systems. In Section 4.6, we will focus on the underdamped case and derive some
specifications unique to this response that we will use later for analysis and design.

4.5 The General Second-Order System
Now that we have become familiar with second-order systems and their responses, we
generalize the discussion and establish quantitative specifications defined in such a
way that the response of a second-order system can be described to a designer without
the need for sketching the response. In this section, we define two physically
meaningful specifications for second-order systems. These quantities can be used to
describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, ωn

The natural frequency of a second-order system is the frequency of oscillation of
the system without damping. For example, the frequency of oscillation of a series RLC

400
s2+12s+400

900
s2+90s+900

225
s2+30s+225

625
s2+625

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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(4.18)

(4.19)

circuit with the resistance shorted would be the natural frequency.

Damping Ratio, ζ
Before we state our next definition, some explanation is in order. We have already
seen that a second-order system's underdamped step response is characterized by
damped oscillations. Our definition is derived from the need to quantitatively describe
this damped oscillation regardless of the time scale. Thus, a system whose transient
response goes through three cycles in a millisecond before reaching the steady state
would have the same measure as a system that went through three cycles in a
millennium before reaching the steady state. For example, the underdamped curve in
Figure 4.10 has an associated measure that defines its shape. This measure remains
the same even if we change the time base from seconds to microseconds or to
millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless of
the time scale of the response. Also, the reciprocal, which is proportional to the ratio of
the natural period to the exponential time constant, remains the same regardless of
the time base.

We define the damping ratio, ζ, to be

ζ = =

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be
transformed to show the quantities ζ and ωn. Consider the general system

G (s) =

Without damping, the poles would be on the jω-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a = 0. Hence,

G (s) =

By definition, the natural frequency, ωn, is the frequency of oscillation of this system.
Since the poles of this system are on the jω-axis at ± j√b,

ωn = √b

Hence,

b = ω2
n

Exponential decay frequency

Natural frequency (rad/second)
1

2π

Natural period (seconds)

Exponential time constant

b

s2 + as + b

b

s2 + b
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Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the complex
poles have a real part, σ, equal to −a/2. The magnitude of this value is then the
exponential decay frequency described in Section 4.4. Hence,

ζ = = =

from which

a = 2ζωn

Our general second-order transfer function finally looks like this:

G (s) =

In the following example, we find numerical values for ζ and ωn by matching the
transfer function to Eq. (4.22).

Example 4.3 Finding ζ and ωn For a Second-Order System

PROBLEM:
Given the transfer function of Eq. (4.25), find ζ and ωn.

G (s) =

SOLUTION:
Comparing Eq. (4.25) to (4.22), ω2

n = 36, from which ωn = 6. Also, 2ζωn = 4.2.
Substituting the value of ωn, ζ = 0.35.

Now that we have defined ζ and ωn, let us relate these quantities to the pole location.
Solving for the poles of the transfer function in Eq. (4.22) yields

s1, 2 = −ζωn ± ωn√ζ2 − 1

From Eq. (4.23), we see that the various cases of second-order response are a function
of ζ; they are summarized in Figure 4.11.4

Exponential decay frequency

Natural frequency (rad/second)

|σ |

ωn

a/2

ωn

ω2
n

s2+2ζωns+ω2
n

36

s2 + 4.2s + 36



FIGURE 4.11 Second-order response as a function of damping ratio

In the following example, we find the numerical value of ζ and determine the nature of
the transient response.
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Example 4.4 Characterizing Response from the Value of ζ
PROBLEM:
For each of the systems shown in Figure 4.12, find the value of ζ and report the
kind of response expected.

FIGURE 4.12 Systems for Example 4.4

SOLUTION:
First match the form of these systems to the forms shown in Eqs. (4.16) and
(4.22). Since a = 2ζωn and ωn = √b,

ζ =

Using the values of a and b from each of the systems of Figure 4.12, we find ζ =
1.155 for system (a), which is thus overdamped, since ζ > 1; ζ = 1 for system (b),
which is thus critically damped; and ζ = 0.894 for system (c), which is thus
underdamped, since ζ < 1.

a

2√b
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Skill-Assessment Exercise 4.4
PROBLEM:
For each of the transfer functions in Skill-Assessment Exercise 4.3, do the
following: (1) Find the values of ζ and ωn; (2) characterize the nature of the
response.

ANSWERS:

a. ζ = 0.3, ωn = 20; system is underdamped

b. ζ = 1.5, ωn = 30; system is overdamped

c. ζ = 1, ωn = 15; system is critically damped

d. ζ = 0, ωn = 25; system is undamped

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

This section defined two specifications, or parameters, of second-order systems:
natural frequency, ωn, and damping ratio, ζ. We saw that the nature of the response
obtained was related to the value of ζ. Variations of damping ratio alone yield the
complete range of overdamped, critically damped, underdamped, and undamped
responses.

4.6 Underdamped Second-Order Systems
Now that we have generalized the second-order transfer function in terms of ζ and ωn,
let us analyze the step response of an underdamped second-order system. Not only
will this response be found in terms of ζ and ωn, but also more specifications
indigenous to the underdamped case will be defined. The underdamped second-order
system, a common model for physical problems, displays unique behavior that must
be itemized; a detailed description of the underdamped response is necessary for both
analysis and design. Our first objective is to define transient specifications associated
with underdamped responses. Next we relate these specifications to the pole location,
drawing an association between pole location and the form of the underdamped
second-order response. Finally, we tie the pole location to system parameters, thus
closing the loop: Desired response generates required system components.

Let us begin by finding the step response for the general second-order system of Eq.
(4.22). The transform of the response, C(s), is the transform of the input times the
transfer function, or

C (s) = = +
ω2
n

s (s2 + 2ζωns + ω2
n)

K1

s

K2s + K3

s2 + 2ζωns + ω2
n
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where it is assumed that ζ < 1 (the underdamped case). Expanding by partial fractions,
using the methods described in Section 2.2, Case 3, yields

C (s) = −

Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

c (t) = 1 − e−ζωnt(cos ωn√1 − ζ2t + sin ωn√1 − ζ2t)

= 1 − e−ζωnt cos(ωn√1 − ζ2t − ϕ)

where ϕ = tan−1 (ζ/√1 − ζ2).

A plot of this response appears in Figure 4.13 for various values of ζ, plotted along a
time axis normalized to the natural frequency. We now see the relationship between
the value of ζ and the type of response obtained: The lower the value of ζ, the more
oscillatory the response. The natural frequency is a time-axis scale factor and does not
affect the nature of the response other than to scale it in time.

FIGURE 4.13 Second-order underdamped responses for damping ratio
values

1

s

(s + ζωn) + ωn√1 − ζ2ζ

√1−ζ2

(s + ζωn)2 + ω2
n (1 − ζ2)

ζ

√1−ζ2

1
√1−ζ2



We have defined two parameters associated with second-order systems, ζ and ωn.
Other parameters associated with the underdamped response are rise time, peak time,
percent overshoot, and settling time. These specifications are defined as follows (see
also Figure 4.14):

1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final
value to 0.9 of the final value.

2. Peak time, TP. The time required to reach the first, or maximum, peak.

3. Percent overshoot, %OS. The amount that the waveform overshoots the
steady-state, or final, value at the peak time, expressed as a percentage of the
steady-state value.

4. Settling time, Ts. The time required for the transient's damped oscillations to
reach and stay within ±2 % of the steady-state value.

FIGURE 4.14 Second-order underdamped response specifications

Notice that the definitions for settling time and rise time are basically the same as the
definitions for the first-order response. All definitions are also valid for systems of
order higher than 2, although analytical expressions for these parameters cannot be
found unless the response of the higher-order system can be approximated as a
second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the
transient response. This information can help a designer determine if the speed and
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the nature of the response do or do not degrade the performance of the system. For
example, the speed of an entire computer system depends on the time it takes for a
hard drive head to reach steady state and read data; passenger comfort depends in
part on the suspension system of a car and the number of oscillations it goes through
after hitting a bump.

We now evaluate Tp, %OS, and Ts as functions of ζ and ωn. Later in this chapter, we
relate these specifications to the location of the system poles. A precise analytical
expression for rise time cannot be obtained; thus, we present a plot and a table
showing the relationship between ζ and rise time.

Evaluation of Tp

Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after
t = 0. This task is simplified by “differentiating” in the frequency domain using Item 7
of Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

L [ ⋅c (t)] = sC (s) =

Completing squares in the denominator, we have

L [ċ (t)] = =

Therefore,

ċ (t) = e−ζωnt sin ωn√1 − ζ2t

Setting the derivative equal to zero yields

ωn√1 − ζ2t = nπ

or

t =

Each value of n yields the time for local maxima or minima. Letting n = 0 yields t = 0,
the first point on the curve in Figure 4.14 that has zero slope. The first peak, which
occurs at the peak time, Tp, is found by letting n = 1 in Eq. (4.33):

ω2
n

s2 + 2ζωns + ω2
n

ω2
n

(s + ζωn)2 + ω2
n (1 − ζ2)

ωn√1 − ζ2ωn

√1−ζ2

(s + ζωn)2 + ω2
n (1 − ζ2)

ωn

√1 − ζ2

nπ

ωn√1 − ζ2
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(4.39)
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Tp =

Evaluation of %OS
From Figure 4.14, the percent overshoot, %OS, is given by

%OS = × 100

The term cmax is found by evaluating c(t) at the peak time, c(Tp). Using Eq. (4.34) for
Tp and substituting into Eq. (4.28) yields

cmax = c (Tp) = 1 − e
−(ζπ/√1−ζ2)(cos π + sin π)

= 1 + e
−(ζπ/√1−ζ2)

For the unit step used for Eq. (4.28),

cfinal = 1

Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%OS = e
−(ζπ/√1−ζ2)

× 100

Notice that the percent overshoot is a function only of the damping ratio, ζ.

Whereas Eq. (4.38) allows one to find %OS given ζ, the inverse of the equation allows
one to solve for ζ given %OS. The inverse is given by

ζ =

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) [or,
equivalently, (4.39)] is plotted in Figure 4.15.

π

ωn√1−ζ2

cmax − cfinal

cfinal

ζ

√1−ζ2

−ln(%OS/100)

√π2+ln2(%OS/100)
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FIGURE 4.15 Percent overshoot versus damping ratio

Evaluation of Ts

In order to find the settling time, we must find the time for which c(t) in Eq. (4.28)
reaches and stays within ±2 % of the steady-state value, cfinal. Using our definition, the
settling time is the time it takes for the amplitude of the decaying sinusoid in Eq.
(4.28) to reach 0.02, or

e−ζωnt = 0.02

This equation is a conservative estimate, since we are assuming that 
cos(ωn√1 − ζ2t − ϕ) = 1 at the settling time. Solving Eq. (4.40) for t, the settling

time is

Ts =

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ζ varies from
0 to 0.9. Let us agree on an approximation for the settling time that will be used for all
values of ζ; let it be

Ts =

1

√1 − ζ2

−ln(0.02√1 − ζ2)

ζωn

4
ζωn



Evaluation of Tr

A precise analytical relationship between rise time and damping ratio, ζ, cannot be
found. However, using a computer and Eq. (4.28), the rise time can be found. We first
designate ωnt as the normalized time variable and select a value for ζ. Using the
computer, we solve for the values of ωnt that yield c (t) = 0.9 and c (t) = 0.1.
Subtracting the two values of ωnt yields the normalized rise time, ωnTr, for that value
of ζ. Continuing in like fashion with other values of ζ, we obtain the results plotted in
Figure 4.16.5 Let us look at an example.

FIGURE 4.16 Normalized rise time versus damping ratio for a second-
order underdamped response



(4.43)

Example 4.5 Finding Tp, %OS, Ts, and Tr from a Transfer
Function
PROBLEM:
Given the transfer function

G (s) =

find Tp, %OS, Ts, and Tr.

SOLUTION:
ωn and ζ are calculated as 10 and 0.75, respectively. Now substitute ζ and ωn into
Eqs. (4.34), (4.38), and (4.42), and find, respectively, that Tp = 0.475 second, %
OS = 2.838, and Ts = 0.533 second. Using the table in Figure 4.16, the normalized
rise time is approximately 2.3 seconds. Dividing by ωn yields Tr = 0.23 second.
This problem demonstrates that we can find Tp, %OS, Ts, and Tr without the
tedious task of taking an inverse Laplace transform, plotting the output response,
and taking measurements from the plot.

Virtual Experiment 4.2 Second-Order System Response
Put theory into practice studying the effect that natural frequency and
damping ratio have on controlling the speed response of the Quanser Linear
Servo in LabVIEW. This concept is applicable to automobile cruise controls or
speed controls of subways or trucks.

Run Experiment 4.2

We now have expressions that relate peak time, percent overshoot, and settling time to
the natural frequency and the damping ratio. Now let us relate these quantities to the
location of the poles that generate these characteristics.

100

s2 + 15s + 100

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp05.zip
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The pole plot for a general, underdamped second-order system, previously shown in
Figure 4.11, is reproduced and expanded in Figure 4.17 for focus. We see from the
Pythagorean theorem that the radial distance from the origin to the pole is the natural
frequency, ωn, and the cos θ = ζ.

FIGURE 4.17 Pole plot for an underdamped second-order system

Now, comparing Eqs. (4.34) and (4.42) with the pole location, we evaluate peak time
and settling time in terms of the pole location. Thus,

Tp = =

Ts = =

where ωd is the imaginary part of the pole and is called the damped frequency of
oscillation, and σd is the magnitude of the real part of the pole and is the
exponential damping frequency.

Equation (4.44) shows that Tp is inversely proportional to the imaginary part of the
pole. Since horizontal lines on the s-plane are lines of constant imaginary value, they
are also lines of constant peak time. Similarly, Eq. (4.45) tells us that settling time is
inversely proportional to the real part of the pole. Since vertical lines on the s-plane
are lines of constant real value, they are also lines of constant settling time. Finally,
since ζ = cos θ, radial lines are lines of constant ζ. Since percent overshoot is only a
function of ζ, radial lines are thus lines of constant percent overshoot, %OS. These
concepts are depicted in Figure 4.18, where lines of constant Tp, Ts, and %OS are
labeled on the s-plane.

π

ωn√1 − ζ2

π

ωd

4

ζωn

π

σd



FIGURE 4.18 Lines of constant peak time, Tp, settling time, Ts, and
percent overshoot, %OS. Note: Ts2 < Ts1 ;Tp2 < Tp1; %OS1 < %OS2.

At this point, we can understand the significance of Figure 4.18 by examining the
actual step response of comparative systems. Depicted in Figure 4.19(a) are the step
responses as the poles are moved in a vertical direction, keeping the real part the
same. As the poles move in a vertical direction, the frequency increases, but the
envelope remains the same since the real part of the pole is not changing. The figure
shows a constant exponential envelope, even though the sinusoidal response is
changing frequency. Since all curves fit under the same exponential decay curve, the
settling time is virtually the same for all waveforms. Note that as overshoot increases,
the rise time decreases.



FIGURE 4.19 Step responses of second-order underdamped systems as
poles move: a. with constant real part; b. with constant imaginary part;
c. with constant damping ratio

Let us move the poles to the right or left. Since the imaginary part is now constant,
movement of the poles yields the responses of Figure 4.19(b). Here the frequency is
constant over the range of variation of the real part. As the poles move to the left, the
response damps out more rapidly, while the frequency remains the same. Notice that
the peak time is the same for all waveforms because the imaginary part remains the
same.



Moving the poles along a constant radial line yields the responses shown in Figure
4.19(c). Here the percent overshoot remains the same. Notice also that the responses
look exactly alike, except for their speed. The farther the poles are from the origin, the
more rapid the response.

We conclude this section with some examples that demonstrate the relationship
between the pole location and the specifications of the second-order underdamped
response. The first example covers analysis. The second example is a simple design
problem consisting of a physical system whose component values we want to design to
meet a transient response specification. An animation PowerPoint presentation (PPT)
demonstrating second-order principles is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See Second-Order Step
Response.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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Example 4.6 Finding Tp, %OS, and Ts from Pole Location

PROBLEM:
Given the pole plot shown in Figure 4.20, find ζ, ωn, Tp, % OS, and Ts.

FIGURE 4.20 Pole plot for Example 4.8

SOLUTION:
The damping ratio is given by ζ = cos θ = cos[arctan(7/3)] = 0.394. The natural
frequency, ωn, is the radial distance from the origin to the pole, or 

ωn = √72 + 32 = 7.616. The peak time is

Tp = = = 0.449 second

The percent overshoot is

%OS = e
−(ζπ/√1−ζ2)

× 100 = 26%

π

ωd

π

7
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The approximate settling time is

Ts = = = 1.333 seconds

 Students who are using MATLAB should now run ch4apB1 in Appendix B.
You will learn how to generate a second-order polynomial from two complex

poles as well as extract and use the coefficients of the polynomial to

calculate Tp, %OS, and Ts. This exercise uses MATLAB to solve the problem

in Example 4.8.

4

σd

4

3

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_4.zip
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Example 4.7 Transient Response Through Component
Design
PROBLEM:
Given the system shown in Figure 4.21, find J and D to yield 20% overshoot and a
settling time of 2 seconds for a step input of torque T(t).

FIGURE 4.21 Rotational mechanical system for Example 4.7

SOLUTION:
First, the transfer function for the system is

G (s) =

From the transfer function,

ωn = √

and

2ζωn =

But, from the problem statement,

Ts = 2 =

or ζωn = 2. Hence,

2ζωn = 4 =

Also, from Eqs. (4.50) and (4.52),

1/J

s2 + s +D
J

K
J

K

J

D

J

4

ζωn

D

J
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ζ = = 2√

From Eq. (4.39), a 20% overshoot implies ζ = 0.456. Therefore, from Eq. (4.54),

ζ = 2√ = 0.456

Hence,

= 0.052

From the problem statement, K = 5 N-m / rad. Combining this value with Eqs.
(4.53) and (4.56), D = 1.04 N-m-s/rad, and J = 0.26 kg-m2.

Second-Order Transfer Functions via Testing
Just as we obtained the transfer function of a first-order system experimentally, we
can do the same for a system that exhibits a typical underdamped second-order
response. Again, we can measure the laboratory response curve for percent overshoot
and settling time, from which we can find the poles and hence the denominator. The
numerator can be found, as in the first-order system, from a knowledge of the
measured and expected steady-state values. A problem at the end of the chapter
illustrates the estimation of a second-order transfer function from the step response.

4

2ωn

J

K

J

K

J

K



Skill-Assessment Exercise 4.5
PROBLEM:
Find ζ, ωn, Ts, Tp, Tr, and %OS for a system whose transfer function is 
G (s) = .

ANSWERS:

ζ = 0.421, ωn = 19, Ts = 0.5 s, Tp = 0.182 s, Tr = 0.079 s, and %OS = 23.3%.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 4.1
Use the following MATLAB statements to calculate the answers to Skill-
Assessment Exercise 4.5. Ellipses mean code continues on next line.

numg=361;
deng=[1 16 361];
omegan=sqrt(deng(3).../deng(1))
zeta=(deng(2)/deng(1)).../(2*omegan)
Ts=4/(zeta*omegan) Tp=pi/(omegan*sqrt ...(1-zeta^2))
pos=100*exp(-zeta*...pi/sqrt(1-zeta^2))
Tr=(1.768*zeta^3 -...0.417*zeta^2 + 1.039*... zeta + 1)/omegan

Now that we have analyzed systems with two poles, how does the addition of another
pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles
In the last section, we analyzed systems with one or two poles. It must be emphasized
that the formulas describing percent overshoot, settling time, and peak time were
derived only for a system with two complex poles and no zeros. If a system such as that
shown in Figure 4.22 has more than two poles or has zeros, we cannot use the
formulas to calculate the performance specifications that we derived. However, under
certain conditions, a system with more than two poles or with zeros can be
approximated as a second-order system that has just two complex dominant poles.
Once we justify this approximation, the formulas for percent overshoot, settling time,
and peak time can be applied to these higher-order systems by using the location of
the dominant poles. In this section, we investigate the effect of an additional pole on
the second-order response. In the next section, we analyze the effect of adding a zero
to a two-pole system.

361
s2+16s+361

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_4.zip
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FIGURE 4.22 Robot follows input commands from a human trainer

Let us now look at the conditions that would have to exist in order to approximate the
behavior of a three-pole system as that of a two-pole system. Consider a three-pole
system with complex poles and a third pole on the real axis. Assuming that the
complex poles are at −ζωn ± jωn√1 − ζ2 and the real pole is at −αr, the step
response of the system can be determined from a partial-fraction expansion. Thus, the
output transform is

C (s) = + +

or, in the time domain,

c (t) = Au (t) + e−ζωnt (B cos ωdt + C sin ωdt) + De−αrt

A

s

B (s + ζωn) + Cωd

(s + ζωn)2 + ω2
d

D

s + αr



The component parts of c(t) are shown in Figure 4.23 for three cases of αr. For Case I, 
αr = αr1

 and is not much larger than ζωn; for Case II, αr = αr2
 and is much larger

than ζωn; and for Case III, αr = ∞.

FIGURE 4.23 Component responses of a three-pole system: a. pole plot;
b. component responses: Nondominant pole is near dominant second-
order pair (Case I), far from the pair (Case II), and at infinity (Case III)

Let us direct our attention to Eq. (4.58) and Figure 4.23. If αr ≫ ζωn (Case II), the
pure exponential will die out much more rapidly than the second-order underdamped
step response. If the pure exponential term decays to an insignificant value at the time
of the first overshoot, such parameters as percent overshoot, settling time, and peak
time will be generated by the second-order underdamped step response component.
Thus, the total response will approach that of a pure second-order system (Case III).

If αr is not much greater than ζωn (Case I), the real pole's transient response will not
decay to insignificance at the peak time or settling time generated by the second-order
pair. In this case, the exponential decay is significant, and the system cannot be
represented as a second-order system.



(4.59)

(4.60a)

(4.60b)

(4.61)

The next question is, How much farther from the dominant poles does the third pole
have to be for its effect on the second-order response to be negligible? The answer of
course depends on the accuracy for which you are looking. However, this book
assumes that the exponential decay is negligible after five time constants. Thus, if the
real pole is five times farther to the left than the dominant poles, we assume that the
system is represented by its dominant second-order pair of poles.

What about the magnitude of the exponential decay? Can it be so large that its
contribution at the peak time is not negligible? We can show, through a partial-
fraction expansion, that the residue of the third pole, in a three-pole system with
dominant second-order poles and no zeros, will actually decrease in magnitude as the
third pole is moved farther into the left half-plane. Assume a step response, C(s), of a
three-pole system:

C (s) = = + +

where we assume that the nondominant pole is located at −c on the real axis and that
the steady-state response approaches unity. Evaluating the constants in the numerator
of each term,

A = 1; B =

C = ; D =

As the nondominant pole approaches ∞, or c → ∞,

A = 1; B = −1; C = −a; D = 0

Thus, for this example, D, the residue of the nondominant pole and its response,
becomes zero as the nondominant pole approaches infinity.

The designer can also choose to forgo extensive residue analysis, since all system
designs should be simulated to determine final acceptance. In this case, the control
systems engineer can use the “five times” rule of thumb as a necessary but not
sufficient condition to increase the confidence in the second-order approximation
during design, but then simulate the completed design.

Let us look at an example that compares the responses of two different three-pole
systems with that of a second-order system.

bc

s (s2 + as + b) (s + c)

A

s

Bs + C

s2 + as + b

D

s + c

ca − c2

c2 + b − ca

ca2 − c2a − bc

c2 + b − ca

−b

c2 + b − ca



(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

Example 4.8 Comparing Responses of Three-Pole Systems
PROBLEM:
Find the step response of each of the transfer functions shown in Eqs. (4.62)
through (4.64) and compare them.

T1 (s) =

T2 (s) =

T3 (s) =

SOLUTION:
The step response, Ci (s), for the transfer function, Ti (s), can be found by
multiplying the transfer function by 1/s, a step input, and using partial-fraction
expansion followed by the inverse Laplace transform to find the response, ci (t).
With the details left as an exercise for the student, the results are

c1 (t) = 1 − 1.09e−2t cos (4.532t − 23.8°)

c2 (t) = 1 − 0.29e−10t − 1.189e−2t cos (4.532t − 53.34°)

c3 (t) = 1 − 1.14e−3t + 0.707e−2t cos (4.532t + 78.63°)

The three responses are plotted in Figure 4.24. Notice that c2 (t), with its third
pole at −10 and farthest from the dominant poles, is the better approximation of
c1 (t), the pure second-order system response; c3 (t), with a third pole close to the
dominant poles, yields the most error.

24.542

s2 + 4s + 24.542

245.42

(s + 10) (s2 + 4s + 24.542)

73.626

(s + 3) (s2 + 4s + 24.542)



FIGURE 4.24 Step responses of system T1 (s), system T2 (s), and
system T3 (s)

 Students who are using MATLAB should now run ch4apB2 in Appendix B.
You will learn how to generate a step response for a transfer function and

how to plot the response directly or collect the points for future use. The

example shows how to collect the points and then use them to create a

multiple plot, title the graph, and label the axes and curves to produce

the graph in Figure 4.24 to solve Example 4.8.

 System responses can alternately be obtained using Simulink. Simulink
is a software package that is integrated with MATLAB to provide a graphical

user interface (GUI) for defining systems and generating responses. The

reader is encouraged to study Appendix C, which contains a tutorial on

Simulink as well as some examples. One of the illustrative examples,

Example C.1, solves Example 4.8 using Simulink.

 Another method to obtain systems responses is through the use of
MATLAB's Linear System Analyzer. An advantage of the Linear System Analyzer

is that it displays the values of settling time, peak time, rise time,

maximum response, and the final value on the step response plot. The reader

is encouraged to study Appendix E, which contains a tutorial on the Linear

System Analyzer as well as some examples. Example E.1 solves Example 4.8

using the Linear System Analyzer.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_4.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Simulink_Files_in_Appendix_C_for_Chapter_4.zip


Skill-Assessment Exercise 4.6
PROBLEM:
Determine the validity of a second-order approximation for each of these two
transfer functions:

a. G (s) =

b. G (s) =

ANSWERS:

a. The second-order approximation is valid.

b. The second-order approximation is not valid.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 4.2
Use the following MATLAB and Control System Toolbox statements to
investigate the effect of the additional pole in Skill-Assessment Exercise
4.6(a). Move the higher-order pole originally at −15 to other values by
changing “a” in the code.

a=15
numga=100*a;
denga=conv([1 a],...[1 4 100]);
Ta=tf (numga,denga);
numg=100;
deng=[1 4 100];
T=tf (numg,deng);
step(Ta,'.',T,'-')

4.8 System Response with Zeros
Now that we have seen the effect of an additional pole, let us add a zero to the second-
order system. In Section 4.2, we saw that the zeros of a response affect the residue, or
amplitude, of a response component but do not affect the nature of the response—
exponential, damped sinusoid, and so on. In this section, we add a real axis zero to a
two-pole system. The zero will be added first in the left half-plane and then in the right
half-plane and its effects noted and analyzed. We conclude the section by talking about
pole-zero cancellation.

700
(s+15)(s2+4s+100)

360
(s+4)(s2+2s+90)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_4.zip


TryIt 4.3
Use the following MATLAB and Control System Toolbox statements to generate
Figure 4.25.

deng=[1 2 9];
Ta=tf([1 3]*9/3,deng);
Tb=tf([1 5]*9/5,deng);
Tc=tf([1 10]*9/10,deng);
T=tf(9,deng);
step(T,Ta,Tb,Tc)
text(0.5,0.6,'no zero')
text(0.4,0.7,...'zero at −10')
text(0.35,0.8,...'zero at −5')
text(0.3,0.9,'zero at −3')

FIGURE 4.25 Effect of adding a zero to a two-pole system

Starting with a two-pole system with poles at (− 1 ±j 2.828), we consecutively add
zeros at −3, −5, and −10. The results, normalized to the steady-state value, are plotted
in Figure 4.25. We can see that the closer the zero is to the dominant poles, the greater
its effect on the transient response. As the zero moves away from the dominant poles,
the response approaches that of the two-pole system. This analysis can be reasoned via
the partial-fraction expansion. If we assume a group of poles and a zero far from the
poles, the residue of each pole will be affected the same by the zero. Hence, the relative
amplitudes remain appreciably the same. For example, assume the partial-fraction
expansion shown in Eq. (4.68):

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_4.zip


(4.68)

(4.69)

(4.70)

T (s) = = +

= +

If the zero is far from the poles, then a is large compared to b and c, and

T (s) ≈ a[ + ]=

Hence, the zero looks like a simple gain factor and does not change the relative
amplitudes of the components of the response.

Another way to look at the effect of a zero, which is more general, is as follows
(Franklin, 1991): Let C(s) be the response of a system, T(s), with unity in the
numerator. If we add a zero to the transfer function, yielding (s + a) T(s), the Laplace
transform of the response will be

(s + a)C (s) = sC (s) + aC (s)

Thus, the response of a system with a zero consists of two parts: the derivative of the
original response and a scaled version of the original response. If a, the negative of the
zero, is very large, the Laplace transform of the response is approximately aC(s), or a
scaled version of the original response. If a is not very large, the response has an
additional component consisting of the derivative of the original response. As a
becomes smaller, the derivative term contributes more to the response and has a
greater effect. For step responses, the derivative is typically positive at the start of a
step response. Thus, for small values of a, we can expect more overshoot in second-
order systems because the derivative term will be additive around the first overshoot.
This reasoning is borne out by Figure 4.25.

An interesting phenomenon occurs if a is negative, placing the zero in the right half-
plane. From Eq. (4.70), we see that the derivative term, which is typically positive
initially, will be of opposite sign from the scaled response term. Thus, if the derivative
term, sC(s), is larger than the scaled response, aC(s), the response will initially follow
the derivative in the opposite direction from the scaled response. The result for a
second-order system is shown in Figure 4.26, where the sign of the input was reversed
to yield a positive steady-state value. Notice that the response begins to turn toward
the negative direction even though the final value is positive. A system that exhibits
this phenomenon is known as a nonminimum-phase system. If a motorcycle or
airplane was a nonminimum-phase system, it would initially veer left when
commanded to steer right.6

(s+a)

(s+b)(s+c)
A

s+b

B
s+c

(−b+a)/(−b+c)

s+b

(−c+a)/(−c+b)
s+c

1/ (−b + c)

s + b

1/ (−c + b)

s + c

a

(s + b) (s + c)



FIGURE 4.26 Step response of a nonminimum-phase system

Let us now look at an example of an electrical nonminimum-phase network.



(4.71)

(4.72)

(4.73)

Example 4.9 Transfer Function of a Nonminimum-Phase
System
PROBLEM:

a. Find the transfer function, Vo (s)/Vi (s) for the operational amplifier circuit
shown in Figure 4.27.

b. If R1 = R2, this circuit is known as an all-pass filter, since it passes sine waves
of a wide range of frequencies without attenuating or amplifying their
magnitude (Dorf, 1993). We will learn more about frequency response in
Chapter 10. For now, let R1 = R2, R3C = 1/10, and find the step response of
the filter. Show that component parts of the response can be identified with
those in Eq. (4.70).

FIGURE 4.27 Nonminimum-phase electric circuit6

SOLUTION:

a. Remembering from Chapter 2 that the operational amplifier has a high input
impedance, the current, I(s), through R1 and R2, is the same and is equal to

I (s) =

Also,

Vo (s) = A (V2 (s) − V1 (s))

But,

V1 (s) = I (s)R1 + Vo (s)

Vi (s) − Vo (s)

R1 + R2



(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

Substituting Eq. (4.71) into (4.73),

V1 (s) = (R1Vi (s) + R2V0 (s))

Using voltage division,

V2 (s) = Vi (s)

Substituting Eqs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields

=

Since the operational amplifier has a large gain, A, let A approach infinity.
Thus, after simplification

= = −

b. Letting R1 = R2 and R3C = 1/10,

= = −

For a step input, we evaluate the response as suggested by Eq. (4.70):

C (s) = − = − + 10 = sCo (s) − 10Co (s)

where

Co (s) = −

is the Laplace transform of the response without a zero. Expanding Eq.
(4.79) into partial fractions,

1

R1 + R2

1/Cs

R3 + 1
Cs

Vo (s)

Vi (s)

A (R2 − R1R3Cs)

(R3Cs + 1)R1 + R2 (1 + A)

Vo (s)

Vi (s)

R2 − R1R3Cs

R2R3Cs + R2

R1

R2

(s − )R2

R1R3C

(s + )1
R3C

Vo (s)

Vi (s)

(s − )1
R3C

(s + )1
R3C

(s − 10)

(s + 10)

(s − 10)

s(s + 10)

1

s + 10

1

s (s + 10)

1

s (s + 10)



(4.81)

(4.82)

(4.83)

(4.84)

C (s) = − + 10 = − + − = −

or the response with a zero is

c (t) = −e−10t + 1 − e−10t = 1 − 2e−10t

Also, from Eq. (4.80),

Co (s) = − +

or the response without a zero is

co (t) = − + e−10t

The normalized responses are plotted in Figure 4.28. Notice the immediate
reversal of the nonminimum-phase response, c(t).

FIGURE 4.28 Step response of the nonminimum-phase network of
Figure 4.27 (c(t)) and normalized step response of an equivalent
network without the zero (−10co (t))

Example E.1 Using Linear System Analyzer.

We conclude this section by talking about pole-zero cancellation and its effect on our
ability to make second-order approximations to a system. Assume a three-pole system
with a zero as shown in Eq. (4.85). If the pole term, (s + p3), and the zero term, (s + z),
cancel out, we are left with

1

s + 10

1

s (s + 10)

1

s + 10

1

s

1

s + 10

1

s

2

s + 10

1/10

s

1/10

s + 10

1

10

1

10

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_E_for_Chapter_4.zip


(4.85)
T (s) =

as a second-order transfer function. From another perspective, if the zero at −z is very
close to the pole at −p3, then a partial-fraction expansion of Eq. (4.85) will show that
the residue of the exponential decay is much smaller than the amplitude of the second-
order response. Let us look at an example.

K (s + z)

(s + p3) (s2 + as + b)



(4.86)

(4.87)

(4.88)

Example 4.10 Evaluating Pole-Zero Cancellation Using
Residues
PROBLEM:
For each of the response functions in Eqs. (4.86) and (4.87), determine whether
there is cancellation between the zero and the pole closest to the zero. For any
function for which pole-zero cancellation is valid, find the approximate response.

C1 (s) =

C2 (s) =

TryIt 4.4
Use the following MATLAB and Symbolic Math Toolbox statements to
evaluate the effect of higher-order poles by finding the component parts of the
time response of c1 (t) and c2 (t) in Example 4.10.

syms s
C1 = 26.25*(s+4)/…(s*(s + 3.5)*…(s+5)*(s+6));
C2 = 26.25*(s+4)/…(s*(s+4.01)*…(s+5)*(s + 6));
c1 = ilaplace(C1);
'c1'
c1 = vpa(c1,3)
c2 = ilaplace(C2);
c2 = vpa(c2,3)
'c2'
pretty(c2);

SOLUTION:
The partial-fraction expansion of Eq. (4.86) is

C1 (s) = − + −

The residue of the pole at −3.5, which is closest to the zero at −4, is equal to 1 and
is not negligible compared to the other residues. Thus, a second-order step
response approximation cannot be made for C1 (s). The partial-fraction expansion
for C2 (s) is

26.25 (s + 4)

s (s + 3.5) (s + 5) (s + 6)

26.25 (s + 4)

s (s + 4.01) (s + 5) (s + 6)

1

s

3.5

s + 5

3.5

s + 6

1

s + 3.5

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_4.zip


(4.89)

(4.90)

(4.91)

C2 (s) = − + +

The residue of the pole at −4.01, which is closest to the zero at −4, is equal to
0.033, about two orders of magnitude below any of the other residues. Hence, we
make a second-order approximation by neglecting the response generated by the
pole at −4.01:

C2 (s) ≈ − +

and the response c2 (t) is approximately

c2 (t) ≈ 0.87 − 5.3e−5t + 4.4e−6t

Skill-Assessment Exercise 4.7
PROBLEM:
Determine the validity of a second-order step-response approximation for each
transfer function shown below.

a. G (s) =

b. G (s) =

ANSWERS:

a. A second-order approximation is not valid.

b. A second-order approximation is valid.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we have examined the effects of additional transfer function poles and
zeros upon the response. In the next section, we add nonlinearities of the type
discussed in Section 2.10 and see what effects they have on system response.

4.9 Effects of Nonlinearities upon Time Response
In this section, we qualitatively examine the effects of nonlinearities upon the time
response of physical systems. In the following examples, we insert nonlinearities, such
as saturation, dead zone, and backlash, as shown in Figure 2.46, into a system to show
the effects of these nonlinearities upon the linear responses.

0.87

s

5.3

s + 5

4.4

s + 6

0.033

s + 4.01

0.87

s

5.3

s + 5

4.4

s + 6

185.71(s+7)

(s+6.5)(s+10)(s+20)

197.14(s+7)

(s+6.9)(s+10)(s+20)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


The responses were obtained using Simulink, a simulation software package that is
integrated with MATLAB to provide a graphical user interface (GUI). Readers who
would like to learn how to use Simulink to generate nonlinear responses should
consult the Simulink tutorial in Appendix C. Simulink block diagrams are included
with all responses that follow.

Let us assume the motor and load from the Antenna Control Case Study of Chapter 2
and look at the load angular velocity, ωo (s), where ωo (s) = 0.1 sθm (s) = 0.2083 Ea
(s)/(s + 1.71) from Eq. (2.208). If we drive the motor with a step input through an
amplifier of unity gain that saturates at ±5 volts, Figure 4.29 shows that the effect of
amplifier saturation is to limit the obtained velocity.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Simulink_Files_in_Appendix_C_for_Chapter_4.zip


FIGURE 4.29 a. Effect of amplifier saturation on load angular velocity
response; b. Simulink block diagram

The effect of dead zone on the output shaft driven by a motor and gears is shown in
Figure 4.30. Here we once again assume the motor, load, and gears from Antenna
Control Case Study of Chapter 2. Dead zone is present when the motor cannot respond



to small voltages. The motor input is a sinusoidal waveform chosen to allow us to see
the effects of dead zone vividly. The response begins when the input voltage to the
motor exceeds a threshold. We notice a lower amplitude when dead zone is present.



FIGURE 4.30 a. Effect of dead zone on load angular displacement
response; b. Simulink block diagram

The effect of backlash on the output shaft driven by a motor and gears is shown in
Figure 4.31. Again we assume the motor, load, and gears from the Antenna Control



Case Study of Chapter 2. The motor input is again a sinusoidal waveform, which is
chosen to allow us to see vividly the effects of backlash in the gears driven by the
motor. As the motor reverses direction, the output shaft remains stationary while the
motor begins to reverse. When the gears finally connect, the output shaft itself begins
to turn in the reverse direction. The resulting response is quite different from the
linear response without backlash.



FIGURE 4.31 a. Effect of backlash on load angular displacement
response; b. Simulink block diagram



(4.93)

(4.94)

(4.95)

(4.92)

Skill-Assessment Exercise 4.8
PROBLEM:

 Use MATLAB's Simulink to reproduce Figure 4.31.

ANSWER:
See Figure 4.31.

Now that we have seen the effects of nonlinearities on the time response, let us return
to linear systems. Our coverage so far for linear systems has dealt with finding the
time response by using the Laplace transform in the frequency domain. Another way
to solve for the response is to use state-space techniques in the time domain. This
topic is the subject of the next two sections.

4.10 Laplace Transform Solution of State Equations
 In Chapter 3, systems were modeled in state space, where the state-space

representation consisted of a state equation and an output equation. In this section,
we use the Laplace transform to solve the state equations for the state and output
vectors.

Consider the state equation

ẋ = Ax + Bu

and the output equation

y = Cx + Du

Taking the Laplace transform of both sides of the state equation yields

sX (s) − x (0) = AX (s) + BU (s)

In order to separate X(s), replace sX(s) with sIX(s), where I is an n × n identity
matrix, and n is the order of the system. Combining all of the X(s) terms, we get

(sI − A) X (s) = x (0) + BU (s)

Solving for X(s) by premultiplying both sides of Eq. (4.95) by (sI − A)−1, the final
solution for X(s) is

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Simulink_Files_in_Chapter_4.zip


(4.96)

(4.97)

(4.98)

X (s) = (sI − A)−1
x (0) + (sI − A)−1

BU (s)

= [x (0) + BU (s)]

Taking the Laplace transform of the output equation yields

Y (s) = CX (s) + DU (s)

Eigenvalues and Transfer Function Poles
We saw that the poles of the transfer function determine the nature of the transient
response of the system. Is there an equivalent quantity in the state-space
representation that yields the same information? Section 5.8 formally defines the roots
of det(sI − A) = 0 [see the denominator of Eq. (4.96)] to be eigenvalues of the
system matrix, A.7 Let us show that the eigenvalues are equal to the poles of the
system's transfer function. Let the output, Y(s), and the input, U(s), be scalar
quantities Y(s) and U(s), respectively. Further, to conform to the definition of a
transfer function, let x(0), the initial state vector, equal 0, the null vector. Substituting
Eq. (4.96) into Eq. (4.97) and solving for the transfer function, Y(s)/U(s), yields

= C[ ]B + D

=

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the
denominators of Eqs. (4.96) and (4.98) are identical, the system poles equal the
eigenvalues. Hence, if a system is represented in state-space, we can find the poles
from det(sI − A) = 0. We will be more formal about these facts when we discuss
stability in Chapter 6.

The following example demonstrates solving the state equations using the Laplace
transform as well as finding the eigenvalues and system poles.

adj(sI−A)

det(sI−A)

Y (s)

U(s)

adj(sI−A)

det(sI−A)

C adj(sI−A)B+D det(sI−A)

det(sI−A)



(4.99a)

(4.99b)

(4.99c)

(4.100)

(4.101)

Example 4.11 Laplace Transform Solution; Eigenvalues
and Poles
PROBLEM:
Given the system represented in state space by Eqs. (4.99),

⋅x =
⎡
⎢
⎣

0 1 0

0 0 1

−24 −26 −9

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
e−t

y = [ 1 1 0 ] x

x (0) =
⎡
⎢
⎣

1

0

2

⎤
⎥
⎦

do the following:

a. Solve the preceding state equation and obtain the output for the given
exponential input.

b. Find the eigenvalues and the system poles.

SOLUTION:

a. We will solve the problem by finding the component parts of Eq. (4.96),
followed by substitution into Eq. (4.97). First obtain A and B by comparing
Eq. (4.99a) to Eq. (4.92). Since

sI =
⎡
⎢
⎣

s 0 0

0 s 0

0 0 s

⎤
⎥
⎦

then

(sI − A) =
⎡
⎢
⎣

s −1 0

0 s −1

24 26 s + 9

⎤
⎥
⎦

and



(4.102)

(4.103)

(4.104a)

(4.104b)

(4.104c)

(4.105)

(4.106)

(4.107)

(sI − A)−1 =

Since U(s) is 1/(s + 1) (the Laplace transform for e−t), X (s) can be
calculated. Rewriting Eq. (4.96) as

X (s) = (sI − A)−1 [x (0) + BU (s)]

and using B and x(0) from Eqs. (4.99a) and (4.99c), respectively, we get

X1 (s) =

X2 (s) =

X3 (s) =

The output equation is found from Eq. (4.99b). Performing the indicated
addition yields

Y (s) =[ 1 1 0 ]
⎡
⎢
⎣

X1 (s)

X2 (s)

X3 (s)

⎤
⎥
⎦

= X1 (s) + X2 (s)

or

Y (s) =

= + −

where the pole at −1 canceled a zero at −1. Taking the inverse Laplace
transform,

y (t) = −6.5e−2t + 19e−3t − 11.5e−4t

b. The denominator of Eq. (4.102), which is det(sI − A), is also the denominator
of the system's transfer function. Thus, det(sI − A) = 0 furnishes both the

⎡
⎢ ⎢
⎣

(s2 + 9s + 26) (s + 9) 1

−24 s2 + 9s s

−24s − (26s + 24) s2

⎤
⎥ ⎥
⎦

s3 + 9s2 + 26s + 24

(s3 + 10s2 + 37s + 29)
(s + 1) (s + 2) (s + 3) (s + 4)

(2s2 − 21s − 24)

(s + 1) (s + 2) (s + 3) (s + 4)

s (2s2 − 21s − 24)
(s + 1) (s + 2) (s + 3) (s + 4)

(s3+12s2+16s+5)

(s+1)(s+2)(s+3)(s+4)

−6.5
s+2

19
s+3

11.5
s+4



poles of the system and the eigenvalues −2, − 3, and −4.

 Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox should now

run ch4apF1 in Appendix F. You will learn how to solve state equations for

the output response using the Laplace transform. Example 4.11 will be

solved using MATLAB and the Symbolic Math Toolbox.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_F_for_Chapter_4.zip


(4.108a)

(4.108b)

(4.108c)

Skill-Assessment Exercise 4.9
PROBLEM:
Given the system represented in state space by Eqs. (4.108),

⋅x =[ 0 2

−3 −5
] x +[ 0

1
] e−t

y = [ 1 3 ] x

x (0) =[ 2

1
]

do the following:

a. Solve for y(t) using state-space and Laplace transform techniques.

b. Find the eigenvalues and the system poles.

ANSWERS:

a. y (t) = − 0.5e−t − 12e−2t + 17.5e−3t

b. − 2, − 3

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 4.5
Use the following MATLAB and Symbolic Math Toolbox statements to
evaluate the effect of higher-order poles by finding the component parts of the
time response of c1 (t) and c2 (t) in Example 4.9.

syms s
A=[02;−3−5]; B=[0;1];
C=[13];X0=[2;1];
U=1/(s+1);
I=[10;01];
X=((s*I-A)^−1)*...(X0 + B*U);
Y=C*X; Y=simplify(Y);
y=ilaplace(Y);
pretty(y)
eig(A)

4.11 Time Domain Solution of State Equations

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_4.zip


(4.109)

(4.110)

We now look at another technique for solving the state equations. Rather than using
the Laplace transform, we solve the equations directly in the time domain using a
method closely allied to the classical solution of differential equations. We will find
that the final solution consists of two parts that are different from the forced and
natural responses.

The solution in the time domain is given directly by

x (t) = eAtx (0) + ∫ t

0 eA(t−τ)Bu (τ) dτ

= Φ (t) x (0) + ∫ t

0 Φ (t − τ) Bu (τ) dτ

where Φ(t) = eAt by definition, and which is called the state-transition matrix. Eq.
(4.109) is derived in Appendix I located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. Readers who are not familiar
with this equation or who may want to refresh their memory should consult Appendix
I before proceeding.

Notice that the first term on the right-hand side of the equation is the response due to
the initial state vector, x(0). Notice also that it is the only term dependent on the
initial state vector and not the input. We call this part of the response the zero-input
response, since it is the total response if the input is zero. The second term, called the
convolution integral, is dependent only on the input, u, and the input matrix, B, not
the initial state vector. We call this part of the response the zero-state response,
since it is the total response if the initial state vector is zero. Thus, there is a
partitioning of the response different from the forced/natural response we have seen
when solving differential equations. In differential equations, the arbitrary constants
of the natural response are evaluated based on the initial conditions and the initial
values of the forced response and its derivatives. Thus, the natural response's
amplitudes are a function of the initial conditions of the output and the input. In Eq.
(4.109), the zero-input response is not dependent on the initial values of the input and
its derivatives. It is dependent only on the initial conditions of the state vector. The
next example vividly shows the difference in partitioning. Pay close attention to the
fact that in the final result the zero-state response contains not only the forced
solution but also pieces of what we previously called the natural response. We will see
in the solution that the natural response is distributed through the zero-input
response and the zero-state response.

Before proceeding with the example, let us examine the form the elements of Φ(t) take
for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace transform
of the response for unforced systems, is the transform of Φ(t) x (0), the zero-input
response from Eq. (4.109). Thus, for the unforced system

L [x (t)] = L [Φ (t) x (0)] = (sI − A)−1
x (0)

from which we can see that (sI − A)−1 is the Laplace transform of the state-transition
matrix, Φ(t). We have already seen that the denominator of (sI − A)−1 is a polynomial

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(4.111)

in s whose roots are the system poles. This polynomial is found from the equation
det(sI − A) = 0. Since

L −1 [(sI − A)−1] = L−1[ ]= Φ (t)

each term of Φ(t) would be the sum of exponentials generated by the system's poles.

Let us summarize the concepts with two numerical examples. The first example solves
the state equations directly in the time domain. The second example uses the Laplace
transform to solve for the state-transition matrix by finding the inverse Laplace
transform of (sI − A)−1.

adj(sI−A)

det(sI−A)



(4.112a)

(4.112b)

(4.113)

(4.114)

(4.115)

(4.116a)

(4.116b)

(4.116c)

(4.116d)

Example 4.12 Time Domain Solution
PROBLEM:
For the state equation and initial state vector shown in Eqs. (4.112), where u(t) is a
unit step, find the state-transition matrix and then solve for x(t).

⋅x (t) =[ 0 1

−8 −6
]x (t) +[ 0

1
]u (t)

x (0) =[ 1

0
]

SOLUTION:
Since the state equation is in the form

⋅x (t) = Ax (t) + Bu (t)

find the eigenvalues using det(sI − A) = 0. Hence, s2 + 6s + 8 = 0, from which s1 =
− 2 and s2 = − 4. Since each term of the state-transition matrix is the sum of
responses generated by the poles (eigenvalues), we assume a state-transition
matrix of the form

Φ (t) =[
(K1e

−2t + K2e
−4t) (K3e

−2t + K4e
−4t)

(K5e
−2t + K6e

−4t) (K7e
−2t + K8e

−4t)
]

In order to find the values of the constants, we make use of the properties of the
state-transition matrix derived in Appendix J located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Since

Φ (0) = I

then

K1 + K2 = 1

K3 + K4 = 0

K5 + K6 = 0

K7 + K8 = 1

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(4.117)

(4.119)

(4.120)

(4.121)

(4.122)

(4.118a)

(4.118b)

(4.118c)

(4.118d)

And, since

⋅
Φ (0) = A

then

−2K1 − 4K2 = 0

−2K3 − 4K4 = 1

−2K5 − 4K6 = −8

−2K7 − 4K8 = −6

The constants are solved by taking two simultaneous equations four times. For
example, Eq. (4.116a) can be solved simultaneously with Eq. (4.118a) to yield the
values of K1 and K2. Proceeding similarly, all of the constants can be found.
Therefore,

Φ (t) =[
(2e−2t − e−4t) ( e−2t − e−4t)

(−4e−2t + 4e−4t) (−e−2t + 2e−4t)
]

Also,

Φ (t − τ) B =[
( e−2(t−τ) − e−4(t−τ))

(−e−2(t−τ) + 2e−4(t−τ))
]

Hence, the first term of Eq. (4.109) is

Φ (t) x (0) =[
(2e−2t − e−4t)

(−4e−2t + 4e−4t)
]

The last term of Eq. (4.109) is

∫ t

0 Φ (t − τ) Bu (τ) dτ =[
e−2t ∫ t

0 e2τdτ − e−4t ∫ t

0 e4τdτ

−e−2t ∫ t

0 e2τdτ + 2e−4t ∫ t

0 e4τdτ
]

=[
− e−2t + e−4t

e−2t − e−4t
]

Notice, as promised, that Eq. (4.122), the zero-state response, contains not only
the forced response, 1/8, but also terms of the form Ae−2t and Be−4t that are part

1
2

1
2

1
2

1
2

1
2

1
2

1
8

1
4

1
8

1
2

1
2



(4.123)

of what we previously called the natural response. However, the coefficients, A
and B, are not dependent on the initial conditions.

The final result is found by adding Eqs. (4.121) and (4.122). Hence,

x (t) = Φ (t) x (0) + ∫
t

0
Φ (t − τ) Bu (τ) dτ =[

+ e−2t − e−4t

− e−2t + e−4t
]

1
8

7
4

7
8

7
2

7
2



(4.124)

(4.125)

(4.126)

(4.127)

Example 4.13 State-Transition Matrix via Laplace
Transform
PROBLEM:

Find the state-transition matrix of Example 4.10, using (sI − A)−1.

SOLUTION:

We use the fact that Φ(t) is the inverse Laplace transform of (sI − A)−1. Thus, first
find (sI − A) as

(sI − A) =[ s −1

8 (s + 6)
]

from which

(sI − A)−1 = =
⎡
⎣

⎤
⎦

Expanding each term in the matrix on the right by partial fractions yields

(sI − A)−1 =
⎡
⎢
⎣

( − ) ( − )

( + ) ( + )

⎤
⎥
⎦

Finally, taking the inverse Laplace transform of each term, we obtain

Φ (t) =[
(2e−2t − e−4t) ( e−2t − e−4t)

(−4e−2t + 4e−4t) (−e−2t + 2e−4t)
]

 Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox should now

run ch4apF2 in Appendix F. You will learn how to solve state equations for

the output response using the convolution integral. Examples 4.12 and 4.13

will be solved using MATLAB and the Symbolic Math Toolbox.

Systems represented in state space can be simulated on the digital computer.
Programs such as MATLAB can be used for this purpose. Alternately, the user can

[ s + 6 1

−8 s
]

s2 + 6s + 8

s+6
s2+6s+8

1
s2+6s+8

−8
s2+6s+8

s

s2+6s+8

2
s+2

1
s+4

1/2

s+2

1/2

s+4

−4
s+2

4
s+4

−1
s+2

2
s+4

1
2

1
2

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_F_for_Chapter_4.zip


(4.128a)

(4.128b)

(4.128c)

write specialized programs, as discussed in Appendix H.1 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

 Students who are using MATLAB should now run ch4apB3 in Appendix B. This
exercise uses MATLAB to simulate the step response of systems represented in

state space. In addition to generating the step response, you will learn how to

specify the range on the time axis for the plot.

Skill-Assessment Exercise 4.10
PROBLEM:
Given the system represented in state space by Eqs. (4.128a):

⋅x =[ 0 2

−2 −5
]x +[ 0

1
]e−2t

y =[ 2 1 ]x

x (0) =[ 1

2
]

do the following:

a. Solve for the state-transition matrix.

b. Solve for the state vector using the convolution integral.

c. Find the output, y(t).

ANSWERS:

a. Φ (t) =[
( e−t − e−4t) ( e−t − e−4t)

(− e−t + e−4t) (− e−t + e−4t)
]

b. x (t) =[
( e−t − e−2t − e−4t)

(− e−t + e−2t + e−4t)
]

c. y (t) = 5e−t − e−2t

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.
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https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_4.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(4.129)

Case Studies Antenna Control: Open-Loop Response
In this chapter, we have made use of the transfer functions derived in Chapter 2
and the state equations derived in Chapter 3 to obtain the output response of an
open-loop system. We also showed the importance of the poles of a system in
determining the transient response. The following case study uses these concepts
to analyze an open-loop portion of the antenna azimuth position control system.
The open-loop function that we will deal with consists of a power amplifier and
motor with load.

PROBLEM:
For the schematic of the azimuth position control system shown in Appendix A2,
Configuration 1, assume an open-loop system (feedback path disconnected).

a. Predict, by inspection, the form of the open-loop angular velocity response of
the load to a step-voltage input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c. Derive the complete analytical expression for the open-loop angular velocity
response of the load to a step-voltage input to the power amplifier, using
transfer functions.

d.  Obtain the open-loop state and output equations.

e.  Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

SOLUTION:
The transfer functions of the power amplifier, motor, and load as shown in
Appendix A2, Configuration 1, were discussed in the Chapter 2 case study. The
two subsystems are shown interconnected in Figure 4.32(a). Differentiating the
angular position of the motor and load output by multiplying by s, we obtain the
output angular velocity, ωo, as shown in Figure 4.32(a). The equivalent transfer
function representing the three blocks in Figure 4.32(a) is the product of the
individual transfer functions and is shown in Figure 4.32(b).8

a. Using the transfer function shown in Figure 4.32(b), we can predict the
nature of the step response. The step response consists of the steady-state
response generated by the step input and the transient response, which is the
sum of two exponentials generated by each pole of the transfer function.
Hence, the form of the response is

ωo (t) = A + Be−100t + Ce−1.71t

b. The damping ratio and natural frequency of the open-loop system can be
found by expanding the denominator of the transfer function. Since the open-



(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.137b)

(4.136a)

(4.136b)

(4.137a)

loop transfer function is

G (s) =

ωn = √171 = 13.08, and ζ = 3.89 (overdamped).

c. In order to derive the angular velocity response to a step input, we multiply
the transfer function of Eq. (4.130) by a step input, 1/s, and obtain

ωo (s) =

Expanding into partial fractions, we get

ωo (s) = + −

Transforming to the time domain yields

ωo (t) = 0.122 + (2.12 × 10−3) e−100t − 0.124e−1.71t

d.  First convert the transfer function into the state-space representation.
Using Eq. (4.130), we have

=

Cross-multiplying and taking the inverse Laplace transform with zero initial
conditions, we have

⋅ωo + 101.71 ⋅ωo + 171ωo = 20.83vp

Defining the phase variables as

x1 = ωo

x2 = ⋅ωo

and using Eq. (4.135), the state equations are written as

⋅x1 = x2

⋅x2 = −171x1 − 101.71x2 + 20.83vp

where vp = 1, a unit step. Since x1 = ωo is the output, the output equation is

20.83

s2 + 101.71s + 171

20.83

s (s + 100) (s + 1.71)

0.122

s

2.12 × 10−3

s + 100

0.124

s + 1.71

ωo (s)

Vp (s)

20.83

s2 + 101.71s + 171



(4.138)y = x1

Equations (4.137) and (4.138) can be programmed to obtain the step
response using MATLAB or alternative methods described in Appendix H.1
at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

e.  Students who are using MATLAB should now run ch4apB4 in Appendix
B. This exercise uses MATLAB to plot the step response.

FIGURE 4.32 Antenna azimuth position control system for angular
velocity: a. forward path; b. equivalent forward path

CHALLENGE
You are now given a problem to test your knowledge of this chapter's objectives.
Refer to the antenna azimuth position control system shown in Appendix A2,
Configuration 2. Assume an open-loop system (feedback path disconnected) and
do the following:

a. Predict the open-loop angular velocity response of the power amplifier,
motor, and load to a step voltage at the input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c. Derive the open-loop angular velocity response of the power amplifier, motor,
and load to a step-voltage input using transfer functions.

d.  Obtain the open-loop state and output equations.

e.  Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

Unmanned Free-Swimming Submersible Vehicle: Open-
Loop Pitch Response
An Unmanned Free-Swimming Submersible (UFSS) vehicle is shown in Figure
4.33. The depth of the vehicle is controlled as follows. During forward motion, an

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_4.zip


elevator surface on the vehicle is deflected by a selected amount. This deflection
causes the vehicle to rotate about the pitch axis. The pitch of the vehicle creates a
vertical force that causes the vehicle to submerge or rise. The pitch control system
for the vehicle is used here and in subsequent chapters as a case study to
demonstrate the covered concepts. The block diagram for the pitch control system
is shown in Figure 4.34 and in Appendix A3 for future reference (Johnson, 1980).
In this case study, we investigate the time response of the vehicle dynamics that
relate the pitch angle output to the elevator deflection input.

FIGURE 4.33 Unmanned Free-Swimming Submersible (UFSS)
vehicle

FIGURE 4.34 Pitch control loop for the UFSS vehicle

PROBLEM:
The transfer function relating pitch angle, θ(s), to elevator surface angle, δe (s), for
the UFSS vehicle is



(4.139)

(4.140)

(4.141)

=

a. Using only the second-order poles shown in the transfer function, predict
percent overshoot, rise time, peak time, and settling time.

b. Using Laplace transforms, find the analytical expression for the response of
the pitch angle to a step input in elevator surface deflection.

c. Evaluate the effect of the additional pole and zero on the validity of the
second-order approximation.

d. Plot the step response of the vehicle dynamics and verify your conclusions
found in (c). An animation PowerPoint presentation (PPT) demonstrating
this system is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See UFSS Vehicle.

SOLUTION:

a. Using the polynomial s2 + 0.226s + 0.0169, we find that ω2
n = 0.0169 and

2ζωn = 0.226. Thus, ωn = 0.13 rad/s and ζ = 0.869. Hence, 

%OS = e−ζπ/√1−ζ2
100 = 0.399%. From Figure 4.16, ωnTr = 2.75, or Tr =

21.2 s. To find peak time, we use Tp = π/ωn√1 − ζ2 = 48.9 s. Finally,
settling time is Ts = 4/ζωn = 35.4 s.

b. In order to display a positive final value in Part d. we find the response of the
system to a negative unit step, compensating for the negative sign in the
transfer function. Using partial-fraction expansion, the Laplace transform of
the response, θ(s), is

θ(s) =

= 2.616 + 0.0645

−

Taking the inverse Laplace transform,

θ(t) = 2.616 + 0.0645e−1.23t

−e−0.113t (2.68 cos 0.0643t + 3.478 sin 0.0643t)

= 2.616 + 0.0645e−1.23t − 4.39e−0.113t cos (0.0643t + 52.38°)

c. Looking at the relative amplitudes between the coefficient of the e−1.23t term
and the cosine term in Eq. (4.141), we see that there is pole-zero cancellation
between the pole at −1.23 and the zero at −0.435. Further, the pole at −1.23 is
more than five times farther from the jω axis than the second-order dominant

θ (s)

δe (s)

−0.125 (s + 0.435)

(s + 1.23) (s2 + 0.226s + 0.0169)

0.125 ( s+0.435 )

s ( s+1.23 ) ( s2+0.226s+0.0169 )

1
s

1
s+1.23

2.68 ( s+0.113 ) +3.478√0.00413

( s+0.113 ) 2+0.00413

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(4.142)

poles at −0.113 ±j 0.0643. We conclude that the response will be close to that
predicted.

d. Plotting Eq. (4.141) or using a computer simulation, we obtain the step
response shown in Figure 4.35. We indeed see a response close to that
predicted.

FIGURE 4.35 Negative step response of pitch control for UFSS
vehicle

 Students who are using MATLAB should now run ch4apB5 in Appendix B.
This exercise uses MATLAB to find ζ, ω, Ts, Tp, and Tr and plot a step

response. Table lookup is used to find Tr. The exercise applies the

concepts to the problem above.

CHALLENGE
You are now given a problem to test your knowledge of this chapter's objectives.
This problem uses the same principles that were applied to the Unmanned Free-
Swimming Submersible vehicle: Ships at sea undergo motion about their roll axis,
as shown in Figure 4.36. Fins called stabilizers are used to reduce this rolling
motion. The stabilizers can be positioned by a closed-loop roll control system that
consists of components, such as fin actuators and sensors, as well as the ship's roll
dynamics. Assume the roll dynamics, which relates the roll-angle output, θ(s), to a
disturbance-torque input, TD(s), is

=
θ (s)

TD (s)

2.25

(s2 + 0.5s + 2.25)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_4.zip


Do the following:

a. Find the natural frequency, damping ratio, peak time, settling time, rise time,
and percent overshoot.

b. Find the analytical expression for the output response to a unit step input in
voltage.

c.  Use MATLAB to solve a and b and to plot the response found in b.

FIGURE 4.36 A ship at sea, showing roll axis

Summary
In this chapter, we took the system models developed in Chapters 2 and 3 and found
the output response for a given input, usually a step. The step response yields a clear
picture of the system's transient response. We performed this analysis for two types of
systems, first order and second order, which are representative of many physical
systems. We then formalized our findings and arrived at numerical specifications
describing the responses.

For first-order systems having a single pole on the real axis, the specification of
transient response that we derived was the time constant, which is the reciprocal of
the real-axis pole location. This specification gives us an indication of the speed of the
transient response. In particular, the time constant is the time for the step response to
reach 63% of its final value.

Second-order systems are more complex. Depending on the values of system
components, a second-order system can exhibit four kinds of behavior:

1. Overdamped

2. Underdamped

3. Undamped

4. Critically damped



We found that the poles of the input generate the forced response, whereas the system
poles generate the transient response. If the system poles are real, the system exhibits
overdamped behavior. These exponential responses have time constants equal to the
reciprocals of the pole locations. Purely imaginary poles yield undamped sinusoidal
oscillations whose radian frequency is equal to the magnitude of the imaginary pole.
Systems with complex poles display underdamped responses. The real part of the
complex pole dictates the exponential decay envelope, and the imaginary part dictates
the sinusoidal radian frequency. The exponential decay envelope has a time constant
equal to the reciprocal of the real part of the pole, and the sinusoid has a radian
frequency equal to the imaginary part of the pole.

For all second-order cases, we developed specifications called the damping ratio, ζ,
and natural frequency, ωn. The damping ratio gives us an idea about the nature of the
transient response and how much overshoot and oscillation it undergoes, regardless of
time scaling. The natural frequency gives an indication of the speed of the response.

We found that the value of ζ determines the form of the second-order natural
response:

If ζ = 0, the response is undamped.

If ζ < 1, the response is underdamped.

If ζ = 1, the response is critically damped.

If ζ > 1, the response is overdamped.

The natural frequency is the frequency of oscillation if all damping is removed. It acts
as a scaling factor for the response, as can be seen from Eq. (4.28), in which the
independent variable can be considered to be ωnt.

For the underdamped case, we defined several transient response specifications,
including these:

Percent overshoot, %OS

Peak time, Tp

Settling time, Ts

Rise time, Tr

The peak time is inversely proportional to the imaginary part of the complex pole.
Thus, horizontal lines on the s-plane are lines of constant peak time. Percent
overshoot is a function of only the damping ratio. Consequently, radial lines are lines
of constant percent overshoot. Finally, settling time is inversely proportional to the
real part of the complex pole. Hence, vertical lines on the s-plane are lines of constant
settling time.

We found that peak time, percent overshoot, and settling time are related to pole
location. Thus, we can design transient responses by relating a desired response to a
pole location and then relating that pole location to a transfer function and the
system's components.



The effects of nonlinearities, such as saturation, dead zone, and backlash, were
explored using MATLAB's Simulink.

In this chapter, we also evaluated the time response using the state-space approach.
The response found in this way was separated into the zero-input response, and the
zero-state response, whereas the frequency response method yielded a total
response divided into natural response and forced response components.

In the next chapter, we will use the transient response specifications developed here to
analyze and design systems that consist of the interconnection of multiple subsystems.
We will see how to reduce these systems to a single transfer function in order to apply
the concepts developed in Chapter 4.

Review Questions
1. Name the performance specification for first-order systems.

2. What does the performance specification for a first-order system tell us?

3. In a system with an input and an output, what poles generate the steady-state
response?

4. In a system with an input and an output, what poles generate the transient
response?

5. The imaginary part of a pole generates what part of a response?

6. The real part of a pole generates what part of a response?

7. What is the difference between the natural frequency and the damped frequency
of oscillation?

8. If a pole is moved with a constant imaginary part, what will the responses have in
common?

9. If a pole is moved with a constant real part, what will the responses have in
common?

10. If a pole is moved along a radial line extending from the origin, what will the
responses have in common?

11. List five specifications for a second-order underdamped system.

12. For Question 11, how many specifications completely determine the response?

13. What pole locations characterize (1) the underdamped system, (2) the
overdamped system, and (3) the critically damped system?

14. Name two conditions under which the response generated by a pole can be
neglected.

15. How can you justify pole-zero cancellation?

16.  Does the solution of the state equation yield the output response of the
system? Explain.



17.  What is the relationship between (sI − A), which appeared during the
Laplace transformation solution of the state equations, and the state-transition
matrix, which appeared during the classical solution of the state equation?

18.  Name a major advantage of using time-domain techniques for the solution
of the response.

19.  Name a major advantage of using frequency-domain techniques for the
solution of the response.

20.  What three pieces of information must be given in order to solve for the
output response of a system using state-space techniques?

21.  How can the poles of a system be found from the state equations?

Cyber Exploration Laboratory

EXPERIMENT 4.1
Objective
To evaluate the effect of pole and zero location upon the time response of first- and
second-order systems.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox

Prelab

1. Given the transfer function G (s) = , evaluate settling time and rise time for
the following values of a: 1, 2, 3, 4. Also, plot the poles.

2. Given the transfer function G (s) = :

a. Evaluate percent overshoot, settling time, peak time, and rise time for the
following values: a = 4, b = 25. Also, plot the poles.

b. Calculate the values of a and b so that the imaginary part of the poles remains
the same but the real part is increased two times over that of Prelab 2a, and
repeat Prelab 2a.

c. Calculate the values of a and b so that the imaginary part of the poles remains
the same but the real part is decreased by one half over that of Prelab 2a, and
repeat Prelab 2a.

3. a. For the system of Prelab 2a, calculate the values of a and b so that the real
part of the poles remains the same but the imaginary part is increased two
times over that of Prelab 2a, and repeat Prelab 2a.

a
s+a

b

s2+as+b



b. For the system of Prelab 2a, calculate the values of a and b so that the real
part of the poles remains the same but the imaginary part is increased four
times over that of Prelab 2a, and repeat Prelab 2a.

4. a. For the system of Prelab 2a, calculate the values of a and b so that the
damping ratio remains the same but the natural frequency is increased two
times over that of Prelab 2a, and repeat Prelab 2a.

b. For the system of Prelab 2a, calculate the values of a and b so that the
damping ratio remains the same but the natural frequency is increased four
times over that of Prelab 2a, and repeat Prelab 2a.

5. Briefly describe the effects on the time response as the poles are changed in each
of Prelabs 2, 3, and 4.

Lab

1. Using Simulink, set up the systems of Prelab 1 and plot the step response of each
of the four transfer functions on a single graph by using the Simulink Linear
System Analyzer (See Appendix E.6 online for tutorial). Also, record the values of
settling time and rise time for each step response.

2. Using Simulink, set up the systems of Prelab 2. Using the Simulink Linear System
Analyzer, plot the step response of each of the three transfer functions on a single
graph. Also, record the values of percent overshoot, settling time, peak time, and
rise time for each step response.

3. Using Simulink, set up the systems of Prelab 2a and Prelab 3. Using the Linear
System Analyzer, plot the step response of each of the three transfer functions on
a single graph. Also, record the values of percent overshoot, settling time, peak
time, and rise time for each step response.

4. Using Simulink, set up the systems of Prelab 2a and Prelab 4. Using the Simulink
Linear System Analyzer, plot the step response of each of the three transfer
functions on a single graph. Also, record the values of percent overshoot, settling
time, peak time, and rise time for each step response.

Postlab

1. For the first-order systems, make a table of calculated and experimental values of
settling time, rise time, and pole location.

2. For the second-order systems of Prelab 2, make a table of calculated and
experimental values of percent overshoot, settling time, peak time, rise time, and
pole location.

3. For the second-order systems of Prelab 2a and Prelab 3, make a table of
calculated and experimental values of percent overshoot, settling time, peak time,
rise time, and pole location.

4. For the second-order systems of Prelab 2a and Prelab 4, make a table of
calculated and experimental values of percent overshoot, settling time, peak time,
rise time, and pole location.



5. Discuss the effects of pole location upon the time response for both first- and
second-order systems. Discuss any discrepancies between your calculated and
experimental values.

EXPERIMENT 4.2
Objective
To evaluate the effect of additional poles and zeros upon the time response of second-
order systems.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox

Prelab

1. a. Given the transfer function G (s) = , evaluate the percent overshoot,
settling time, peak time, and rise time. Also, plot the poles.

b. Add a pole at −200 to the system of Prelab 1a. Estimate whether the transient
response in Prelab 1a will be appreciably affected.

c. Repeat Prelab 1b with the pole successively placed at −20, − 10, and −2.

2. A zero is added to the system of Prelab 1a at −200 and then moved to −50, − 20,
− 10, − 5, and −2. List the values of zero location in the order of the greatest to the
least effect upon the pure second-order transient response.

3. Given the transfer function G (s) = , let a = 3 and b = 3.01, 3.1, 3.3,

3.5, and 4.0. Which values of b will have minimal effect upon the pure second-
order transient response?

4. Given the transfer function G (s) = , let a = 30 and b = 30.01,

30.1, 30.5, 31, 35, and 40. Which values of b will have minimal effect upon the
pure second-order transient response?

Lab

1. Using Simulink, add a pole to the second-order system of Prelab 1a and plot the
step responses of the system when the higher-order pole is nonexistent, at −200,
− 20, − 10, and −2. Make your plots on a single graph, using the Simulink Linear
System Analyzer. Normalize all plots to a steady-state value of unity. Record
percent overshoot, settling time, peak time, and rise time for each response.

2. Using Simulink, add a zero to the second-order system of Prelab 1a and plot the
step responses of the system when the zero is nonexistent, at −200, − 50, − 20, −
10, − 5, and −2. Make your plots on a single graph, using the Simulink Linear
System Analyzer. Normalize all plots to a steady-state value of unity. Record
percent overshoot, settling time, peak time, and rise time for each response.

25
s2+4s+25

(25b/a)(s+a)

(s+b)(s2+4s+25)

(2500b/a)(s+a)

(s+b)(s2+40s+2500)



3. Using Simulink and the transfer function of Prelab 3 with a = 3, plot the step
responses of the system when the value of b is 3, 3.01, 3.1, 3.3, 3.5, and 4.0. Make
your plots on a single graph using the Simulink Linear System Analyzer. Record
percent overshoot, settling time, peak time, and rise time for each response.

4. Using Simulink and the transfer function of Prelab 4 with a = 30, plot the step
responses of the system when the value of b is 30, 30.01, 30.1, 30.5, 31, 35, and
40. Make your plots on a single graph, using the Simulink Linear System
Analyzer. Record percent overshoot, settling time, peak time, and rise time for
each response.

Postlab

1. Discuss the effect upon the transient response of the proximity of a higher-order
pole to the dominant second-order pole pair.

2. Discuss the effect upon the transient response of the proximity of a zero to the
dominant second-order pole pair. Explore the relationship between the length of
the vector from the zero to the dominant pole and the zero's effect upon the pure
second-order step response.

3. Discuss the effect of pole-zero cancellation upon the transient response of a
dominant second-order pole pair. Allude to how close the canceling pole and zero
should be and the relationships of (1) the distance between them and (2) the
distance between the zero and the dominant second-order poles.

EXPERIMENT 4.3
Objective
To use LabVIEW Control Design and Simulation Module for time performance
analysis of systems.

Minimum Required Software Packages
LabVIEW with the Control Design and Simulation Module

Prelab
One of the experimental direct drive robotic arms built at the MTT Artificial
Intelligence Laboratory and the CMU Robotics Institute can be represented as a
feedback control system with a desired angular position input for the robot's joint
position and an angular position output representing the actual robot's joint position.

The forward path consists of three transfer functions in cascade; (1) a compensator,
Gc(s), to improve performance; (2) a power amplifier of gain, Ka = 1; and (3) the
transfer function of the motor and load, G(s) = 2292/s(s + 75.6). Assume a unity-
feedback system. Initially the system will be controlled with Gc(s) = 0.6234, which is
called a proportional controller (McKerrow, 1991).

1. Obtain the closed-loop system transfer function and use MATLAB to make a plot
of the resulting unit step response.



2. Repeat with Gc(s) = 3.05 + 0.04s, which is called a PD controller.

3. Compare both responses and draw conclusions regarding their time domain
specifications.

Lab
Create a LabVIEW VI that uses a simulation loop to implement both controllers given
in the Prelab. Plot the responses on the same graph for comparison purposes.

Postlab
Compare the responses obtained using your LabVIEW VI with those obtained in the
Prelab.

EXPERIMENT 4.4
Objective
To use the LabVIEW Control Design and Simulation Module to evaluate the effect of
pole location upon the time response of second-order systems.

Minimum Required Software Packages
LabVIEW with the Control Design and Simulation Module.

Prelab
Solve the Cyber Exploration Laboratory Experiment 4.1 Prelab, Part 2.

Lab
Build a LabVIEW VI to implement the functions studied in the Prelab of Cyber
Exploration Laboratory 4.1, Part 2.

Specifically for Prelab Part 2a, your front panel will have the coefficients of the
second-order transfer function as inputs. The front panel will also have the following
indicators: (1) the transfer function; (2) the state-space representation; (3) the pole
locations; (4) the step response graph; (5) the time response of the two states on the
same graph; (6) the time response parametric data including rise time, peak time,
settling time, percent overshoot, peak value, and final value.

For Prelab, Part 2b, your front panel will also have the following indicators: (1) the
step response graph, and (2) the parametric data listed above for Prelab, Part 2a, but
specific to Part 2b.

For Prelab, Part 2c, your front panel will also have the following indicators: (1) the
step response graph, and (2) the parametric data listed above for Prelab, Part 2a, but
specific to Part 2c.

Run the VI to obtain the data from the indicators.

Postlab
Use your results to discuss the effect of pole location upon the step response.



Hardware Interface Laboratory

EXPERIMENT 4.5 Open-Loop Speed Control of a Motor
Objectives
To control the speed of a motor in open-loop fashion and verify the functions of the
motor control setup as preparation for future experiments.

Material Required
Computer with LabVIEW Installed; myDAQ; dc-brushed gearmotor with Hall Sensor
quadrature encoder (–10 to +10 V normal operation range); and motor control chip
BA6886N or a transistor circuit substitute. (Note: For simplicity, the input to the
motor will be analog. PWM will be avoided as it adds an additional layer of complexity
to these experiments. Plan accordingly if you decide to substitute the motor control
chip.)

File Provided at www.wiley.com/go/Nise/ControlSystemsEngineering8e
Open Loop Control.vi

Prelab
Plan how you will wire your motor to the breadboard. A possibility is to solder a
header to six matching color wires that will allow you to connect and disconnect the
motor from the myDAQ in an efficient manner. You can also solder wires to the
motor's cables.

Lab

Software:
The front panel for the Open Loop Control VI is shown in Figure 4.37. The input to the
system is the voltage applied to the motor. The output is the motor speed in
revolutions per second (rps). The corresponding block diagram is shown in Figure
4.37(b).

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Hardware_Interface_Laboratory_Files_for_Chapter_4.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 4.37 Open loop control.vi: a. Front Panel; b. Block Diagram

Note the value indicated by the blue arrow in Figure 4.37(b). In order to get a
meaningful reading for the speed of the motor, this value needs to be modified
depending on the gear ratio of your motor and the counts of your encoder. To
understand how this value is calculated, note that the DAQ Assistant block on top of
the diagram reads the encoder input from the myDAQ. One would reasonably assume



that the frequency of this signal is proportional to the speed of the motor, which is
theoretically true. However, at very low speeds the DAQ assistant “times out” and fails
to provide a reading if frequency is measured directly. To avoid this problem, a
different method is used to calculate the signal frequency. The DAQ assistant
measures the rising edges of the encoder signal every 100 msec and subtracts that
number from the ones accumulated during the previous 100 msec period. The
frequency of the encoder signal (in edges/msec) is found by dividing the value of this
subtraction by the period (100 msec). See the Block Diagram to understand how this
algorithm was implemented.

We use an example to illustrate the calculation of the constant pointed to with the red
arrow. If a 9.7:1 gear ratio is used with a 48 CPR encoder, with each revolution the
encoder will generate a total of 48 edges in each of the encoder channels. Using one
channel only and positive edges, there are 12 positive edges/rev of the motor shaft.
The total number of counts (positive edges) generated by each revolution of the
external shaft is 9.7 × 12 = 116.4 positive edges/rev.

In order to find the rotational speed, the frequency (edges/msec) of the signal is
divided by the total number of counts generated by the external shaft, adjusting the
units for time from msec to sec: Rotational Speed (rps) = Freq × 1000/(9.7 × 12) =
Freq × 8.591. This value has to be set as illustrated in the Block Diagram.

The DAQ Assistant2 block transmits the voltage from the control slider to the myDAQ
and to the motor control chip. The DAQ Assistant3 block makes sure that the output to
the chip is zeroed when the VI terminates.

Hardware:
Connect the myDAQ, the motor, and the motor controller as shown in Figure 4.38.



FIGURE 4.38 Wiring diagram9

Procedure:

1. Verify the operation of your circuit by running the VI and changing the position of
the slider. If everything is correct, the motor speed will vary as the slider's
position changes.

2. Verify that you are using the correct scaling factor for your motor by setting your
motor to rotate at 0.5 rps. Count the number of rotations in the shaft of the motor
over 10 sec using a stopwatch. Repeat by setting the rotational speed at 1 rps. Your
measurements must be consistent.

3. Perform the following measurements moving the slider:



a. Increase the voltage starting at zero and record the minimum voltage for the
motor to start rotating.

b. Starting the slider at a rotating speed, reduce the voltage until the motor
stops. Record this voltage.

Are these values equal? These values are important and will be used in future
labs. Keep them in a safe place so that you don't have to repeat these
measurements again.

4. Make a graph where the x-axis is the input voltage, and the y-axis is the speed in
rps. Include the results in Part 3.

5. Draw a functional block diagram of the system (similar to Chapter 1), labeling
each of the components in the diagram.

6. The circuit and the VI above allow the motor to rotate in one direction only.
Modify the VI and the circuit so that the motor direction and speed can be
controlled from the VI.

Note that the reference input to the chip can only accept positive voltage values.
The motor control data sheet indicates that direction of rotation must be changed
by flipping the logical values of Pin 2 and Pin 10 on the motor control chip.
However, a careful reading of the data sheet indicates that there must be an
instant of time (of unspecified duration) in which both inputs must be False
before switching direction. You may want to use a LabVIEW ring to simulate a
three-way switch. Use two of the selections of the ring to control the motor's
rotation direction. The third selection in the ring should provide low inputs to
the motor controller logical inputs to be able to stop the motor before switching
direction.

EXPERIMENT 4.6 Transfer Funtion Identification
Objective
To identify the transfer function of a motor from voltage input to angular motor speed
using myDAQ and LabView.

Material Required
Computer with LabVIEW Installed; myDAQ; dc-brushed gearmotor with Hall sensor
quadrature encoder (–10 to +10 V normal operation range); and motor control chip
B6886N (or a transistor circuit substitute).

File Provided at www.wiley.com/go/Nise/ControlSystemsEngineering8e
Plant Identification 2.vi

Prelab
Answer the following questions:

1. What is the unit-step response of a system with transfer function G(s) = ,
where K and τ are constants > 0?

K
sτ+1

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


2. Make a hand-sketch of the response of the unit-step response of the system in
Part 1.

3. What is the value of the step response of the system in Part 1 when t = τ?

4. Find or derive the expression for the transfer function from voltage to angular
speed of an unloaded permanent magnet dc motor. Compare this transfer
function to the first-order system in Part 1.

Lab
Connect the myDAQ, the motor, and the motor controller as shown in Figure 4.39.
This setup is identical to the one that was used initially in Experiment 4.5, except that
we have connected the two analog input channels to the two analog output channels.
This will allow us to use the myDAQ oscilloscope for measurements. If you decide to
use an external oscilloscope, these connections are not necessary.



FIGURE 4.39 Wiring diagram10

1. Open the Oscilloscope and Plant Identification 2.vi shown in Figures 4.40 and
4.41, respectively. You can also choose to use an external oscilloscope. Use
settings similar to the ones shown in Figure 4.40.

2. In your Plant Identification 2.vi, choose the value of amplitude and offset shown
in Figure 4.41. A LabView error will be generated if the square wave generates
negative values as these are not allowed as inputs to the chip. The value of the
frequency is irrelevant; you just have to make sure the input is slow enough so
that the motor speed reaches steady state as shown in Figure 4.41.

3. Run the Plant Identification 2.vi and the Oscilloscope. Press the Stop button on
the Oscilloscope as soon as it shows a full semi-cycle of positive speed, similar to
Figure 4.40.



4. Click on the Log button in the Oscilloscope, give the file a name, and save it to
disk. Open the file using a spreadsheet program.

5. Note that the response of the system in the Oscilloscope is in all likelihood that of
a first-order system, consistent with theoretical expectations. Thus, the transfer
function will be of the form: = .

K can readily be found from the Oscilloscope or the Plant Identification 2.vi. In
the example shown, K = = 1.079. We will use the spreadsheet data to find
the time constant, τ.

6. Use your spreadsheet data to find the time constant. For help on completing this
task, go to www.wiley.com/go/Nise/ControlSystemsEngineering8e.

7. Repeat the experiment for input voltages of 2 V, 5 V, and 9 V.

FIGURE 4.40 LabVIEW Oscilloscope–NI EL VISmx

Ω(s)

Ei(s)
K

sτ+1

9.71
9

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 4.41 Plant Identification 2.vi Front Panel

Postlab

1. Is your system linear? How do you know?

2. If your system is linear for a range of inputs, find a judicious interpolation
between the three transfer functions you found in Part 7 of the lab. Write down
your final transfer function result and save it for use in subsequent experiments.
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Notes
1 The forced response is also called the steady-state response or particular solution.

The natural response is also called the homogeneous solution.

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for
example 5%, also can be used. We will use settling time throughout the book to
mean 2% settling time.

3 So named because overdamped refers to a large amount of energy absorption in the
system, which inhibits the transient response from overshooting and oscillating



about the steady-state value for a step input. As the energy absorption is reduced,
an overdamped system will become underdamped and exhibit overshoot.

4 The student should verify Figure 4.11 as an exercise.

5 Figure 4.16 can be approximated by the following polynomials: ωnTr = 1.76ζ3 −
0.417ζ2 + 1.039ζ + 1 (maximum error less than % for 0 < ζ < 0.9), and 

ζ = 0.115(ωnTr)
3 − 0.883(ωnTr)

2 + 2.504 (ωnTr) − 1.738 (maximum error less
than 5% for 0.1 < ζ < 0.9). The polynomials were obtained using MATLAB's polyfit
function.

6 Adapted from Dorf, R. C. Introduction to Electric Circuits, 2nd ed. (New York: John
Wiley & Sons, 1989, 1993), p. 583. © 1989, 1993 John Wiley & Sons. Reprinted by
permission of the publisher.

7 Sometimes the symbol λ is used in place of the complex variable s when solving the
state equations without using the Laplace transform. Thus, it is common to see the
characteristic equation also written as det(λI − A) = 0.

8 This product relationship will be derived in Chapter 5.

9 MyDAQ right slot shown on left is taken from Multisim program module NI myDAQ
design and also reproduced in White-Paper 11423, Figure 2. Both Multisim and the
White Paper are from National Instruments

10 MyDAQ right slot shown on left is taken from Multisim program module NI
myDAQ design and also reproduced in White-Paper 11423, Figure 2. Both Multisim
and the White Paper are from National Instruments
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Chapter 5
Reduction of Multiple Subsystems



Chapter 5 Problems
1. Reduce the block diagram shown in Figure P5.1 to a single transfer function, T(s) =
C(s)/R(s). Use the following methods:

a. Block diagram reduction [Section: 5.2]

b.  MATLAB

FIGURE P5.1

 2. Reduce the system shown in Figure P5.2 to a single transfer function, T(s) =
C(s)/R(s). [Section: 5.2]

FIGURE P5.2

Check Answer!

3. Reduce the block diagram shown in Figure P5.3 to a single block, T(s) = C(s)/R(s).
[Section: 5.2]



FIGURE P5.3

4. Reduce the system of Figure P5.4 to an equivalent unity-feedback system.

FIGURE P5.4

5. Reduce the block diagram shown in Figure P5.5 to a single transfer function, T(s) =
C(s)/R(s). [Section: 5.2]

FIGURE P5.5



6. Is the system in Figure P5.6 underdamped? If so, find the percent overshoot, the
settling time, and the peak time for a step input.

FIGURE P5.6

7. Assuming the input r(t) to the system in Figure P5.7 is a unit step, find the output
c(t).

FIGURE P5.7

8. Find the closed-loop of T(s) = C(s)/R(s) for the system of Figure P5.8.

FIGURE P5.8

9. In Figure P5.9, find the value of K that will result in 15% overshoot for step inputs.

FIGURE P5.9

10. In Figure P5.10, find the values of K and α that will result in a percent overshoot
of 10 and a settling time of 0.17 sec.



FIGURE P5.10

11. Refer to Figure P5.11. Find the value of K1 and K2 that will result in a step
response with a peak value of 1.5 sec. and a settling time of 3 sec.

FIGURE P5.11

 12. Find the following for the system shown in Figure P5.12: [Section: 5.3]

a. The equivalent single block that represents the transfer function, T(s) =
C(s)/R(s).

b. The damping ratio, natural frequency, percent overshoot, settling time, peak
time, rise time, and damped frequency of oscillation.

FIGURE P5.12

Check Answer!

13. Find ζ, ωn, percent overshoot, peak time, rise time, and settling time for the
system of Figure P5.13. [Section: 5.3]

FIGURE P5.13



14. A motor and generator are set up to drive a load as shown in Figure P5.14. If the
generator output voltage is eg (t) = Kfif (t), where if(t) is the generator's field current,
find the transfer function G(s) = θo (s)/Ei (s). For the generator, Kf = 2 Ω. For the
motor, Kt = 2 N - m / A and Kb = 2 V - s / rad.

FIGURE P5.14

15. Find G(s) = E0 (s)/T(s) for the system shown in Figure P5.15.

FIGURE P5.15

16. Label signals and draw a signal-flow graph for the block diagrams shown in
Problem 1. [Section: 5.4]

17.  Given the system below, draw a signal-flow graph and represent the
system in state space in the following forms: [Section: 5.7]

a. Phase-variable form

b. Cascade form



G (s) =

18.  Repeat Problem 17 for

G (s) =

[Section: 5.7]

 19. Using Mason's rule, find the transfer function, T(s) = C(s)/R(s), for the
system represented in Figure P5.16. [Section: 5.5]

FIGURE P5.16

Check Answer!

20. Use Mason's rule to find the transfer function of Figure 5.13 in the text. [Section:
5.5]

21.  Represent the following systems in state space in Jordan canonical form.
Draw the signal-flow graphs. [Section: 5.7]

 a. G (s) =

Check Answer!

b. G (s) =

c. G (s) =

22.  Represent the systems below in state space in phase-variable form. Draw
the signal-flow graphs. [Section: 5.7]

 a. G (s) =

Check Answer!

b. G (s) =

200
(s + 10) (s + 20) (s + 30)

20
s(s − 2) (s + 5) (s + 8)

(s+1)(s+2)

(s+3)2(s+4)

(s+2)

(s+5)2(s+7)2

(s+4)

(s+2)2(s+5)(s+6)

s+3
s2+2s+7

s2+2s+6
s3+5s2+2s+1



c. G (s) =

23.  Repeat Problem 22 and represent each system in controller canonical and
observer canonical forms. [Section: 5.7]

24.  Represent the feedback control systems shown in Figure P5.17 in state
space. When possible, represent the open-loop transfer functions separately in
cascade and complete the feedback loop with the signal path from output to input.
Draw your signal-flow graph to be in one-to-one correspondence to the block
diagrams (as close as possible). [Section: 5.7]

FIGURE P5.17

s3+2s2+7s+1
s4+3s3+5s2+6s+4



Check Answer!

25.  Develop a state space representation for the system of Figure P5.18

a. In phase-variable form

b. In any form other than phase-variable

FIGURE P5.18

26. Repeat Problem 25 for the system shown in Figure P5.19. [Section: 5.7]

FIGURE P5.19

27.  Use MATLAB to solve Problem 26.

28.  Find a state space-representation for the system of Figure P5.20 Use the
indicated state variables x1 (t), x3 (t), and x4 (t); the system's output is c(t) and x2 (t)
is the state variable inside X1 (s)/X3 (s).

FIGURE P5.20

 29.  Consider the rotational mechanical system shown in Figure P5.21.

a. Represent the system as a signal-flow graph.

b. Represent the system in state space if the output is θ2 (t).

FIGURE P5.21



Check Answer!

30.  Consider the cascaded subsystems shown in Figure P5.22. If G1(s) is
represented in state space as

⋅
x1 = A1x1 + B1r

y1 = C1x1

and G2(s) is represented in state space as

⋅
x2 = A2x2 + B2y1

y2 = C2x2

show that the entire system can be represented in state space as

⎡
⎢
⎣

⋅
x1

⋅⋯
⋅
x2

⎤
⎥
⎦

=
⎡
⎢ ⎢ ⎢
⎣

A1 ⋮ 0

⋅⋯ ⋯⋯⋅

B2C1⋮ A2

⎤
⎥ ⎥ ⎥
⎦

⎡
⎢
⎣

x1

⋅⋯
x2

⎤
⎥
⎦

+
⎡
⎢
⎣

B1

⋅⋯
0

⎤
⎥
⎦

r

y2 = [[ 0 C2 , ]]
⎡
⎢
⎣

x1

⋅⋯
x2

⎤
⎥
⎦

FIGURE P5.22

31.  Consider the subsystems shown in Figure P5.23 and connected to form a
feedback system. If G(s) is represented in state space as

⋅
x1 = A1x1 + B1e

y = C1x1

and H(s) is represented in state space as

⋅
x2 = A2x2 + B2y

p = C2x2

show that the closed-loop system can be represented in state space as



⎡
⎢
⎣

⋅
x1

⋅⋯
⋅
x2

⎤
⎥
⎦

=
⎡
⎢ ⎢ ⎢
⎣

A1 ⋮ −B1C2

⋅⋯ ⋯⋯⋅

B2C1 ⋮ A2

⎤
⎥ ⎥ ⎥
⎦

⎡
⎢
⎣

x1

⋅⋯
x2

⎤
⎥
⎦

+
⎡
⎢
⎣

B1

⋅⋯
0

⎤
⎥
⎦

r

y = [C1⋮0]
⎡
⎢
⎣

x1

⋅⋯
x2

⎤
⎥
⎦

FIGURE P5.23

 32.  Given the system represented in state space as follows: [Section: 5.8]

⋅
x =

⎡
⎢
⎣

−1 −7 6
−8 4 8

4 7 −8

⎤
⎥
⎦

x +
⎡
⎢
⎣

−5
−7

5

⎤
⎥
⎦

r

y =[ −9 −9 −8 ] x

convert the system to one where the new state vector, z, is

z =
⎡
⎢
⎣

−4 9 −3
0 −4 7

−1 −4 −9

⎤
⎥
⎦

x

Check Answer!

33.  Diagonalize following system: [Section: 5.8]

⋅
x =

⎡
⎢
⎣

−10 −3 7
18.25 6.25 −11.75
−7.25 −2.25 5.75

⎤
⎥
⎦

x +
⎡
⎢
⎣

1
3
2

⎤
⎥
⎦

r

y =[ 1 −2 4 ]x

34.  Diagonalize the system in Problem 33 using MATLAB.



35. Find the closed-loop transfer function of the Unmanned Free-Swimming
Submersible vehicle's pitch control system shown in Appendix A3 (Johnson, 1980).

36.  Use Simulink to plot the effects of nonlinearities upon the closed-
loop step response of the antenna azimuth position control system shown in

Appendix A2, Configuration 1. In particular, consider individually each of the

following nonlinearities: saturation (± 5 volts), backlash (dead-band width

0.15), deadzone (−2 to +2), as well as the linear response. Assume the

preamplifier gain is 100 and the step input is 2 radians.

37. Figure P5.24 shows a noninverting operational amplifier.

FIGURE P5.24 a. Noninverting amplifier; b. block diagram

Assuming the operational amplifier is ideal,

a. Verify that the system can be described by the following two equations:

vo = A (vi − vo)

v1 = vo

b. Check that these equations can be described by the block diagram of Figure
P5.24(b).

c. Use Mason's rule to obtain the closed-loop system transfer function .

d. Show that when A → ∞, = 1 + .

 38. Figure P5.25(a) shows an n-channel enhancement-mode MOSFET source
follower circuit. Figure P5.25(b) shows its small-signal equivalent (where Ri = R1 | |
R2) (Neamen, 2001).

a. Verify that the equations governing this circuit are

= ; vgs = vin − vo; vo = gm (Rs ||ro) vgs

b. Draw a block diagram showing the relations between the equations.

c. Use the block diagram in Part b to find .

Ri

Ri+Rf

Vo(s)

Vi(s)

Vo(s)

Vi(s)

Rf

Ri

vin

vi

Ri

Ri+Rs

Vo(s)

Vi(s)



FIGURE P5.25 a. An n-channel enhancement-mode MOSFET
source follower circuit; b. small-signal equivalent

Check Answer!

39. A car active suspension system adds an active hydraulic actuator in parallel with
the passive damper and spring to create a dynamic impedance that responds to road
variations. The block diagram of Figure P5.26 depicts such an actuator with closed-
loop control.

FIGURE P5.261

In the figure, Kt is the spring constant of the tire, MUS is the wheel mass, r is the
road disturbance, x1 is the vertical car displacement, x3 is the wheel vertical

displacement, ω2
0 =  is the natural frequency of the unsprung system and ε is a

filtering parameter to be judiciously chosen (Lin, 1997). Find the two transfer
functions of interest:

a. 

b. 

40. The basic unit of skeletal and cardiac muscle cells is a sarcomere, which is what
gives such cells a striated (parallel line) appearance. For example, one bicep cell has
about 105 sarcomeres. In turn, sarcomeres are composed of protein complexes.
Feedback mechanisms play an important role in sarcomeres and thus muscle
contraction. Namely, Fenn's law says that the energy liberated during muscle
contraction depends on the initial conditions and the load encountered. The

Kt

MUS

X3(s)

R(s)

X1(s)

R(s)



following linearized model describing sarcomere contraction has been developed for
cardiac muscle:

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

⋅
A
⋅

T
⋅

U
⋅

SL

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

−100.2 −20.7 −30.7 200.3
40 −20.22 49.95 526.1

0 10.22 −59.95 −526.1
0 0 0 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢
⎣

A

T

U

SL

⎤
⎥ ⎥ ⎥ ⎥
⎦

+

⎡
⎢ ⎢ ⎢ ⎢
⎣

208
−208
−108.8
−1

⎤
⎥ ⎥ ⎥ ⎥
⎦

u (t)

y = [ 0 1570 1570 59400 ]

⎡
⎢ ⎢ ⎢ ⎢
⎣

A

T

U

SL

⎤
⎥ ⎥ ⎥ ⎥
⎦

−6240u (t)

where

A = density of regulatory units with bound calcium
and adjacent weak cross bridges (μM)

T = density of regulatory units with bound calcium

and adjacent strong cross bridges (M)

U = density of regulatory units without bound

calcium and adjacent strong cross bridges (M)

SL = sarcomere length (m)

The system's input is u (t) =the shortening muscle velocity in meters/second and the
output is y (t) = muscle force output in Newtons (Yaniv, 2006).

Do the following:

a.  Use MATLAB to obtain the transfer function .

b.  Use MATLAB to obtain a partial-fraction expansion for .

c.  Draw a signal-flow diagram of the system in parallel form.

d.  Use the diagram of Part c to express the system in state-variable form
with decoupled equations.

41. An electric ventricular assist device (EVAD) has been designed to help patients
with diminished but still functional heart pumping action to work in parallel with the
natural heart. The device consists of a brushless dc electric motor that actuates on a
pusher plate. The plate movements help the ejection of blood in systole and sac filling
in diastole. System dynamics during systolic mode have been found to be:

Y (s)
U(s)

Y (s)
U(s)



⎡
⎢
⎣

⋅x
⋅v
⋅

P ao

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0
0 −68.3 −7.2
0 3.2 −0.7

⎤
⎥
⎦

⎡
⎢
⎣

x

v

Pao

⎤
⎥
⎦

+
⎡
⎢
⎣

0
425.4

0

⎤
⎥
⎦

em

The state variables in this model are x, the pusher plate position, v, the pusher plate
velocity, and Pao, the aortic blood pressure. The input to the system is em, the motor
voltage (Tasch, 1990).

a.  Use MATLAB to find a similarity transformation to diagonalize the
system.

b.  Use MATLAB and the obtained similarity transformation of Part a
to obtain a diagonalized expression for the system.

42. In an experiment to measure and identify postural arm reflexes, subjects hold in
their hands a linear hydraulic manipulator. A load cell is attached to the actuator
handle to measure resulting forces. At the application of a force, subjects try to
maintain a fixed posture. Figure P5.27 shows a block diagram for the combined arm-
environment system.

FIGURE P5.27

In the diagram, Hr(s) represents the reflexive length and velocity feedback
dynamics; Hact(s) the activation dynamics; Hi(s) the intrinsic act dynamics; Hh(s)
the hand dynamics; He(s) the environmental dynamics; Xa(s) the position of the
arm; Xh(s) the measured position of the hand; Fh(s) the measured interaction force
applied by the hand; Fint(s) the intrinsic force; Fref(s) the reflexive force; A(s) the
reflexive activation; and D(s) the external force perturbation (de Vlugt, 2002).

a. Obtain a signal-flow diagram from the block diagram.

b. Find .

43. A virtual reality simulator with haptic (sense of touch) feedback was developed to
simulate the control of a submarine driven through a joystick input. Operator haptic
feedback is provided through joystick position constraints and simulator movement
(Karkoub, 2010). Figure P5.28 shows the block diagram of the haptic feedback
system in which the input uh is the force exerted by the muscle of the human arm;
and the outputs are ys, the position of the simulator and yj, the position of the
joystick.

Fh(s)

D(s)



FIGURE P5.282

a. Find the transfer function .

b. Find the transfer function .

44. Some medical procedures require the insertion of a needle under a patient's skin
using CT scan monitoring guidance for precision. CT scans emit radiation, posing
some cumulative risks for medical personnel. To avoid this problem, a remote control
robot has been developed (Piccin, 2009). The robot controls the needle in position
and angle in the constraint space of a CT scan machine and also provides the
physician with force feedback commensurate with the insertion opposition
encountered by the type of tissue in which the needle is inserted. The robot has other
features that give the operator the similar sensations and maneuverability as if the
needle was inserted directly. Figure P5.29 shows the block diagram of the force
insertion mechanism, where Fh is the input force and Xh is the output displacement.
Summing junction inputs are positive unless indicated with a negative sign. By way of
explanation, Z = impedance; G = transfer function; Ci = communication channel
transfer functions; F = force; and X = position. Subscripts h and m refer to the master
manipulator. Subscripts s and e refer to the slave manipulator.

a. Assuming Zh = 0, C1 = Cs, C2 = 1 + C6, and C4 = − Cm, use Mason's Rule to
show that the transfer function from the operators force input Fh to needle
displacement Xh is given by

Y (s) = =

a. Now with Zh ≠ 0 show that =

Ys(s)

Uh(s)

Yj(s)

Uh(s)

Xh(s)
Fh(s)

Z−1
m C2(1 + GsCs)

1 + GsCs + Z−1
m (cm + C2ZeGsCs)

Xh(s)

Fh(s)

Y (s)

1+Y (s)Zh



FIGURE P5.293

45. Continuous casting in steel production is essentially a solidification process by
which molten steel is solidified into a steel slab after passing through a mold, as
shown in Figure P5.30(a). Final product dimensions depend mainly on the casting
speed Vp (in m/min) and on the stopper position X (in %) that controls the flow of
molten material into the mold (Kong, 1993). A simplified model of a casting system is
shown in Figure P5.30(b) (Kong, 1993) and (Graebe, 1995). In the model, Hm = mold
level (in mm); Ht = assumed constant height of molten steel in the tundish; Dz = 
mold thickness = depth of nozzle immerged into molten steel; and Wt = weight of
molten steel in the tundish.

For a specific setting let Am = 0.5 and

Gx(s) =

Also assume that the valve positioning loop may be modeled by the following
second-order transfer function:

GV (s) = =

and the controller is modeled by the following transfer function:

0.63
s + 0.926

X(s)
YC(s)

100
s2 + 10s + 100



GC(s) =

FIGURE P5.30 Steel mold process: a. process;4 b. block diagram

The sensitivity of the mold level sensor is β = 0.5 and the initial values of the system
variables at t = 0− are: R(0−) = 0; YC(0−) = X(0−) = 41.2; ΔHm(0−) = 0;Hm(0−) = −
75; ΔVp(0−) = 0; and Vp(0−) = 0. Do the following:

a. Assuming vp(t) is constant [Δvp = 0], find the closed-loop transfer function
T(s) = ΔHm(s)/R(s).

b.  For r(t) = 5 u(t), vp(t) = 0.97 u(t), and Hm(0−) = − 75 mm, use
Simulink to simulate the system. Record the time and mold level (in array

format) by connecting them to Workspace sinks, each of which should carry
the respective variable name. After the simulation ends, utilize MATLAB

1.6(s2 + 1.25s + 0.25)
s



plot commands to obtain and edit the graph of hm(t) from t = 0 to 80

seconds.

 46. It is shown in Figure 5.6(c) that when negative feedback is used, the overall
transfer function for the system of Figure 5.6(b) is

=

Develop the block diagram of an alternative feedback system that will result in the
same closed-loop transfer function, C(s)/R(s), with G(s) unchanged and unmoved.
In addition, your new block diagram must have unity gain in the feedback path. You
can add input transducers and/or controllers in the main forward path as required.

Check Answer!

47. The purpose of an Automatic Voltage Regulator is to maintain constant the
voltage generated in an electrical power system, despite load and line variations, in
an electrical power distribution system (Gozde, 2011). Figure P5.31 shows the block

FIGURE P5.31

diagram of such a system. Assuming Ka = 10, Ta = 0.1, Ke = 1, Te = 0.4, Kg = 1, Tg =
1, Ks = 1, Ts = 0.001, and the controller, GPID(s) = 1.6 + + 0.3s, find the

closed-loop transfer function, T (s) = , of the system, expressing it as a

rational function.

48. A drive system with an elastically coupled load was presented in Problem 52,
Chapter 4. The mechanical part of this drive (Thomsen, 2011) was reduced to a two-
inertia model. Using slightly different parameters, the following transfer function
results:

G(s) = =

C (s)
R (s)

G (s)
1 + G (s) H (s)

0.4
s

ΔVt(s)

ΔVref(s)

ΩL(s)
T (s)

25(s2 + 1.2s + 12500)
s(s2 + 5.6s + 62000)



Here, T(s) = Tem(s) − TL(s), where Tem(s) = the electromagnetic torque developed by
the motor, TL(s) = the load torque, and ΩL(s) = the load speed.

The drive is shown in Figure P5.32 as the controlled unit in a feedback control loop,
where Ωr(s) = the desired (reference) speed. The controller transfer function is 
GC(s) = Kp + = 4 +  and provides an output voltage = 0 – 5.0 volts. The
motor and its power amplifier have a gain, KM = 10 N-m/volt.

a.  Find the minor-loop transfer function, D(s) =  analytically

or using MATLAB.

b. Given that at t = 0, the load speed ωL(t) = 0 rad/sec and a step
reference input ωr(t) = 260 u(t), rad/sec, is applied, use MATLAB (or any

other program) to find and plot ωL(t). Mark on the graph all of the
important characteristics, such as percent overshoot, peak time, rise

time, settling time, and final steady-state value.

FIGURE P5.32

49. Integrated circuits are manufactured through a lithographic process on a
semiconductor wafer. In lithography, similarly to chemical photography, a
semiconductor wafer is covered with a photosensitive emulsion and then selectively
exposed to light to form the electronic components. Due to miniaturization, this
process is to be performed with nanometer accuracy and at the highest possible
speed. Sophisticated apparatus and methods have been developed for this purpose.
Figure P5.33 shows the block diagram of a scanner dedicated to this purpose (Butler,
2011). Use Mason's Rule to find:

a. The transfer function .

b. The transfer function .

KI

s
0.5
s

ΩL(s)
Tem(s)

Xss(s)

R(s)

Xls(s)

R(s)



FIGURE P5.335

50. In Problem 48 of Chapter 2, a three-phase ac/dc converter that supplies dc to a
battery charging system (Graovac, 2001) was introduced. Each phase had an ac filter
represented by the equivalent circuit of Figure P2.27. You were asked to show that
the following equation gives the s-domain relationship between the inductor current,
IacF(s), and two active sources: a current source, IacR(s), representing a phase of the
ac/dc converter, and the supply phase voltage, Va(s):

IacF (s) = IacF1(s) + IacF2(s) = IacR(s) + Va(s)

a. Derive an s-domain equation for Vc(s).

b.  Given that R = 1 Ω, L = 1 mH, and C = 20 μF,iacR(t)= 10

u(t)amps,va(t)= 20 t u(t) volts,
6 and assuming zero initial conditions,

use Simulink to model this system and plot the inductor current, iacF (t),

and the capacitor voltage, vc(t), over a period from 0 to 15 ms.

DESIGN PROBLEMS
51. The motor and load shown in Figure P5.34(a) are used as part of the unity-
feedback system shown in Figure P5.34(b). Find the value of the coefficient of viscous
damping, DL, that must be used in order to yield a closed-loop transient response
having a 20% overshoot.

1 + RCs

LCs2 + RCs + 1
Cs

LCs2 + RCs + 1



FIGURE P5.34 Position control: a. motor and load; b. block diagram

52. The system shown in Figure P5.35 will have its transient response altered by
adding a tachometer. Design K and K2 in the system to yield a damping ratio of 0.69.
The natural frequency of the system before the addition of the tachometer is 10 rad/s.

FIGURE P5.35 Position control

53. The mechanical system shown in Figure P5.36(a) is used as part of the unity
feedback system shown in Figure P5.36(b). Find the values of M and D to yield 20%
overshoot and 2 seconds settling time.



FIGURE P5.36 a. Motor and load; b. motor and load in feedback system

54. Assume ideal operational amplifiers in the circuit of Figure P5.37.

a. Show that the leftmost operational amplifier works as a subtracting amplifier.
Namely, v1 = vo − vin.

b. Draw a block diagram of the system, with the subtracting amplifier
represented with a summing junction, and the circuit of the rightmost
operational amplifier with a transfer function in the forward path. Keep R as a
variable.

c. Obtain the system's closed-loop transfer function.

d. For a unit step input, obtain the value of R that will result in a settling time Ts
= 1 msec.

e. Using the value of R calculated in Part d, make a sketch of the resulting unit
step response.



FIGURE P5.37

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

55.  Control of HIV/AIDS. Given the HIV system of Problem 61 in Chapter
4 and repeated here for convenience (Craig, 2004):

⎡
⎢ ⎢
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⋅
T
⋅

T
∗

⋅v

⎤
⎥ ⎥
⎦

=
⎡
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⎣
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v
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0

⎤
⎥
⎦
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⎡
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⎣

T
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v

⎤
⎥
⎦

Express the system in the following forms:

a. Phase-variable form

b. Controller canonical form

c. Observer canonical form

Finally,

d.  Use MATLAB to obtain the system's diagonalized representation.

56. Hybrid vehicle. Figure P5.38 shows the block diagram of a possible cascade
control scheme for an HEV driven by a dc motor (Preitl, 2007).



FIGURE P5.38

Let the speed controller GSC(s) = 100 + , the torque controller and power amp 
KAGTC(s) = 10 + , the current sensor sensitivity KCS = 0.5, and the speed sensor
sensitivity KSS = 0.0433. Also, following the development in previous chapters, 

= 1; ηtotKt = 1.8; kb = 2; D = kf = 0.1; = ; = 0.0615; and 
ρCwAv0 = 0.6154.

a. Substitute these values in the block diagram, and find the transfer function,
T(s) = V(s)/Rv(s), using block-diagram reduction rules. [Hint: Start by moving
the last  block to the right past the pickoff point.]

b.   Develop a Simulink model for the original system in Figure
P5.38. Set the reference signal input, rv(t) = 4 u(t), as a step input with

a zero initial value, a step time = 0 seconds, and a final value of 4

volts. Use X-Y graphs to display (over the period from 0 to 8 seconds) the

response of the following variables to the step input: (1) change in car

speed (m/s), (2) car acceleration (m/s2), and (3) motor armature current

(A).

To record the time and the above three variables (in array format),

connect them to four Workspace sinks, each of which carries the respective
variable name. After the simulation ends, utilize MATLAB plot commands to

obtain and edit the three graphs of interest.

57. Parabolic trough collector. Effective controller design for parabolic trough
collector setups is an active area of research. One of the techniques used for
controller design (Camacho, 2012) is Internal Model Control (IMC). Although
complete details of IMC will not be presented here, Figure P5.39(a) shows a block
diagram for the IMC setup. Use of IMC assumes a very good knowledge of the plant
dynamics. In Figure P5.39(a), the actual plant is P (s). P̃ (s) is a software model that
mimics the plant functions. G(s) is the controller to be designed. It is also assumed
that all blocks represent linear time-invariant systems and thus the superposition
theorem applies to the system.

40
s

6
s

1
Ra

1
Jtot

1
7.226

r

itot
r

itot

r
itot



a. Use superposition (by assuming D(s) = 0) and Mason's gain formula to find
the transfer function  from command input to system output.

b. Use superposition (by assuming R(s) = 0) and Mason's gain formula to find
the transfer function  from disturbance input to system output.

c. Use the results of Parts a and b to find the combined output C(s) due to both
system inputs.

d. Show that the system of Figure P5.39(a) has the same transfer function as the
system in Figure P5.39(b) when GC(s) = .

FIGURE P5.39

Notes
1 Lin Jung-Shan, Kanellakopoulos Ioannis, “Nonlinear Design of Active Suspensions.”

IEEE Control Systems Magazine, Vol. 17, Issue 3, June 1997 pp. 45–59. Figure 3, p.
48. IEEE control systems by IEEE CONTROL SYSTEMS SOCIETY Reproduced with
permission of INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, in
the format Republish in a book via Copyright Clearance Center.

2 Karkoub M., Her, M-G., and Chen, J.M. Design and control of a haptic interactive
motion simulator for virtual entertainment systems, Robotica, vol. 28, 2010, Figure 8,
p. 53. Reproduced by permission of Cambridge University Press.
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3 Piccin, O., Barbé L., Bayle B., and Mathelin M. A Force Feedback Teleoperated Needle
Insertion Device for Percutaneous Procedures. Int. J. of Robotics Research, vol. 28, p.
1154. Figure 14. Copyright © 2009. Reprinted by Permission of SAGE.

4 Kong F., and de Keyser R. Identification and Control of the Mould Level in a Continuous
Casting Machine. Second IEEE Conference on Control Applications, Vancouver, B.C.,
1993. pp. 53–58. Figure 1. p. 53.

5 Butler, H. Position Control in Lithographic Equipment. IEEE Control Systems
Magazine, October 2011, pp. 28–47. Figure 18, p. 37.

6 Noting that a ramp is the integration of a step, we used an integrator with limits.



Chapter 5 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Reduce a block diagram of multiple subsystems to a single block representing the
transfer function from input to output (Sections 5.1–5.2)

Analyze and design transient response for a system consisting of multiple subsystems
(Section 5.3)

Convert block diagrams to signal-flow diagrams (Section 5.4)

Find the transfer function of multiple subsystems using Mason's rule (Section 5.5)

 Represent state equations as signal-flow graphs (Section 5.6)

 Represent multiple subsystems in state space in cascade, parallel, controller
canonical, and observer canonical forms (Section 5.7)

 Perform transformations between similar systems using transformation
matrices; and diagonalize a system matrix (Section 5.8)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case studies as
follows:

Given the antenna azimuth position control system shown in Appendix A2, you will be
able to (a) find the closed-loop transfer function that represents the system from input to
output; (b) find a state-space representation for the closed-loop system; (c) predict, for a
simplified system model, the percent overshoot, settling time, and peak time of the
closed-loop system for a step input; (d) calculate the step response for the closed-loop
system; and (e) for the simplified model, design the system gain to meet a transient
response requirement.

 Given the block diagrams for the Unmanned Free-Swimming Submersible
(UFSS) vehicle's pitch and heading control systems in Appendix A3, you will be able to
represent each control system in state space.

5.1 Introduction
We have been working with individual subsystems represented by a block with its input and
output. More complicated systems, however, are represented by the interconnection of many
subsystems. Since the response of a single transfer function can be calculated, we want to
represent multiple subsystems as a single transfer function. We can then apply the analytical
techniques of the previous chapters and obtain transient response information about the
entire system.

In this chapter, multiple subsystems are represented in two ways: as block diagrams and as
signal-flow graphs. Although neither representation is limited to a particular analysis and
design technique, block diagrams are usually used for frequency-domain analysis and design,
and signal-flow graphs for state-space analysis.

Signal-flow graphs represent transfer functions as lines, and signals as small-circular nodes.
Summing is implicit. To show why it is convenient to use signal-flow graphs for state-space
analysis and design, consider Figure 3.10. A graphical representation of a system's transfer
function is as simple as Figure 3.10(a). However, a graphical representation of a system in
state space requires representation of each state variable, as in Figure 3.10(b). In that
example, a single-block transfer function requires seven blocks and a summing junction to
show the state variables explicitly. Thus, signal-flow graphs have advantages over block
diagrams, such as Figure 3.10(b): They can be drawn more quickly, they are more compact,
and they emphasize the state variables.

We will develop techniques to reduce each representation to a single transfer function. Block
diagram algebra will be used to reduce block diagrams and Mason's rule to reduce signal-flow
graphs. Again, it must be emphasized that these methods are typically used as described. As
we shall see, however, either method can be used for frequency-domain or state-space
analysis and design.

5.2 Block Diagrams
As you already know, a subsystem is represented as a block with an input, an output, and a
transfer function. Many systems are composed of multiple subsystems, as in Figure 5.1. When
multiple subsystems are interconnected, a few more schematic elements must be added to the
block diagram. These new elements are summing junctions and pickoff points. All



component parts of a block diagram for a linear, time-invariant system are shown in Figure
5.2. The characteristic of the summing junction shown in Figure 5.2(c) is that the output
signal, C(s), is the algebraic sum of the input signals, R1(s), R2(s), and R3(s). The figure shows
three inputs, but any number can be present. A pickoff point, as shown in Figure 5.2(d),
distributes the input signal, R(s), undiminished, to several output points.

FIGURE 5.1 The recently retired space shuttle consisted of multiple
subsystems. Can you identify those that are control systems or parts of control
systems?



(5.1)

FIGURE 5.2 Components of a block diagram for a linear, time-invariant
system

We will now examine some common topologies for interconnecting subsystems and derive
the single transfer function representation for each of them. These common topologies will
form the basis for reducing more complicated systems to a single block.

Cascade Form
Figure 5.3(a) shows an example of cascaded subsystems. Intermediate signal values are
shown at the output of each subsystem. Each signal is derived from the product of the input
times the transfer function. The equivalent transfer function, Ge(s), shown in Figure 5.3(b), is
the output Laplace transform divided by the input Laplace transform from Figure 5.3(a), or

Ge (s) = G3 (s)G2 (s)G1 (s)

which is the product of the subsystems' transfer functions.

FIGURE 5.3 a. Cascaded subsystems; b. equivalent transfer function

Equation (5.1) was derived under the assumption that interconnected subsystems do not load
adjacent subsystems. That is, a subsystem's output remains the same whether or not the
subsequent subsystem is connected. If there is a change in the output, the subsequent
subsystem loads the previous subsystem, and the equivalent transfer function is not the



(5.2)

(5.3)

(5.4)

(5.5)

product of the individual transfer functions. The network of Figure 5.4(a) demonstrates this
concept. Its transfer function is

G1 (s) = =

Similarly, the network of Figure 5.4(b) has the following transfer function:

G2 (s) = =

If the networks are placed in cascade, as in Figure 5.4(c), you can verify that the transfer
function found using loop or node equations is

G (s) = =

But, using Eq. (5.1),

G (s) = G2 (s)G1 (s) =

Equations (5.4) and (5.5) are not the same: Eq. (5.4) has one more term for the coefficient of s
in the denominator and is correct.
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1
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(5.6)

FIGURE 5.4 Loading in cascaded systems

One way to prevent loading is to use an amplifier between the two networks, as shown in
Figure 5.4(d). The amplifier has a high-impedance input, so that it does not load the previous
network. At the same time it has a low-impedance output, so that it looks like a pure voltage
source to the subsequent network. With the amplifier included, the equivalent transfer
function is the product of the transfer functions and the gain, K, of the amplifier.

Parallel Form
Figure 5.5 shows an example of parallel subsystems. Again, by writing the output of each
subsystem, we can find the equivalent transfer function. Parallel subsystems have a common
input and an output formed by the algebraic sum of the outputs from all of the subsystems.
The equivalent transfer function, Ge(s), is the output transform divided by the input
transform from Figure 5.5(a), or

Ge (s) = ±G1 (s) ± G2 (s) ± G3 (s)

which is the algebraic sum of the subsystems' transfer functions; it appears in Figure 5.5(b).



(5.7)

(5.8)

(5.9)

FIGURE 5.5 a. Parallel subsystems; b. equivalent transfer function

Feedback Form
The third topology is the feedback form, which will be seen repeatedly in subsequent
chapters. The feedback system forms the basis for our study of control systems engineering.
In Chapter 1, we defined open-loop and closed-loop systems and pointed out the advantage of
closed-loop, or feedback control, systems over open-loop systems. As we move ahead, we will
focus on the analysis and design of feedback systems.

Let us derive the transfer function that represents the system from its input to its output. The
typical feedback system, described in detail in Chapter 1, is shown in Figure 5.6(a); a
simplified model is shown in Figure 5.6(b).1 Directing our attention to the simplified model,

E (s) = R (s) ∓ C (s)H (s)

But since C(s) = E(s) G(s),

E (s) =

Substituting Eq. (5.8) into Eq. (5.7) and solving for the transfer function, C(s)/R(s) = Ge (s),
we obtain the equivalent, or closed-loop, transfer function shown in Figure 5.6(c),

Ge (s) =

The product, G(s)H(s), in Eq. (5.9) is called the open-loop transfer function, or loop
gain.

C (s)

G (s)

G(s)

1±G(s)H(s)



FIGURE 5.6 a. Feedback control system; b. simplified model; c. equivalent
transfer function

So far, we have explored three different configurations for multiple subsystems. For each, we
found the equivalent transfer function. Since these three forms are combined into complex
arrangements in physical systems, recognizing these topologies is a prerequisite to obtaining
the equivalent transfer function of a complex system. In this section, we will reduce complex
systems composed of multiple subsystems to single transfer functions.

Moving Blocks to Create Familiar Forms
Before we begin to reduce block diagrams, it must be explained that the familiar forms
(cascade, parallel, and feedback) are not always apparent in a block diagram. For example, in
the feedback form, if there is a pickoff point after the summing junction, you cannot use the



feedback formula to reduce the feedback system to a single block. That signal disappears, and
there is no place to reestablish the pickoff point.

This subsection will discuss basic block moves that can be made in order to establish familiar
forms when they almost exist. In particular, it will explain how to move blocks left and right
past summing junctions and pickoff points.

Figure 5.7 shows equivalent block diagrams formed when transfer functions are moved left or
right past a summing junction, and Figure 5.8 shows equivalent block diagrams formed when
transfer functions are moved left or right past a pickoff point. In the diagrams the symbol ≡
means “equivalent to.” These equivalences, along with the forms studied earlier in this
section, can be used to reduce a block diagram to a single transfer function. In each case of
Figures 5.7 and 5.8, the equivalence can be verified by tracing the signals at the input through
to the output and recognizing that the output signals are identical. For example, in Figure
5.7(a), signals R(s) and X(s) are multiplied by G(s) before reaching the output. Hence, both
block diagrams are equivalent, with C(s) = R(s) G(s) ∓ X(s) G(s). In Figure 5.7(b), R(s) is
multiplied by G(s) before reaching the output, but X(s) is not. Hence, both block diagrams in
Figure 5.7(b) are equivalent, with C(s) = R(s) G(s) ∓ X(s). For pickoff points, similar
reasoning yields similar results for the block diagrams of Figure 5.8(a) and (b).

FIGURE 5.7 Block diagram algebra for summing junctions—equivalent forms
for moving a block a. to the left past a summing junction; b. to the right past a
summing junction



FIGURE 5.8 Block diagram algebra for pickoff points—equivalent forms for
moving a block a. to the left past a pickoff point; b. to the right past a pickoff
point

Let us now put the whole story together with examples of block diagram reduction.



Example 5.1 Block Diagram Reduction via Familiar Forms
PROBLEM:
Reduce the block diagram shown in Figure 5.9 to a single transfer function.

FIGURE 5.9 Block diagram for Example 5.1

SOLUTION:
We solve the problem by following the steps in Figure 5.10. First, the three summing
junctions can be collapsed into a single summing junction, as shown in Figure 5.10(a).



FIGURE 5.10 Steps in solving Example 5.1: a. collapse summing junctions;
b. form equivalent cascaded system in the forward path and equivalent
parallel system in the feedback path; c. form equivalent feedback system
and multiply by cascaded G1(s)

Second, recognize that the three feedback functions, H1(s), H2(s), and H3(s), are
connected in parallel. They are fed from a common signal source, and their outputs are
summed. The equivalent function is H1 (s) − H2 (s) + H3 (s). Also recognize that G2(s)
and G3(s) are connected in cascade. Thus, the equivalent transfer function is the product,
G3(s)G2(s). The results of these steps are shown in Figure 5.10(b).

Finally, the feedback system is reduced and multiplied by G1(s) to yield the equivalent
transfer function shown in Figure 5.10(c).



Example 5.2 Block Diagram Reduction by Moving Blocks
PROBLEM:
Reduce the system shown in Figure 5.11 to a single transfer function.

FIGURE 5.11 Block diagram for Example 5.2

SOLUTION:
In this example we make use of the equivalent forms shown in Figures 5.7 and 5.8. First,
move G2(s) to the left past the pickoff point to create parallel subsystems, and reduce the
feedback system consisting of G3(s) and H3(s). This result is shown in Figure 5.12(a).



FIGURE 5.12 Steps in the block diagram reduction for Example 5.2

Second, reduce the parallel pair consisting of 1/G2(s) and unity, and push G1(s) to the
right past the summing junction, creating parallel subsystems in the feedback. These
results are shown in Figure 5.12(b).

Third, collapse the summing junctions, add the two feedback elements together, and
combine the last two cascaded blocks. Figure 5.12(c) shows these results.

Fourth, use the feedback formula to obtain Figure 5.12(d).

Finally, multiply the two cascaded blocks and obtain the final result, shown in Figure
5.12(e).



 Students who are using MATLAB should now run ch5apB1 in Appendix B to perform
block diagram reduction.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_5.zip


Skill-Assessment Exercise 5.1
PROBLEM:
Find the equivalent transfer function, T(s) = C(s)/R(s), for the system shown in Figure
5.13.

FIGURE 5.13 Block diagram for Skill-Assessment Exercise 5.1

ANSWER:

T (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 5.1
Use the following MATLAB and Control System Toolbox statements to find the
closed-loop transfer function of the system in Example 5.2 if all Gi (s) = 1/s + 1 and
all Hi (s) = 1/(s).

G1 = tf(1,[1 1]);
G2 = G1; G3=G1;
H1 = tf(1,[1 0]);
H2 = H1;H3 = H1;
System = append… (G1,G2,G3,H1,H2,H3);
input = 1; output = 3;
Q = [l   -4    0    0    0
     2    1   -5    0    0
     3    2    1   -5   -6
     4    2    0    0    0
     5    2    0    0    0
     6    3    0    0    0];
T=connect(System,…Q, input, output);
T=tf(T); T=minreal(T)

s3 + 1

2s4 + s2 + 2s

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_5.zip


(5.10)

(5.11)

(5.12)

In this section, we examined the equivalence of several block diagram configurations
containing signals, systems, summing junctions, and pickoff points. These configurations
were the cascade, parallel, and feedback forms. During block diagram reduction, we attempt
to produce these easily recognized forms and then reduce the block diagram to a single
transfer function. In the next section, we will examine some applications of block diagram
reduction.

5.3 Analysis and Design of Feedback Systems
An immediate application of the principles of Section 5.2 is the analysis and design of
feedback systems that reduce to second-order systems. Percent overshoot, settling time, peak
time, and rise time can then be found from the equivalent transfer function.

Consider the system shown in Figure 5.14, which can model a control system such as the
antenna azimuth position control system. For example, the transfer function, K/s (s + a), can
model the amplifiers, motor, load, and gears. From Eq. (5.9), the closed-loop transfer
function, T(s), for this system is

T (s) =

where K models the amplifier gain, that is, the ratio of the output voltage to the input voltage.
As K varies, the poles move through the three ranges of operation of a second-order system:
overdamped, critically damped, and underdamped. For example, for K between 0 and a2/4,
the poles of the system are real and are located at

s1,2 = − ±

As K increases, the poles move along the real axis, and the system remains overdamped until
K = a2/4. At that gain, or amplification, both poles are real and equal, and the system is
critically damped.

FIGURE 5.14 Second-order feedback control system

For gains above a2/4, the system is underdamped, with complex poles located at

s1,2 = − ± j

Now as K increases, the real part remains constant and the imaginary part increases. Thus,
the peak time decreases and the percent overshoot increases, while the settling time remains
constant.

K

s2 + as + K

a

2

√a2 − 4K

2

a

2

√4K − a2

2



Let us look at two examples that apply the concepts to feedback control systems. In the first
example, we determine a system's transient response. In the second example, we design the
gain to meet a transient response requirement.



(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

Example 5.3 Finding Transient Response
PROBLEM:
For the system shown in Figure 5.15, find the peak time, percent overshoot, and settling
time.

FIGURE 5.15 Feedback system for Example 5.3

SOLUTION:
The closed-loop transfer function found from Eq. (5.9) is

T (s) =

From Eq. (4.18),

ωn = √25 = 5

From Eq. (4.21),

2ζωn = 5

Substituting Eq. (5.14) into (5.15) and solving for ζ yields

ζ = 0.5

Using the values for ζ and ωn along with Eqs (4.34), (4.38), and (4.42), we find,
respectively,

Tp = = 0.726 second

%OS = e−ζπ/√1−ζ2
× 100 = 16.303

Ts = = 1.6 seconds

 Students who are using MATLAB should now run ch5apB2 in Appendix B. You
will learn how to perform block diagram reduction followed by an evaluation of

the closed-loop system's transient response by finding, Tp,%OS, and Ts. Finally,

25

s2 + 5s + 25

π

ωn√1 − ζ2

4

ζωn

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_5.zip


you will learn how to use MATLAB to generate a closed-loop step response. This

exercise uses MATLAB to do Example 5.3.

 MATLAB's Simulink provides an alternative method of simulating feedback systems
to obtain the time response. Students who are performing the MATLAB exercises and want

to explore the added capability of MATLAB's Simulink should now consult Appendix C.

Example C.3 includes a discussion about, and an example of, the use of Simulink to

simulate feedback systems with nonlinearities.
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(5.22)
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Example 5.4 Gain Design for Transient Response
PROBLEM:
Design the value of gain, K, for the feedback control system of Figure 5.16 so that the
system will respond with a 10% overshoot.

FIGURE 5.16 Feedback system for Example 5.4

SOLUTION:
The closed-loop transfer function of the system is

T (s) =

From Eq. (5.20),

2ζωn = 5

and

ωn = √K

Thus,

ζ =

Since percent overshoot is a function only of ζ, Eq. (5.23) shows that the percent
overshoot is a function of K.

A 10% overshoot implies that ζ = 0.591. Substituting this value for the damping ratio into
Eq. (5.23) and solving for K yields

K = 17.9

Although we are able to design for percent overshoot in this problem, we could not have
selected settling time as a design criterion because, regardless of the value of K, the real
parts, −2.5, of the poles of Eq. (5.20) remain the same.

K

s2 + 5s + K

5

2√K



Virtual Experiment 5.1 Gain Design
Put theory into practice designing the position control gain for the Quanser Linear
Servo and simulating its closed-loop response in LabVIEW. This concept is used, for
instance, to control a rover exploring the terrain of a planet.

Run Experiment 5.1

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp06.zip


Skill-Assessment Exercise 5.2
PROBLEM:

For a unity feedback control system with a forward-path transfer function G (s) =

, design the value of a to yield a closed-loop step response that has 5% overshoot.

ANSWER:

a = 5.52

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 5.2
Use the following MATLAB and Control System Toolbox statements to find ζ, ωn,
%OS, Ts, Tp, and Tr for the closed-loop unity feedback system described in Skill-
Assessment Exercise 5.2. Start with a = 2 and try some other values. A step response
for the closed-loop system will also be produced.

a=2;
numg=16;
deng=poly([0−a]);
G=tf(numg, deng);
T=feedback(G, 1);
[numt, dent]=...tfdata(T,'v');
wn=sqrt(dent(3))
z=dent(2)/(2*wn)
Ts=4/(z*wn)
Tp=pi/(wn*...sqrt(1 -z^2))
pos=exp(-z*pi.../sqrt(1 -z^2))*100
Tr=(1.76*z^3-...0.417*z^2 + 1.039*...z + 1)/wn
step(T)

5.4 Signal-Flow Graphs
Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams, which consist
of blocks, signals, summing junctions, and pickoff points, a signal-flow graph consists only of
branches, which represent systems, and nodes, which represent signals. These elements
are shown in Figures 5.17(a) and (b), respectively. A system is represented by a line with an
arrow showing the direction of signal flow through the system. Adjacent to the line we write
the transfer function. A signal is a node with the signal's name written adjacent to the node.

16
s(s+a)
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FIGURE 5.17 Signal-flow graph components: a. system; b. signal; c.
interconnection of systems and signals

Figure 5.17(c) shows the interconnection of the systems and the signals. Each signal is the
sum of signals flowing into it. For example, we see that the signal V(s) = R1 (s) G1 (s) − R2 (s)
G2 (s) + R3 (s) G3 (s); the signal C2 (s) = V(s) G5 (s) =
R1 (s) G1 (s) G5 (s) − R2 (s)G2 (s) G5 (s) + R3 (s) G3 (s) G5 (s) ; and the signal C3 (s) = −
V(s) G6 (s) = − R1 (s) G1 (s) G6 (s) + R2 (s) G2 (s) G6 (s) − R3 (s) G3 (s) G6 (s). Notice that in
summing negative signals we associate the negative sign with the system and not with a
summing junction, as in the case of block diagrams.

To show the parallel between block diagrams and signal-flow graphs, we will take some of the
block diagram forms from Section 5.2 and convert them to signal-flow graphs in Example 5.5.
In each case, we will first convert the signals to nodes and then interconnect the nodes with
system branches. In Example 5.6, we will convert an intricate block diagram to a signal-flow
graph.



Example 5.5 Converting Common Block Diagrams to Signal-
Flow Graphs
PROBLEM:
Convert the cascaded, parallel, and feedback forms of the block diagrams shown in
Figures 5.3(a), 5.5(a), and 5.6(b), respectively, into signal-flow graphs.

SOLUTION:
In each case, we start by drawing the signal nodes for that system. Next we interconnect
the signal nodes with system branches. The signal nodes for the cascaded, parallel, and
feedback forms are shown in Figure 5.18(a), (c), and (e), respectively. The
interconnection of the nodes with branches that represent the subsystems is shown in
Figure 5.18(b), (d), and (f) for the cascaded, parallel, and feedback forms, respectively.

FIGURE 5.18 Building signal-flow graphs: a. cascaded system nodes (from
Figure 5.3(a)); b. cascaded system signal-flow graph; c. parallel system
nodes (from Figure 5.5(a)); d. parallel system signal-flow graph; e.
feedback system nodes (from Figure 5.6(b)); f. feedback system signal-
flow graph



Example 5.6 Converting a Block Diagram to a Signal-Flow
Graph
PROBLEM:
Convert the block diagram of Figure 5.11 to a signal-flow graph.

SOLUTION:
Begin by drawing the signal nodes, as shown in Figure 5.19(a). Next, interconnect the
nodes, showing the direction of signal flow and identifying each transfer function. The
result is shown in Figure 5.19(b). Notice that the negative signs at the summing junctions
of the block diagram are represented by the negative transfer functions of the signal-flow
graph. Finally, if desired, simplify the signal-flow graph to the one shown in Figure
5.19(c) by eliminating signals that have a single flow in and a single flow out, such as
V2(s), V6(s), V7(s), and V8(s).



FIGURE 5.19 Signal-flow graph development: a. signal nodes; b. signal-
flow graph; c. simplified signal-flow graph



(5.25a)

(5.25b)

(5.25c)

(5.25d)

Skill-Assessment Exercise 5.3
PROBLEM:
Convert the block diagram of Figure 5.13 to a signal-flow graph.

ANSWER:
The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

5.5 Mason's Rule
Earlier in this chapter, we discussed how to reduce block diagrams to single transfer
functions. Now we are ready to discuss a technique for reducing signal-flow graphs to single
transfer functions that relate the output of a system to its input.

The block diagram reduction technique we studied in Section 5.2 requires successive
application of fundamental relationships in order to arrive at the system transfer function. On
the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function
requires the application of one formula. The formula was derived by S. J. Mason when he
related the signal-flow graph to the simultaneous equations that can be written from the
graph (Mason, 1953).

In general, it can be complicated to implement the formula without making mistakes.
Specifically, the existence of what we will later call nontouching loops increases the
complexity of the formula. However, many systems do not have non-touching loops. For
these systems, you may find Mason's rule easier to use than block diagram reduction.

Mason's formula has several components that must be evaluated. First, we must be sure that
the definitions of the components are well understood. Then we must exert care in evaluating
the components. To that end, we discuss some basic definitions applicable to signal-flow
graphs; then we state Mason's rule and do an example.

Definitions
Loop gain. The product of branch gains found by traversing a path that starts at a node and
ends at the same node, following the direction of the signal flow, without passing through any
other node more than once. For examples of loop gains, see Figure 5.20. There are four loop
gains:

1. G2 (s)H1 (s)

2. G4 (s)H2 (s)

3. G4 (s)G5 (s)H3 (s)

4. G4 (s)G6 (s)H3 (s)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(5.26a)

(5.26b)

(5.27a)

(5.27b)

(5.27c)

(5.28)

FIGURE 5.20 Signal-flow graph for demonstrating Mason's rule

Forward-path gain. The product of gains found by traversing a path from the input node
to the output node of the signal-flow graph in the direction of signal flow. Examples of
forward-path gains are also shown in Figure 5.20. There are two forward-path gains:

1. G1 (s)G2 (s)G3 (s)G4 (s)G5 (s)G7 (s)

2. G1 (s)G2 (s)G3 (s)G4 (s)G6 (s)G7 (s)

Nontouching loops. Loops that do not have any nodes in common. In Figure 5.20, loop
G2(s)H1(s) does not touch loops G4(s)H2(s), G4(s)G5(s)H3(s), and G4(s)G6(s)H3(s).

Nontouching-loop gain. The product of loop gains from nontouching loops taken two,
three, four, or more at a time. In Figure 5.20 the product of loop gain G2(s)H1(s) and loop
gain G4(s)H2(s) is a nontouching-loop gain taken two at a time. In summary, all three of the
nontouching-loop gains taken two at a time are

1. [G2 (s)H1 (s)] [G4 (s)H2 (s)]

2. [G2 (s)H1 (s)] [G4 (s)G5 (s)H3 (s)]

3. [G2 (s)H1 (s)] [G4 (s)G6 (s)H3 (s)]

The product of loop gains [G4 (s) G5 (s) H3 (s)] [G4 (s) G6 (s) H3 (s)] is not a nontouching-
loop gain since these two loops have nodes in common. In our example there are no
nontouching-loop gains taken three at a time since three nontouching loops do not exist in
the example.

We are now ready to state Mason's rule.

Mason's Rule
The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is

G (s) = =

where

C(s)

R(s)

∑k TkΔk

Δ



k = number of forward paths

Tk = the kth forward-path gain

Δ = 1 − Σ loop gains + Σ nontouching-loop gains taken two at a time − Σ

nontouching-loop gains taken three at a time + Σ nontouching-loop gains

taken four at a time − …

Δk = Δ − Σ loop gain terms in Δ that touch the kth forward path. In other words, Δk

is formed by eliminating from Δ those loop gains that touch the kth forward path.

Notice the alternating signs for the components of Δ. The following example will help clarify
Mason's rule.



(5.29)

(5.30a)

(5.30b)

(5.30c)

(5.30d)

(5.31a)

(5.31b)

(5.31c)

Example 5.7 Transfer Function via Mason's Rule
PROBLEM:
Find the transfer function, C(s)/R(s), for the signal-flow graph in Figure 5.21.

FIGURE 5.21 Signal-flow graph for Example 5.7

SOLUTION:
First, identify the forward-path gains. In this example there is only one:

G1 (s)G2 (s)G3 (s)G4 (s)G5 (s)

Second, identify the loop gains. There are four, as follows:

1. G2 (s)H1 (s)

2. G4 (s)H2 (s)

3. G7 (s)H4 (s)

4. G2 (s)G3 (s)G4 (s)G5 (s)G6 (s)G7 (s)G8 (s)

Third, identify the nontouching loops taken two at a time. From Eqs. (5.30) and Figure
5.21, we can see that loop 1 does not touch loop 2, loop 1 does not touch loop 3, and loop
2 does not touch loop 3. Notice that loops 1, 2, and 3 all touch loop 4. Thus, the
combinations of nontouching loops taken two at a time are as follows:

Loop 1 and loop 2 : G2 (s)H1 (s)G4 (s)H2 (s)

Loop 1 and loop 3 : G2 (s)H1 (s)G7 (s)H4 (s)

Loop 2 and loop 3 : G4 (s)H2 (s)G7 (s)H4 (s)



(5.32)

(5.33)

(5.34)

(5.35)

Finally, the nontouching loops taken three at a time are as follows:

Loops 1, 2, and 3 : G2 (s)H1 (s)G4 (s)H2 (s)G7 (s)H4 (s)

Now, from Eq. (5.28) and its definitions, we form Δ and Δk. Hence,

Δ = 1−[G2 (s)H1 (s) + G4 (s)H2 (s) + G7 (s)H4 (s)

+ G2 (s)G3 (s)G4 (s)G5 (s)G6 (s)G7 (s)G8 (s)]

+[G2 (s)H1 (s)G4 (s)H2 (s) + G2 (s)H1 (s)G7 (s)H4 (s)

+G4 (s)H2 (s)G7 (s)H4 (s)]

− [G2 (s)H1 (s)G4 (s)H2 (s)G7 (s)H4 (s)]

We form Δk by eliminating from Δ the loop gains that touch the kth forward path:

Δ1 = 1 − G7 (s)H4 (s)

Expressions (5.29), (5.33), and (5.34) are now substituted into Eq. (5.28), yielding the
transfer function:

G (s) = =

Since there is only one forward path, G(s) consists of only one term, rather than a sum of
terms, each coming from a forward path.

Skill-Assessment Exercise 5.4
PROBLEM:
Use Mason's rule to find the transfer function of the signal-flow diagram shown in Figure
5.19(c). Notice that this is the same system used in Example 5.2 to find the transfer
function via block diagram reduction.

ANSWER:

T (s) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

5.6 Signal-Flow Graphs of State Equations
 In this section, we draw signal-flow graphs from state equations. At first this process

will help us visualize state variables. Later we will draw signal-flow graphs and then write
alternate representations of a system in state space.

T1Δ1

Δ

[G1 (s)G2 (s)G3 (s)G4 (s)G5 (s)] [1 − G7 (s)H4 (s)]

Δ

G1 (s)G3 (s) [1 + G2 (s)]

[1 + G2 (s)H2 (s) + G1 (s)G2 (s)H1 (s)][1 + G3 (s)H3 (s)]
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(5.36a)

(5.36b)

(5.36c)

(5.36d)

Consider the following state and output equations:

⋅x1 = 2x1 − 5x2 + 3x3 + 2r

⋅x2 = −6x1 − 2x2 + 2x3 + 5r

⋅x3 = x1 − 3x2 − 4x3 + 7r

y = −4x1 + 6x2 + 9x3

First, identify three nodes to be the three state variables, x1, x2, and x3; also identify three
nodes, placed to the left of each respective state variable, to be the derivatives of the state
variables, as in Figure 5.22(a). Also identify a node as the input, r, and another node as the
output, y.





FIGURE 5.22 Stages of development of a signal-flow graph for the system of
Eqs. (5.36): a. place nodes; b. interconnect state variables and derivatives; c.
form dx1/dt; d. form dx2/dt; e. form dx3/dt; f. form output

Next interconnect the state variables and their derivatives with the defining integration, 1/s,
as shown in Figure 5.22(b). Then using Eqs. (5.36), feed to each node the indicated signals.
For example, from Eq. (5.36a), ⋅x1 receives 2x1 − 5x2 + 3x3 + 2r, as shown in Figure 5.22(c).
Similarly, ⋅x2 receives −6x1 − 2x2 + 2x3 + 5r, as shown in Figure 5.22(d), and ⋅x3 receives x1 −
3x2 − 4x3 + 7r, as shown in Figure 5.22(e). Finally, using Eq. (5.36d), the output, y, receives
−4x1 + 6x2 + 9x3, as shown in Figure 5.19(f), the final phase-variable representation, where
the state variables are the outputs of the integrators.



Skill-Assessment Exercise 5.5
PROBLEM:
Draw a signal-flow graph for the following state and output equations:

⋅x =
⎡
⎢
⎣

−2 1 0

0 −3 1

−3 −4 −5

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
r

y = [ 0 1 0 ] x

ANSWER:
The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In the next section, the signal-flow model will help us visualize the process of determining
alternative representations in state space of the same system. We will see that even though a
system can be the same with respect to its input and output terminals, the state-space
representations can be many and varied.

5.7 Alternative Representations in State Space
 In Chapter 3, systems were represented in state space in phase-variable form.

However, system modeling in state space can take on many representations other than the
phase-variable form. Although each of these models yields the same output for a given input,
an engineer may prefer a particular one for several reasons. For example, one set of state
variables, with its unique representation, can model actual physical variables of a system,
such as amplifier and filter outputs.

Another motive for choosing a particular set of state variables and state-space model is ease
of solution. As we will see, a particular choice of state variables can decouple the system of
simultaneous differential equations. Here each equation is written in terms of only one state
variable, and the solution is effected by solving n first-order differential equations
individually.

Ease of modeling is another reason for a particular choice of state variables. Certain choices
may facilitate converting the subsystem to the state-variable representation by using
recognizable features of the model. The engineer learns quickly how to write the state and
output equations and draw the signal-flow graph, both by inspection. These converted
subsystems generate the definition of the state variables.

We will now look at a few representative forms and show how to generate the state-space
representation for each.

Cascade Form
We have seen that systems can be represented in state space with the state variables chosen
to be the phase variables, that is, variables that are successive derivatives of each other. This
is by no means the only choice. Returning to the system of Figure 3.10(a), the transfer
function can be represented alternately as

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

=

Figure 5.23 shows a block diagram representation of this system formed by cascading each
term of Eq. (5.37). The output of each first-order system block has been labeled as a state
variable. These state variables are not the phase variables.

FIGURE 5.23 Representation of Figure 3.10 system as cascaded first-order
systems

We now show how the signal-flow graph can be used to obtain a state-space representation of
this system. In order to write the state equations with our new set of state variables, it is
helpful to draw a signal-flow graph first, using Figure 5.23 as a guide. The signal flow for each
first-order system of Figure 5.23 can be found by transforming each block into an equivalent
differential equation. Each first-order block is of the form

=

Cross-multiplying, we get

(s + ai)Ci (s) = Ri (s)

After taking the inverse Laplace transform, we have

+ aici (t) = ri (t)

Solving for dci(t)/dt yields

= −aici (t) + ri (t)

Figure 5.24(a) shows the implementation of Eq. (5.41) as a signal-flow graph. Here again, a
node was assumed for ci(t) at the output of an integrator, and its derivative was formed at the
input.

C (s)

R (s)

24

(s + 2) (s + 3) (s + 4)

Ci (s)

Ri (s)

1

(s + ai)

dci (t)

dt

dci (t)

dt



(5.43)

(5.44a)

(5.44b)

(5.42a)

(5.42b)

(5.42c)

FIGURE 5.24 a. First-order subsystem; b. signal-flow graph for Figure 5.23
system

Cascading the transfer functions shown in Figure 5.24(a), we arrive at the system
representation shown in Figure 5.24(b).2 Now write the state equations for the new
representation of the system. Remember that the derivative of a state variable will be at the
input to each integrator:

⋅x1 = −4x1 + x2

⋅x2 = −3x2 + x3

⋅x3 = −2x3 + 24r

The output equation is written by inspection from Figure 5.24(b):

y = c (t) = x1

The state-space representation is completed by rewriting Eqs. (5.42) and (5.43) in vector-
matrix form:

⋅x =
⎡
⎢
⎣

−4 1 0

0 −3 1

0 0 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

24

⎤
⎥
⎦
r

y =[ 1 0 0 ]x

Comparing Eqs. (5.44) with Figure 5.24(b), you can form a vivid picture of the meaning of
some of the components of the state equation. For the following discussion, please refer back
to the general form of the state and output equations, Eqs. (3.18) and (3.19).

For example, the B matrix is the input matrix since it contains the terms that couple the
input, r(t), to the system. In particular, the constant 24 appears in both the signal-flow graph
at the input, as shown in Figure 5.24(b), and the input matrix in Eqs. (5.44). The C matrix is



(5.45)

(5.46)

the output matrix since it contains the constant that couples the state variable, x1, to the
output, c(t). Finally, the A matrix is the system matrix since it contains the terms relative to
the internal system itself. In the form of Eqs. (5.44), the system matrix actually contains the
system poles along the diagonal.

Compare Eqs. (5.44) to the phase-variable representation in Eqs. (3.59). In that
representation, the coefficients of the system's characteristic polynomial appeared along the
last row, whereas in our current representation, the roots of the characteristic equation, the
system poles, appear along the diagonal.

Parallel Form
Another form that can be used to represent a system is the parallel form. This form leads to
an A matrix that is purely diagonal, provided that no system pole is a repeated root of the
characteristic equation.

Whereas the previous form was arrived at by cascading the individual first-order subsystems,
the parallel form is derived from a partial-fraction expansion of the system transfer function.
Performing a partial-fraction expansion on our example system, we get

= = − +

Equation (5.45) represents the sum of the individual first-order subsystems. To arrive at a
signal-flow graph, first solve for C(s), where

C (s) = R (s) − R (s) + R (s)

and recognize that C(s) is the sum of three terms. Each term is a first-order subsystem with
R(s) as the input. Formulating this idea as a signal-flow graph renders the representation
shown in Figure 5.25.

FIGURE 5.25 Signal-flow representation of Eq. (5.45)

Once again, we use the signal-flow graph as an aid to obtaining the state equations. By
inspection the state variables are the outputs of each integrator, where the derivatives of the

C (s)

R (s)

24

(s + 2) (s + 3) (s + 4)

12

(s + 2)

24

(s + 3)

12

(s + 4)

12

(s + 2)

24

(s + 3)

12

(s + 4)



(5.47a)

(5.47b)

(5.47c)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

state variables exist at the integrator inputs. We write the state equations by summing the
signals at the integrator inputs:

⋅x1 = −2x1 +12r

⋅x2 = −3x2 −24r

⋅x3 = −4x3 +12r

The output equation is found by summing the signals that give c(t):

y = c (t) = x1 + x2 + x3

In vector-matrix form, Eqs. (5.47) and (5.48) become

⋅x =
⎡
⎢
⎣

−2 0 0

0 −3 0

0 0 −4

⎤
⎥
⎦

x +
⎡
⎢
⎣

12

−24

12

⎤
⎥
⎦
r

and

y = [ 1 1 1 ] x

Thus, our third representation of the system of Figure 3.10(a) yields a diagonal system
matrix. What is the advantage of this representation? Each equation is a first-order
differential equation in only one variable. Thus, we would solve these equations
independently. The equations are said to be decoupled.

>  Students who are using MATLAB should now run ch5apB3 in Appendix B. You will
learn how to use MATLAB to convert a transfer function to state space in a specified

form. The exercise solves the previous example by representing the transfer function

in Eq. (5.45) by the state-space representation in parallel form of Eq. (5.49).

If the denominator of the transfer function has repeated real roots, the parallel form can still
be derived from a partial-fraction expansion. However, the system matrix will not be
diagonal. For example, assume the system

=

which can be expanded as partial fractions:

= − +

Proceeding as before, the signal-flow graph for Eq. (5.52) is shown in Figure 5.26. The term
−1/(s + 1) was formed by creating the signal flow from X2(s) to C(s). Now the state and output
equations can be written by inspection from Figure 5.26 as follows:

C (s)

R (s)

(s + 3)

(s + 1)2 (s + 2)

C (s)

R (s)

2

(s + 1)2

1

(s + 1)

1

(s + 2)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_5.zip


(5.53a)

(5.53b)

(5.53c)

(5.53d)

(5.54a)

(5.54b)

(5.55)

⋅x1 = −x1 + x2

⋅x2 = −x2 +2r

⋅x3 = − 2x3 + r

y = c (t) = x1 − x2 +x3

or, in vector-matrix form,

⋅x =
⎡
⎢
⎣

−1 1 0

0 −1 0

0 0 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

2

1

⎤
⎥
⎦
r

y = [ 1 − 1 ]x

This system matrix, although not diagonal, has the system poles along the diagonal. Notice
the 1 off the diagonal for the case of the repeated root. The form of the system matrix is
known as the Jordan canonical form.

FIGURE 5.26 Signal-flow representation of Eq. (5.52)

Controller Canonical Form
Another representation that uses phase variables is called the controller canonical form, so
named for its use in the design of controllers, which is covered in Chapter 12. This form is
obtained from the phase-variable form simply by ordering the phase variables in the reverse
order. For example, consider the transfer function

G (s) = =

The phase-variable form was derived in Example 3.5 as

1
2

1
2

C (s)

R (s)

s2 + 7s + 2

s3 + 9s2 + 26s + 24



(5.56a)

(5.56b)

(5.57a)

(5.57b)

(5.58a)

(5.58b)

⎡
⎢
⎣

⋅x1
⋅x2
⋅x3

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0

0 0 1

−24 −26 −9

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

+
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
r

y =[ 2 7 1 ]
⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

where y = c (t). Renumbering the phase variables in reverse order yields

⎡
⎢
⎣

⋅x3
⋅x2
⋅x1

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0

0 0 1

−24 −26 −9

⎤
⎥
⎦

⎡
⎢
⎣

x3

x2

x1

⎤
⎥
⎦

+
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
r

y =[ 2 7 1 ]
⎡
⎢
⎣

x3

x2

x1

⎤
⎥
⎦

TryIt 5.3
Use the following MATLAB and Control System Toolbox statements to convert the
transfer function of Eq. (5.55) to the controller canonical state-space representation of
Eqs. (5.58).

numg=[172];
deng=[192624];
[Acc, Bcc, Ccc, Dcc]... = tf2ss(numg, deng)

Finally, rearranging Eqs. (5.57) in ascending numerical order yields the controller canonical
form3 as

⎡
⎢
⎣

⋅x1
⋅x2
⋅x3

⎤
⎥
⎦

=
⎡
⎢
⎣

−9 −26 −24

1 0 0

0 1 0

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

+
⎡
⎢
⎣

1

0

0

⎤
⎥
⎦
r

y =[ 1 7 2 ]
⎡
⎢
⎣

x1

x2

x3

⎤
⎥
⎦

Figure 5.27 shows the steps we have taken on a signal-flow graph. Notice that the controller
canonical form is obtained simply by renumbering the phase variables in the opposite order.
Equations (5.56) can be obtained from Figure 5.27(a), and Eqs. (5.58) from Figure 5.27(b).

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_5.zip


(5.59)

(5.60)

(5.61)

(5.62)

FIGURE 5.27 Signal-flow graphs for obtaining forms for G(s) = C(s)/R(s) = (s2

+ 7s + 2)/(s3 + 9s2 + 26s + 24): a. phase-variable form; b. controller canonical
form

Notice that the phase-variable form and the controller canonical form contain the coefficients
of the characteristic polynomial in the bottom row and in the top row, respectively. System
matrices that contain the coefficients of the characteristic polynomial are called companion
matrices to the characteristic polynomial. The phase-variable and controller canonical forms
result in a lower and an upper companion system matrix, respectively. Companion matrices
can also have the coefficients of the characteristic polynomial in the left or right column. In
the next subsection, we discuss one of these representations.

Observer Canonical Form
The observer canonical form, so named for its use in the design of observers (covered in
Chapter 12), is a representation that yields a left companion system matrix. As an example,
the system modeled by Eq. (5.55) will be represented in this form. Begin by dividing all terms
in the numerator and denominator by the highest power of s, s3, and obtain

=

Cross-multiplying yields

[ + + ]R (s) =[1 + + + ]C (s)

Combining terms of like powers of integration gives

C (s) = [R (s) − 9C (s)] + [7R (s) − 26C (s)] + [2R (s) − 24C (s)]

or

C (s) = [[R (s) − 9C (s)] + ([7R (s) − 26C (s)] + [2R (s) − 24C (s)])]

C (s)

R (s)

+ +1
s

7
s2

2
s3

1 + + +9
s

26
s2

24
s3

1

s

7

s2

2

s3

9

s

26

s2

24

s3

1

s

1

s2

1

s3

1

s

1

s

1

s



(5.63a)

Equation (5.61) or (5.62) can be used to draw the signal-flow graph. Start with three
integrations, as shown in Figure 5.28(a).

FIGURE 5.28 Signal-flow graph for observer canonical form variables: a.
planning; b. implementation

Using Eq. (5.61), the first term tells us that output C(s) is formed, in part, by integrating [R(s)
− 9C(s)]. We thus form [R(s) − 9C(s)] at the input to the integrator closest to the output, C(s),
as shown in Figure 5.28(b). The second term tells us that the term [7R(s) − 26C(s)] must be
integrated twice. Now form [7R(s) − 26C(s)] at the input to the second integrator. Finally, the
last term of Eq. (5.61) says [2R(s) − 24C(s)] must be integrated three times. Form [2R(s) −
24C(s)] at the input to the first integrator.

TryIt 5.4
Use the following MATLAB and Control System Toolbox statements to convert the
transfer function of Eq. (5.55) to the observer canonical state-space representation of
Eqs. (5.65).

numg=[172];
deng=[192624];
[Acc, Bcc, Ccc, Dcc]... = tf2ss(numg, deng);
Aoc=transpose(Acc)
Boc=transpose(Ccc)
Coc=transpose(Bcc)

Identifying the state variables as the outputs of the integrators, we write the following state
equations:

⋅x1 = −9x1 + x2 + r



(5.64)

(5.65a)

(5.65b)

(5.63b)

(5.63c)

⋅x2 = −26x1 + x3 + 7r

⋅x3 = −24x1 + 2r

The output equation from Figure 5.28(b) is

y = c (t) = x1

In vector-matrix form, Eqs. (5.63) and (5.64) become

⋅x =
⎡
⎢
⎣

−9 1 0

−26 0 1

−24 0 0

⎤
⎥
⎦

x +
⎡
⎢
⎣

1

7

2

⎤
⎥
⎦
r

y = [ 1 0 0 ] x

Notice that the form of Eqs. (5.65) is similar to the phase-variable form, except that the
coefficients of the denominator of the transfer function are in the first column, and the
coefficients of the numerator form the input matrix, B. Also notice that the observer
canonical form has an A matrix that is the transpose of the controller canonical form, a B
vector that is the transpose of the controller canonical form's C vector, and a C vector that is
the transpose of the controller canonical form's B vector. We therefore say that these two
forms are duals. Thus, if a system is described by A, B, and C, its dual is described by AD =
AT, BD = CT, CD = BT. You can verify the significance of duality by comparing the signal-flow
graphs of a system and its dual, Figures 5.27(b) and 5.28(b), respectively. The signal-flow
graph of the dual can be obtained from that of the original by reversing all arrows, changing
state variables to their derivatives and vice versa, and interchanging C(s) and R(s), thus
reversing the roles of the input and the output.

We conclude this section with an example that demonstrates the application of the previously
discussed forms to a feedback control system.



(5.66a)

Example 5.8 State-Space Representation of Feedback Systems
PROBLEM:
Represent the feedback control system shown in Figure 5.29 in state space. Model the
forward transfer function in cascade form.

FIGURE 5.29 Feedback control system for Example 5.8

SOLUTION:
First we model the forward transfer function in cascade form. The gain of 100, the pole
at −2, and the pole at −3 are shown cascaded in Figure 5.30(a). The zero at −5 was
obtained using the method for implementing zeros for a system represented in phase-
variable form, as discussed in Section 3.5.

FIGURE 5.30 Creating a signal-flow graph for the Figure 5.29 system: a.
forward transfer function; b. complete system

Next add the feedback and input paths, as shown in Figure 5.30(b). Now, by inspection,
write the state equations:

⋅x1 = −3x1 + x2



(5.66b)

(5.67)

(5.69)

(5.70a)

(5.70b)

(5.68a)

(5.68b)

⋅x2 = −2x2 + 100 (r − c)

But, from Figure 5.30(b),

c = 5x1 + (x2 − 3x1 ) = 2x1 + x2

Substituting Eq. (5.67) into Eq. (5.66b), we find the state equations for the system:

⋅x1 = −3x1 + x2

⋅x2 = −200x1 − 102x2 + 100r

The output equation is the same as Eq. (5.67), or

y = c (t) = 2x1 + x2

In vector-matrix form

⋅x =[ −3 1

−200 −102
]x +[ 0

100
]r

y = [ 2 1 ] x

Skill-Assessment Exercise 5.6
PROBLEM:
Represent the feedback control system shown in Figure 5.29 in state space. Model the
forward transfer function in controller canonical form.

ANSWER:

⋅x =[−105 −506

1 0
]x +[ 1

0
]r

y = [ 100 500 ] x

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we used transfer functions and signal-flow graphs to represent systems in
parallel, cascade, controller canonical, and observer canonical forms, in addition to the
phase-variable form. Using the transfer function C(s)/R(s) = (s + 3)/[(s + 4) (s + 6)] as an
example, Figure 5.31 compares the aforementioned forms. Notice the duality of the controller
and observer canonical forms, as demonstrated by their respective signal-flow graphs and
state equations. In the next section, we will explore the possibility of transforming between
representations without using transfer functions and signal-flow graphs.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 5.31 State-space forms for C(s)/R(s) = (s + 3)/[(s + 4) (s + 6)]. Note: y
= c (t)

5.8 Similarity Transformations
 In Section 5.7, we saw that systems can be represented with different state variables

even though the transfer function relating the output to the input remains the same. The
various forms of the state equations were found by manipulating the transfer function,
drawing a signal-flow graph, and then writing the state equations from the signal-flow graph.
These systems are called similar systems. Although their state-space representations are
different, similar systems have the same transfer function and hence the same poles and
eigenvalues.



(5.71a)

(5.71b)

(5.72a)

(5.72b)

(5.72c)

(5.72d)

(5.72e)

We can make transformations between similar systems from one set of state equations to
another without using the transfer function and signal-flow graphs. The results are presented
in this section along with examples. Students who have not broached this subject in the past
or who wish to refresh their memories are encouraged to study Appendix L at
www.wiley.com/go/Nise/ControlSystemsEngineering8e for the derivation. The result of the
derivation states: A system represented in state space as

x = Ax + Bu

y = Cx + Du

can be transformed to a similar system,

z = P−1APz + P−1Bu

y = CPz + Du

where, for 2-space,

P = [Uz1
Uz2

] = [ p11 p12

p21 p22
]

x = [ p11 p12

p21 p22
] [ z1

z2
] = Pz

and

z = P−1x

Thus, P is a transformation matrix whose columns are the coordinates of the basis vectors of
the z1z2 space expressed as linear combinations of the x1x2 space. Let us look at an example.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(5.73a)

(5.73b)

(5.74a)

(5.74b)

(5.75)

(5.76)

(5.77)

(5.78)

(5.74c)

Example 5.9 Similarity Transformations on State Equations
PROBLEM:
Given the system represented in state space by Eqs. (5.73),

⋅x =
⎡
⎢
⎣

0 1 0

0 0 1

−2 −5 −7

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
u

y = [ 1 0 0 ] x

transform the system to a new set of state variables, z, where the new state variables are
related to the original state variables, x, as follows:

z1 = 2x1

z2 = 3x1 + 2x2

z3 = x1 + 4x2 + 5x3

SOLUTION:
Expressing Eqs. (5.74) in vector-matrix form,

z =
⎡
⎢
⎣

2 0 0

3 2 0

1 4 5

⎤
⎥
⎦

x = P−1x

Using Eqs. (5.72) as a guide,

P−1AP =
⎡
⎢
⎣

2 0 0

3 2 0

1 4 5

⎤
⎥
⎦

⎡
⎢
⎣

0 1 0

0 0 1

−2 −5 −7

⎤
⎥
⎦

⎡
⎢
⎣

0.5 0 0

−0.75 0.5 0

0.5 −0.4 0.2

⎤
⎥
⎦

=
⎡
⎢
⎣

−1.5 1 0

−1.25 0.7 0.4

−2.5 0.4 −6.2

⎤
⎥
⎦

P−1B =
⎡
⎢
⎣

2 0 0

3 2 0

1 4 5

⎤
⎥
⎦

⎡
⎢
⎣

0

0

1

⎤
⎥
⎦

=
⎡
⎢
⎣

0

0

5

⎤
⎥
⎦

CP =[ 1 0 0 ]
⎡
⎢
⎣

0.5 0 0

−0.75 0.5 0

0.5 −0.4 0.2

⎤
⎥
⎦

= [ 0.5 0 0 ]



(5.79a)

(5.79b)

(5.80)

Therefore, the transformed system is

⋅z =
⎡
⎢
⎣

−1.5 1 0

−1.25 0.7 0.4

−2.55 0.4 −6.2

⎤
⎥
⎦

z +
⎡
⎢
⎣

0

0

5

⎤
⎥
⎦
u

y = [ 0.5 0 0 ] z

 Students who are using MATLAB should now run ch5apB4 in Appendix B. You
will learn how to perform similarity transformations. This exercise uses MATLAB

to do Example 5.9.

Thus far we have talked about transforming systems between basis vectors in a different state
space. One major advantage of finding these similar systems is apparent in the
transformation to a system that has a diagonal matrix.

Diagonalizing a System Matrix
In Section 5.7, we saw that the parallel form of a signal-flow graph can yield a diagonal
system matrix. A diagonal system matrix has the advantage that each state equation is a
function of only one state variable. Hence, each differential equation can be solved
independently of the other equations. We say that the equations are decoupled.

Rather than using partial fraction expansion and signal-flow graphs, we can decouple a
system using matrix transformations. If we find the correct matrix, P, the transformed system
matrix, P−1AP, will be a diagonal matrix. Thus, we are looking for a transformation to
another state space that yields a diagonal matrix in that space. This new state space also has
basis vectors that lie along its state variables. We give a special name to any vectors that are
collinear with the basis vectors of the new system that yields a diagonal system matrix: they
are called eigenvectors. Thus, the coordinates of the eigenvectors form the columns of the
transformation matrix, P, as we demonstrate in Eq. L.7 in Appendix L at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

First, let us formally define eigenvectors from another perspective and then show that they
have the property just described. Then we will define eigenvalues. Finally, we will show how
to diagonalize a matrix.

Definitions
Eigenvector. The eigenvectors of the matrix A are all vectors, xi ≠ 0, which under the
transformation A become multiples of themselves; that is,

Axi = λixi

where λi's are constants.

Figure 5.32 shows this definition of eigenvectors. If Ax is not collinear with x after the
transformation, as in Figure 5.32(a), x is not an eigenvector. If Ax is collinear with x after the
transformation, as in Figure 5.32(b), x is an eigenvector.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_5.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(5.81)

(5.82)

(5.83)

FIGURE 5.32 To be an eigenvector, the transformation Ax must be collinear
with x; thus, in (a), x is not an eigenvector; in (b), it is.

Eigenvalue. The eigenvalues of the matrix A are the values of λi that satisfy Eq. (5.80) for xi
≠ 0.

To find the eigenvectors, we rearrange Eq. (5.80). Eigenvectors, xi, satisfy

0 = (λiI − A) xi

Solving for xi by premultiplying both sides by (λiI − A)−1 yields

xi = (λiI − A)−1
0 = 0

Since xi ≠ 0, a nonzero solution exists if

det (λiI − A) = 0

from which λi, the eigenvalues, can be found.

We are now ready to show how to find the eigenvectors, xi. First we find the eigenvalues, λi,
using det(λiI − A) = 0, and then we use Eq. (5.80) to find the eigenvectors.

adj (λiI − A)

det (λiI − A)



(5.84)

(5.85)

(5.86)

(5.88)

(5.89)

(5.87a)

(5.87b)

Example 5.10 Finding Eigenvectors
PROBLEM:
Find the eigenvectors of the matrix

A =[−3 1

1 −3
]

SOLUTION:
The eigenvectors, xi, satisfy Eq. (5.81). First, use det(λiI − A) = 0 to find the eigenvalues,
λi, for Eq. (5.81):

det (λI − A)=
∣
∣
∣
[λ 0

0 λ
]−[−3 1

1 −3
]∣

∣
∣

=
∣
∣
∣
λ + 3 −1

−1 λ + 3

∣
∣
∣

= λ2 + 6λ + 8

from which the eigenvalues are λ = − 2, and −4.

Using Eq. (5.80) successively with each eigenvalue, we have

Axi = λxi

[−3 1

1 −3
][ x1

x2
]= −2 [ x1

x2
]

or

−3x1 + x2 = −2x1

x1 − 3x2 = −2x2

from which x1 = x2. Thus,

x =[ c
c
]

Using the other eigenvalue, −4, we have

x = [ c

−c
]

Using Eqs. (5.88) and (5.89), one choice of eigenvectors is



(5.90)

(5.91)

(5.93)

(5.92)

x1 =[ 1

1
] and x2 =[ 1

−1
]

We now show that if the eigenvectors of the matrix A are chosen as the basis vectors of a
transformation, P, the resulting system matrix will be diagonal. Let the transformation
matrix P consist of the eigenvectors of A, xi.

P = [x1, x2, x3, … , xn]

Since xi are eigenvectors, Axi = λixi, which can be written equivalently as a set of equations
expressed by

AP = PD

where D is a diagonal matrix consisting of λi's, the eigenvalues, along the diagonal, and P is
as defined in Eq. (5.91). Solving Eq. (5.92) for D by premultiplying by P−1, we get

D = P−1AP

which is the system matrix of Eq. (5.72).

In summary, under the transformation P, consisting of the eigenvectors of the system matrix,
the transformed system is diagonal, with the eigenvalues of the system along the diagonal.
The transformed system is identical to that obtained using partial-fraction expansion of the
transfer function with distinct real roots.

In Example 5.10, we found eigenvectors of a second-order system. Let us continue with this
problem and diagonalize the system matrix.



(5.94a)

(5.94b)

(5.95)

(5.96a)

(5.96b)

(5.96c)

(5.97a)

(5.97b)

Example 5.11 Diagonalizing a System in State Space
PROBLEM:
Given the system of Eqs. (5.94), find the diagonal system that is similar.

⋅x =[−3 1

1 −3
]x +[ 1

2
]u

y = [ 2 3 ] x

SOLUTION:
First find the eigenvalues and the eigenvectors. This step was performed in Example
5.10. Next form the transformation matrix P, whose columns consist of the eigenvectors.

P =[ 1 1

1 −1
]

Finally, form the similar system's system matrix, input matrix, and output matrix,
respectively.

P−1AP =[
1/2 1/2

1/2 −1/2
][−3 1

1 −3
][ 1 1

1 −1
]=[−2 0

0 −4
]

P−1B =[
1/2 1/2

1/2 −1/2
][ 1

2
]=[

3/2

−1/2
]

CP =[ 2 3 ][ 1 1

1 −1
]=[ 5 −1 ]

Substituting Eqs. (5.96) into Eqs. (5.72), we get

⋅z =[−2 0

0 −4
]z +[

3/2

−1/2
]u

y = [ 5 −1 ] z

Notice that the system matrix is diagonal, with the eigenvalues along the diagonal.

 Students who are using MATLAB should now run ch5apB5 in Appendix B. This
problem, which uses MATLAB to diagonalize a system, is similar (but not identical)to

Example 5.11.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_5.zip


Skill-Assessment Exercise 5.7
PROBLEM:
For the system represented in state space as follows:

⋅x =[ 1 3

−4 −6
]x +[ 1

3
]u

y =[ 1 4 ]x

convert the system to one where the new state vector, z, is

z =[ 3 −2

1 −4
]x

ANSWER:

⋅z = [ 6.5 −8.5

9.5 −11.5
]z+ [ −3

−11
]u

y = [ 0.8 −1.4 ] z

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Skill-Assessment Exercise 5.8
PROBLEM:
For the original system of Skill-Assessment Exercise 5.7, find the diagonal system that is
similar.

ANSWER:

⋅z = [−2 0

0 −3
]z +[ 18.39

20
]u

y = [ −2.121 2.6 ]z

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 5.5
Use the following MATLAB and Control System Toolbox statements to do Skill-
Assessment Exercise 5.8.

A=[13; −4−6];
B=[1; 3];
C=[14];
D=0;S=ss(A, B, C, D);
Sd=canon(S,'modal')

In this section, we learned how to move between different state-space representations of the
same system via matrix transformations rather than transfer function manipulation and
signal-flow graphs. These different representations are called similar. The characteristics of
similar systems are that the transfer functions relating the output to the input are the same,
as are the eigenvalues and poles. A particularly useful transformation was converting a
system with distinct, real eigenvalues to a diagonal system matrix.

We now summarize the concepts of block diagram and signal-flow representations of
systems, first through case study problems and then in a written summary. Our case studies
include the antenna azimuth position control system and the Unmanned Free-Swimming
Submersible vehicle (UFSS). Block diagram reduction is important for the analysis and
design of these systems as well as the control systems used for the automobile assembly
robots shown in Figure 5.33.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 5.33 Robot arms used in automobile assembly.



Case Studies Antenna Control: Designing a Closed-Loop
Response

 This chapter has shown that physical subsystems can be modeled mathematically
with transfer functions and then interconnected to form a feedback system. The
interconnected mathematical models can be reduced to a single transfer function
representing the system from input to output. This transfer function, the closed-loop
transfer function, is then used to determine the system response.

The following case study shows how to reduce the subsystems of the antenna azimuth
position control system to a single, closed-loop transfer function in order to analyze and
design the transient response characteristics.

PROBLEM:
Given the antenna azimuth position control system shown in Appendix A2,
Configuration 1, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b.  Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in b along with Mason's rule to find the closed-loop
transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop peak time, percent overshoot, and settling time for K = 1000.

e. For the system of d, derive the expression for the closed-loop step response of the
system.

f. For the simplified model of d, find the value of K that yields a 10% overshoot.

SOLUTION:
Each subsystem's transfer function was evaluated in the case study in Chapter 2. We first
assemble them into the closed-loop, feedback control system block diagram shown in
Figure 5.34(a).

a. The steps taken to reduce the block diagram to a single, closed-loop transfer
function relating the output angular displacement to the input angular displacement
are shown in Figure 5.34(a–d). In Figure 5.34(b), the input potentiometer was
pushed to the right past the summing junction, creating a unity feedback system. In
Figure 5.34(c), all the blocks of the forward transfer function are multiplied
together, forming the equivalent forward transfer function. Finally, the feedback
formula is applied, yielding the closed-loop transfer function in Figure 5.34(d).

b.  In order to obtain the signal-flow graph of each subsystem, we use the state
equations derived in the case study of Chapter 3. The signal-flow graph for the
power amplifier is drawn from the state equations of Eqs. (3.87) and (3.88), and the
signal-flow graph of the motor and load is drawn from the state equation of Eq.
(3.98). Other subsystems are pure gains. The signal-flow graph for Figure 5.34(a) is
shown in Figure 5.35 and consists of the interconnected subsystems.



(5.98)

(5.100)

(5.101a)

(5.101b)

(5.99a)

(5.99b)

(5.99c)

(5.102)

(5.103a)

(5.103b)

(5.103c)

The state equations are written from Figure 5.35. First define the state variables as
the outputs of the integrators. Hence, the state vector is

x =
⎡
⎢
⎣

x1

x2

ea

⎤
⎥
⎦

Using Figure 5.35, we write the state equations by inspection:

⋅x1 = +x2

⋅x2 = −1.71x2 + 2.083ea

⋅ea = −3.18Kx1 − 100ea + 31.8Kθi

along with the output equation,

y = θo = 0.1x1

where 1/π = 0.318.

In vector-matrix form,

⋅x =
⎡
⎢
⎣

0 1 0

0 −1.71 2.083

−3.18K 0 −100

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

31.8K

⎤
⎥
⎦
θi

y = [ 0.1 0 0 ] x

c. We now apply Mason's rule to Figure 5.35 to derive the closed-loop transfer function
of the antenna azimuth position control system. First find the forward-path gains.
From Figure 5.35 there is only one forward-path gain:

T1 =( )(K) (100)( )(2.083)( )( )(0.1) =

Next identify the closed-loop gains. There are three: the power amplifier loop,
GL1(s), with ea at the output; the motor loop, GL2(s), with x2 at the output; and the
entire system loop, GL3(s), with θ0 at the output.

GL1 (s) =

GL2 (s) =

GL3 (s) = (K) (100)( )(2.083)( )( )(0.1)( )=

1

π

1

s

1

s

1

s

6.63K

s3

−100

s

−1.71

s

1

s

1

s

1

s

−1

π

−6.63K

s3



(5.104)

(5.105)

(5.107)

(5.106)

(5.108)

(5.109)

(5.110)

Only GL1(s) and GL2(s) are nontouching loops. Thus, the nontouching-loop gain is

GL1 (s)GL2 (s) =

Forming Δ and Δk in Eq. (5.28), we have

Δ = 1 − [GL1 (s) + GL2 (s) + GL3 (s)] + [GL1 (s)GL2 (s)]

= 1 + + + +

and

Δ1 = 1

Substituting Eqs. (5.102), (5.105), and (5.106) into Eq. (5.28), we obtain the closed-
loop transfer function as

T (s) = = =

d. Replacing the power amplifier with unity gain and letting the preamplifier gain, K,
in Figure 5.34(b) equal 1,000 yield a forward transfer function, G(s), of

G (s) =

Using the feedback formula to evaluate the closed-loop transfer function, we obtain

T (s) =

From the denominator, ωn = 8.14, ζ = 0.105. Using Eqs. (4.34), (4.38), and (4.42),
the peak time = 0.388 second, the percent overshoot = 71.77 %, and the settling
time = 4.68 seconds.

e. The Laplace transform of the step response is found by first multiplying Eq. (5.109)
by 1/s, a unit-step input, and expanding into partial fractions:

C (s) = = −

= −

Taking the inverse Laplace transform, we find

171

s2

100
s

1.71
s

6.63K
s3

171
s2

C (s)

R (s)

T1Δ1

Δ

6.63K

s3 + 101.71s2 + 171s + 6.63K

66.3

s (s + 1.71)

66.3

s2 + 1.71s + 66.3

66.3
s(s2+1.71s+66.3)

1
s

s+1.71

s2+1.71s+66.3

1
s

(s+0.855)+0.106(8.097)

(s+0.855)2+(8.097)2



(5.111)

(5.112)

(5.113)

(5.114)

c (t) = 1 − e−0.855r (cos 8.097t + 0.106 sin 8.097t)

f. For the simplified model we have

G (s) =

from which the closed-loop transfer function is calculated to be

T (s) =

From Eq.(4.39) a 10% overshoot yields ζ = 0.591. Using the denominator of Eq.
(5.113), ωn = √0.0663K and 2ζωn = 1.71. Thus,

ζ = = 0.591

from which K = 31.6.

0.0663K

s (s + 1.71)

0.0663K

s2 + 1.71s + 0.0663K

1.71

2√0.0663K



FIGURE 5.34 Block diagram reduction for the antenna azimuth position
control system: a. original; b. pushing input potentiometer to the right
past the summing junction; c. showing equivalent forward transfer
function; d. final closed-loop transfer function



FIGURE 5.35 Signal-flow graph for the antenna azimuth position control
system

CHALLENGE
You are now given a problem to test your knowledge of this chapter's objectives:
Referring to the antenna azimuth position control system shown in Appendix A2,
Configuration 2, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b.  Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in (b) along with Mason's rule to find the closed-
loop transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop percent overshoot, settling time, and peak time for K = 5.

e. For the system used for (d), derive the expression for the closed-loop step response.

f. For the simplified model in (d), find the value of preamplifier gain, K, to yield 15%
overshoot.

UFSS Vehicle: Pitch-Angle Control Representation
 We return to the Unmanned Free-Swimming Submersible (UFSS) vehicle

introduced in the case studies in Chapter 5 (Johnson, 1980). We will represent in state
space the pitch-angle control system that is used for depth control.

PROBLEM:
Consider the block diagram of the pitch control loop of the UFSS vehicle shown in
Appendix A3. The pitch angle, θ, is controlled by a commanded pitch angle, θe, which
along with pitch-angle and pitch-rate feedback determines the elevator deflection, δe,
which acts through the vehicle dynamics to determine the pitch angle. Let K1 = K2 = 1
and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that pitch angle, pitch
rate, and elevator deflection are represented as state variables. Then interconnect
the subsystems.

b. Use the signal-flow graph obtained in a to represent the pitch control loop in state
space.



(5.116a)

(5.116b)

(5.115a)

(5.115b)

(5.115c)

(5.115d)

SOLUTION:

a. The vehicle dynamics are split into two transfer functions, from which the signal-
flow graph is drawn. Figure 5.36 shows the division along with the elevator actuator.
Each block is drawn in phase-variable form to meet the requirement that particular
system variables be state variables. This result is shown in Figure 5.37(a). The
feedback paths are then added to complete the signal-flow graph, which is shown in
Figure 5.37(b).

b. By inspection, the derivatives of state variables x1 through x4 are written as

⋅x1 = x2

⋅x2 = −0.0169x1 − 0.226x2 + 0.435x3 − 1.23x3 − 0.125x4

⋅x3 = −1.23x3 − 0.125x4

⋅x4 = 2x1 + 2x2 − 2x4 − 2θc

Finally, the output y = x1.

In vector-matrix form the state and output equations are

⋅x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0

−0.0169 −0.226 −0.795 −0.125

0 0 −1.23 −0.125

2 2 0 −2

⎤
⎥ ⎥ ⎥ ⎥
⎦

x +

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

0

0

−2

⎤
⎥ ⎥ ⎥ ⎥
⎦

θc

y = [ 1 0 0 0 ] x

FIGURE 5.36 Block diagram of the UFSS vehicle’s elevator and vehicle
dynamics, from which a signal-flow graph can be drawn



FIGURE 5.37 Signal-flow graph representation of the UFSS vehicle’s pitch
control system: a. without position and rate feedback; b. with position and
rate feedback. (Note: Explicitly required variables are x1 = θ x2 = dθ/dt,
and x4 = δe.)

CHALLENGE
We now give you a problem to test your knowledge of this chapter's objectives. The UFSS
vehicle steers via the heading control system shown in Figure 5.36 and repeated in
Appendix A3. A heading command is the input. The input and feedback from the
submersible's heading and yaw rate are used to generate a rudder command that steers
the submersible (Johnson, 1980). Let K1 = K2 = 1 and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that heading angle, yaw
rate, and rudder deflection are represented as state variables. Then interconnect the
subsystems.

b. Use the signal-flow graph obtained in a to represent the heading control loop in
state space.

c.  Use MATLAB to represent the closed-loop UFSS heading control system in
state space in controller canonical form.



FIGURE 5.38 Block diagram of the heading control system for the UFSS
vehicle

Summary
One objective of this chapter has been for you to learn how to represent multiple subsystems
via block diagrams or signal-flow graphs. Another objective has been to be able to reduce
either the block diagram representation or the signal-flow graph representation to a single
transfer function.

We saw that the block diagram of a linear, time-invariant system consisted of four elements:
signals, systems, summing junctions, and pickoff points. These elements were assembled
into three basic forms: cascade, parallel, and feedback. Some basic operations were then
derived: moving systems across summing junctions and across pickoff points.

Once we recognized the basic forms and operations, we could reduce a complicated block
diagram to a single transfer function relating input to output. Then we applied the methods of
Chapter 4 for analyzing and designing a second-order system for transient behavior. We saw
that adjusting the gain of a feedback control system gave us partial control of the transient
response.

The signal-flow representation of linear, time-invariant systems consists of two elements:
nodes, which represent signals, and lines with arrows, which represent subsystems. Summing
junctions and pickoff points are implicit in signal-flow graphs. These graphs are helpful in
visualizing the meaning of the state variables. Also, they can be drawn first as an aid to
obtaining the state equations for a system.

Mason's rule was used to derive the system's transfer function from the signal-flow graph.
This formula replaced block diagram reduction techniques. Mason's rule seems complicated,
but its use is simplified if there are no nontouching loops. In many of these cases, the transfer
function can be written by inspection, with less labor than in the block diagram reduction
technique.

Finally, we saw that systems in state space can be represented using different sets of
variables. In the last three chapters, we have covered phase-variable, cascade, parallel,
controller canonical, and observer canonical forms. A particular representation may be
chosen because one set of state variables has a different physical meaning than another set, or
because of the ease with which particular state equations can be solved.

In the next chapter, we discuss system stability. Without stability we cannot begin to design a
system for the desired transient response. We will find out how to tell whether a system is



stable and what effect parameter values have on a system's stability.

Review Questions
1. Name the four components of a block diagram for a linear, time-invariant system.

2. Name three basic forms for interconnecting subsystems.

3. For each of the forms in Question 2, state (respectively) how the equivalent transfer
function is found.

4. Besides knowing the basic forms as discussed in Questions 2 and 3, what other
equivalents must you know in order to perform block diagram reduction?

5. For a simple, second-order feedback control system of the type shown in Figure 5.14,
describe the effect that variations of forward-path gain, K, have on the transient
response.

6. For a simple, second-order feedback control system of the type shown in Figure 5.14,
describe the changes in damping ratio as the gain, K, is increased over the underdamped
region.

7. Name the two components of a signal-flow graph.

8. How are summing junctions shown on a signal-flow graph?

9. If a forward path touched all closed loops, what would be the value of Δk?

10.  Name five representations of systems in state space.

11.  Which two forms of the state-space representation are found using the same
method?

12.  Which form of the state-space representation leads to a diagonal matrix?

13.  When the system matrix is diagonal, what quantities lie along the diagonal?

14.  What terms lie along the diagonal for a system represented in Jordan canonical
form?

15.  What is the advantage of having a system represented in a form that has a
diagonal system matrix?

16.  Give two reasons for wanting to represent a system by alternative forms.

17.  For what kind of system would you use the observer canonical form?

18.  Describe state-vector transformations from the perspective of different bases.

19.  What is the definition of an eigenvector?

20.  Based upon your definition of an eigenvector, what is an eigenvalue?

21.  What is the significance of using eigenvectors as basis vectors for a system
transformation?



Cyber Exploration Laboratory

EXPERIMENT 5.1
Objectives
To verify the equivalency of the basic forms, including cascade, parallel, and feedback forms.
To verify the equivalency of the basic moves, including moving blocks past summing
junctions, and moving blocks past pickoff points.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox

Prelab

1. Find the equivalent transfer function of three cascaded blocks, G1 (s) = . 

G2 (s) = , and G3 (s) = .

2. Find the equivalent transfer function of three parallel blocks, G1 (s) = . 

G2 (s) = , and G3 (s) = .

3. Find the equivalent transfer function of the negative feedback system of Figure 5.39 if 
G (s) = , and H (s) = .

4. For the system of Prelab 3, push H(s) to the left past the summing junction and draw the
equivalent system.

5. For the system of Prelab 3, push H(s) to the right past the pickoff point and draw the
equivalent system.

FIGURE 5.39

Lab

1. Using Simulink, set up the cascade system of Prelab 1 and the equivalent single block.
Make separate plots of the step response of the cascaded system and its equivalent single
block. Record the values of settling time and rise time for each step response.

2. Using Simulink, set up the parallel system of Prelab 2 and the equivalent single block.
Make separate plots of the step response of the parallel system and its equivalent single
block. Record the values of settling time and rise time for each step response.

3. Using Simulink, set up the negative feedback system of Prelab 3 and the equivalent single
block. Make separate plots of the step response of the negative feedback system and its

1
s+1

1
s+4

s+3
s+5

1
s+4

1
s+4

s+3
s+5

s+1
s(s+2)

s+3
s+4



equivalent single block. Record the values of settling time and rise time for each step
response.

4. Using Simulink, set up the negative feedback systems of Prelabs 3, 4, and 5. Make
separate plots of the step response of each of the systems. Record the values of settling
time and rise time for each step response.

Postlab

1. Using your lab data, verify the equivalent transfer function of blocks in cascade.

2. Using your lab data, verify the equivalent transfer function of blocks in parallel.

3. Using your lab data, verify the equivalent transfer function of negative feedback systems.

4. Using your lab data, verify the moving of blocks past summing junctions and pickoff
points.

5. Discuss your results. Were the equivalencies verified?

EXPERIMENT 5.2
Objective
To use the various functions within LabVIEW's Control Design and Simulation Module to
implement block diagram reduction.

Minimum Required Software Packages
LabVIEW with the Control Design Simulation Module

Prelab
Given the block diagram from Example 5.2, replace G1, G2, G3, H1, H2, H3 with the following
transfer functions and obtain an equivalent transfer function.

G1 = ;G2 = ;G3 = ;H1 = ;H2 = 2;H3 = 1

Lab
Use LabVIEW to implement the block diagram from Example 5.2 using the transfer functions
given in the Prelab.

Postlab
Verify your calculations from the Prelab with that of the equivalent transfer function obtained
with LabVIEW.

EXPERIMENT 5.3
Objective
To use the various functions within LabVIEW's Control Design and Simulation Module and
the Mathematics/Polynomial palette to implement Mason's rule for block diagram reduction.

Minimum Required Software Packages

1

s + 10

1

s + 1

s + 1

s2 + 4s + 4

s + 1

s + 2



LabVIEW with Control Design and Simulation Module, Math Script RT Module, and the
Mathematics/Polynomial palette.

Prelab
Given the block diagram created in the Prelab of Cyber Exploration Laboratory 5.2, use
Mason's rule to obtain an equivalent transfer function.

Lab
Use LabVIEW's Control Design and Simulation Module as well as the
Mathematics/Polynomial functions to implement block diagram reduction using Mason's
rule.

Postlab
Verify your calculations from the Prelab with that of the equivalent transfer function obtained
with LabVIEW.
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Chapter 6 Problems
1. Without solving for the roots, indicate the number of roots in the following
polynomial that are in the left half-plane, right half-plane, and on the jω-axis. [Section:
6.2]

P(s) = s5 + 4s4 + 4s3 + 5s2 + 2s + 2

 2. Tell how many roots of the following polynomial are in the right half-plane, in
the left half-plane, and on the jω-axis: [Section: 6.3]

P (s) = s5 + 6s3 + 5s2 + 8s + 20

Check Answer!

3. Use a Routh array to find out how many poles of T(s) are in the are in the left half-
plane, right half-plane, and on the jω-axis. [Section: 6.3]

T (s) =

 4. The closed-loop transfer function of a system is [Section: 6.3]

T (s) =

Determine how many closed-loop poles lie in the right half-plane, in the left half-plane,
and on the jω-axis.

Check Answer!

5. In the open loop system of Figure P6.1, find out how many fo the poles are in the left
half-plane, right half-plane, and on the jω-axis. [Section: 6.3]

FIGURE P6.1

 6. How many poles are in the right half-plane, the left half-plane, and on the jω-
axis for the open-loop system of Figure P6.2? [Section: 6.3]

FIGURE P6.2

s − 2

s5 − 2s4 + 4s3 − 3s2 + 2s − 3

s3 + 2s2 + 7s + 21

s5 − 2s4 + 3s3 − 6s2 + 2s − 4



Check Answer!

7. Find out if the unity-feedback system of Figure P6.3 is closed-loop stable if [Section:
6.2]

G (s) =

FIGURE P6.3

 8. Use MATLAB to find the pole locations for the system of Problem 6.

Check Answer!

9. Find the range of K for closed-loop stability if in Figure P6.3. [Section: 6.4]

G (s) =

 10. Using the Routh–Hurwitz criterion and the unity-feedback system of Figure
P6.3 with

G (s) =

tell whether or not the closed-loop system is stable. [Section: 6.2]

Check Answer!

11. In the unity-feedback system of Figure P6.3, let

G(s) =

Find out how many poles of the closed-loop system will be in the left half-plane, right
half-plane, and on the jω-axis. [Section: 6.3]

 12. Consider the following Routh table. Notice that the s5 row was originally all
zeros. Tell how many roots of the original polynomial were in the right half-plane, in
the left half-plane, and on the jω-axis. [Section: 6.3]

584

(s + 2)(s + 3)(s + 4)(s + 5)

K(s − 1)

s(s + 2)(s + 3)

1

2s4 + 5s3 + s2 + 2s

s10

s(s6 + 2s5 − 3s4 − 10s3 − s2 − 2s + 3)



s7 1 2 −1 −2

s6 1 2 −1 −2

s5 3 4 −1 0

s4 1 −1 −3 0

s3 7 8 0 0

s2 −15 −21 0 0

s1 −9 0 0 0

s0 −21 0 0 0

Check Answer!

13. Find out how many of the closed-loop poles of the system of Figure P6.4 are in the
left half-plane, right half-plane, and on the jω-axis. Use the Routh–Hurwitz critera.
[Section: 6.3]

FIGURE P6.4

14. Find the rage of K for closed-loop stability in the unity-feedback system of Figure
P6.3 if [Section: 6.4]

G (s) =

 15. In the system of Figure P6.3, let

G (s) =

Find the range of K for closed-loop stability when: [Section: 6.4]

a. a < 0, b < 0

b. a < 0, b > 0

c. a > 0, b < 0

d. a > 0, b > 0

Check Answer!

K(s + 10)

s(s + 2)(s + 3)

K(s − a)

s(s − b)



16. For the unity-feedback system of Figure P6.3 with

G (s) =

determine the range of K for stability. [Section: 6.4]

K > ; K < −1

17.  Use MATLAB and the Symbolic Math Toolbox to generate a Routh table in
terms of K to solve Problem 16.

18. Find the range of K for stability for the unity-feedback system of Figure P6.3 with
[Section: 6.4]

G (s) =

19. For the unity-feedback system of Figure P6.3 with

G (s) =

find the range of K for stability. [Section: 6.4]

20. Find the range of gain, K, to ensure stability in the unity-feedback system of Figure
P6.3 with [Section: 6.4]

G (s) =

21. Find the range of gain, K, to ensure stability in the unity-feedback system of Figure
P6.3 with [Section: 6.4]

G (s) =

22. Using the Routh–Hurwitz criterion, find the value of K that will yield oscillations
for the unity-feedback system of Figure P6.3 with [Section: 6.4]

G (s) =

23. Use the Routh–Hurwitz criterion to find the range of K for which the system of
Figure P6.5 is stable. [Section: 6.4]

K(s + 3)(s + 5)

(s − 2)(s − 4)

3
4

K(s + 4)(s − 4)

(s2 + 3)

K(s + 1)

s4(s + 4)

K(s − 2)(s + 4)(s + 5)

(s2 + 12)

K(s + 2)

(s2 + 1)(s + 4)(s − 1)

K

(s + 77)(s + 27)(s + 38)



FIGURE P6.5

24. Repeat Problem 23 for the system of Figure P6.6. [Section: 6.4]

FIGURE P6.6

25. In Figure P6.3, let

G (s) =

Obtain: [Section: 6.4]

a. The range of K for closed-loop stability

b. The value of K at which the system will start oscillating

c. The frequency of oscillation in part b.

26. Consider the system of Figure P6.7. Find the range of K for closed-loop stability, the
value of K that will make the system oscillate, and the oscillation frequency. [Section:
6.4]

FIGURE P6.7

27. Given the unity-feedback system of Figure P6.3 with [Section: 6.4]

G (s) =

K(s + 5)

s(s + 1)(s + 3)

Ks(s + 2)

(s2 − 4s + 8)(s + 3)



a. Find the range of K for stability.

b. Find the frequency of oscillation when the system is marginally stable.

28. Let

G (s) =

in Figure P6.3. Then:

a. Find the range of K for closed-loop stability.

b. Find the frequency of oscillation when the system becomes marginally stable.

29. Given the unity-feedback system of Figure P6.3 with [Section: 6.4]

G (s) =

a. Find the range of K for stability.

b. Find the frequency of oscillation when the system becomes marginally stable.

 30. Using the Routh–Hurwitz criterion and the unity-feedback system of Figure
P6.3 with [Section: 6.4]

G (s) =

a. Find the range of K for stability.

b. Find the value of K for marginal stability.

c. Find the actual location of the closed-loop poles when the system is marginally
stable.

Check Answer!

31. Find the range of K to keep the system shown in Figure P6.8 stable. [Section: 6.4]

FIGURE P6.8

32. The transfer function relating the output engine fan speed (rpm) to the input main
burner fuel flow rate (lb/h) in a short takeoff and landing (STOL) fighter aircraft,
ignoring the coupling between engine fan speed and the pitch control command, is
(Schierman, 1992) [Section: 6.4]

K

(s + 1)
3(s + 5)

K

(s + 49)(s2 + 4s + 5)

K

s(s + 1)(s + 2)(s + 6)



G (s) =

a. Find how many poles are in the right half-plane, in the left half-plane, and on the
jω-axis.

b. Is this open-loop system stable?

 33. A linearized model of a torque-controlled crane hoisting a load with a fixed
rope length is

P (s) = =

where ω0 = √ , L = the rope length, mT= the mass of the car, a = the combined rope

and car mass, fT = the force input applied to the car, and xT = the resulting rope
displacement (Marttinen, 1990). If the system is controlled in a feedback configuration
by placing it in a loop as shown in Figure P6.9, with K > 0, where will the closed-loop
poles be located?

FIGURE P6.9

Check Answer!

34.   Use MATLAB to find the eigenvalues of the following system:

ẋ =
⎡
⎢
⎣

0 1 0

0 1 −4

−1 1 8

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦
u

y =[ 0 0 1 ]x

35.  The following system in state space represents the forward path of a unity-
feedback system. Use the Routh–Hurwitz criterion to determine if the closed-loop
system is stable. [Section: 6.5]

ẋ =
⎡
⎢
⎣

0 1 0

0 1 2

−5 −4 −3

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

1

0

⎤
⎥
⎦
u

y = [ 1 0 1 ]x

1.3s7 + 90.5s6 + 1970s5 + 15, 000s4 + 3120s3 − 41, 300s2 − 5000s − 1840

s8 + 103s7 + 1180s6 + 4040s5 + 2150s4 − 8960s3 − 10, 600s2 − 1550s − 415

XT (s)

FT (s)

1

mT

s2 + ω2
0

s2(s2 + aω2
0)

g

L



36.  Repeat Problem 35 using MATLAB.

 37. An inverted pendulum, mounted on a motor-driven cart was presented in
Chapter 3, Problem 25. The system's state-space model was linearized around a
stationary point, x0 = 0, corresponding to the pendulum point-mass, m, being in the
upright position at t = 0, when the force applied to the cart u0 = 0 (Prasad, 2012). We'll
modify that model here to have two output variables: the pendulum angle relative to the
y-axis, θ, and the horizontal position of the cart, x. The output equation becomes:

y =[ θ
x
]= Cx =[ 1 0 0 0

0 0 1 0
]

⎡
⎢ ⎢ ⎢ ⎢
⎣

θ

θ̇

x

ẋ

⎤
⎥ ⎥ ⎥ ⎥
⎦

 Using MATLAB, find out how many eigenvalues are in the right half-plane, in
the left half-plane, and on the jω-axis. What does that tell us about the stability of that
unit? [Section: 6.5]

Check Answer!

DESIGN PROBLEMS
38. A model for an airplane's pitch loop is shown in Figure P6.10. Find the range of
gain, K, that will keep the system stable. Can the system ever be unstable for positive
values of K?

FIGURE P6.10 Aircraft pitch loop model

39. A common application of control systems is in regulating the temperature of a
chemical process (Figure P6.11). The flow of a chemical reactant to a process is
controlled by an actuator and valve. The reactant causes the temperature in the vat to
change. This temperature is sensed and compared to a desired set-point temperature in
a closed loop, where the flow of reactant is adjusted to yield the desired temperature. In
Chapter 9, we will learn how a PID controller is used to improve the performance of
such process control systems. Figure P6.11 shows the control system prior to the
addition of the PID controller. The PID controller is replaced by the shaded box with a
gain of unity. For this system, prior to the design of the PID controller, find the range of
amplifier gain, K, to keep the system stable.



FIGURE P6.11 Block diagram of a chemical process control system

40. A transfer function from indoor radiator power, Q̇ (s) , to room temperature, T(s),
in an 11-m2 room is

P (s) = =

where Q̇ is in watts and T is in °C (Thomas, 2005). The room's temperature will be
controlled by embedding it in a closed loop, such as that of Figure P6.9. Find the range
of K for closed-loop stability.

41. During vertical spindle surface grinding, adjustments are made on a multi-axis
computer numerical control (CNC) machine by measuring the applied force with a
dynamometer and applying appropriate corrections. This feedback force control results
in higher homogeneity and better tolerances in the resulting finished product. In a
specific experiment with an extremely high feed rate, the transfer function from the
desired depth of cut (DOC) to applied force was

=

where k = 2.1 × 104 N/m, b = 0.78 Ns/m, m = 1.2 × 10−4 kg, KC = 1.5 × 104 N/mm, and
T =0.004 s. The parameter Kf is varied to adjust the system. Find the range of Kf under
which the system is stable (Hekman, 1999).

42. In order to obtain a low-cost lithium-ion battery charger, the feedback loop of
Figure P6.3 is used, where G(s) = Gc(s)P(s). The following transfer functions have been
derived for G(s) (Tsang, 2009):

P(s) =

Gc(s) = Kp +

T (s)

Q̇ (s)

1 × 10−6s2 + 1.314 × 10−9s + 2.66 × 10−13

s3 + 0.00163s2 + 5.272 × 10−7
s + 3.538 × 10−11

F (s)

DOC (s)

KC

1 + − ( )KC

ms2+bs+k

KC

Kf

1
Ts+1

R1R2C1C2s
2 +(R1C1 + R2C1 + R2C2)s + 1

C1(1 + R2C2)s

KI

s



If R1 = 0.15 Ω; R2 = 0.44 Ω; C1 = 7200 F; and C2 = 170 F, use the Routh–Hurwitz
criteria to find the range of positive KP and KI for which the system is closed-loop
stable.

43. Figure P6.12 is a simplified and linearized block diagram of a cascade control
system, which is used to control water level in a steam generator of a nuclear power
plant (Wang, 2009).

In this system, the level controller, GLC(s), is the master controller and the feed-water
flow controller, GFC(s), is the slave controller. Using mass balance equations, the water
level would ordinarily be regarded as a simple integration process of water flow. In a
steam generator, however, steam flow rate and the cooling effect of feed-water change
the dynamics of that process. Taking the latter into account and ignoring the much-
less pronounced impact of changes in steam flow rate, a first-order lag plus time delay
is introduced into the transfer function, Gfw(s), relating the controlled level, C(s), to
feed-water flow rate, Qw(s) as follows:

Gfw(s) = = = ≈

where K1 = 2 is the process gain, τ1 = 2 is the pure time delay, and T1 = 25 is the steam
generator's time constant. (The expression e−τ1s represents a time delay. This function
can be represented by what is known as a Pade approximation. This approximation
can take on many increasingly complicated forms, depending upon the degree of
accuracy required. Here we use the Pade approximation, e−x ≈ , and specific

numerical values for the considered steam generator.)

The dynamic characteristics of the control valve are approximated by the transfer
function

Gv(s) = = =

where Kv is the valve gain and Tv is its time constant.

Given that: GFC(s) = KPFC
+ KDFC

s = 0.5 + 2s and 
GLC(s) = KPLC

+ KDLC
s = 0.5 + Ks, use the Routh–Hurwitz criterion to find the

range of the level controller's derivative gain, KDLC
= K > 0, that will keep the system

stable.

FIGURE P6.12
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K1e
−τ1s

s(T1s + 1)

2e−2s
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2

s(25s + 1)(2s2 + 2s + 1)

1

1+x+
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Kv

Tvs + 1

1

3s + 1



44. Look-ahead information can be used to automatically steer a bicycle in a closed-
loop configuration. A line is drawn in the middle of the lane to be followed, and an
arbitrary point is chosen in the vehicle's longitudinal axis. A look-ahead offset is
calculated by measuring the distance between the look-ahead point and the reference
line and is used by the system to correct the vehicle's trajectory. A linearized model of a
particular bicycle traveling on a straight-line path at a fixed longitudinal speed is

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

V̇

ṙ

ψ̇

Ẏ g

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

−11.7 6.8 61.6K 7.7K

−3.5 −24 −66.9K 8.4K

0 1 0 0

1 0 −10 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢
⎣

V

r

ψ

Yg

⎤
⎥ ⎥ ⎥ ⎥
⎦

In this model, V = bicycle's lateral velocity, r = bicycle's yaw velocity, ψ = bicycle's yaw
acceleration, and Yg = bicycle's center of gravity coordinate on the y-axis. K is a
controller parameter to be chosen by the designer (Özgüner, 1995). Use the Routh–
Hurwitz citerion to find the range of K for which the system is closed-loop stable.

45. Figure P5.31 Shows the block diagram of an Automatic Voltage Regulator (Gozde,
2011). Assume in this diagram the following parameter values: Ka = 10, Ta = 0.1, Ke = 1,
Te = 0.4, Kg = 1, Tg = 1, Ks = 1, and Ts = 0.001. Also assume that the PID transfer
function is substituted by a simple integrator, namely GPID(s) = . Find the range of
K for which the system is closed-loop stable.

46. It has been shown (Pounds, 2011) that an unloaded UAV helicopter is closed-loop
stable and will have a characteristic equation given by

s3 +( (q2 + kkd) + q1g)s2 + k s + (kki + q1) = 0

where m is the mass of the helicopter, g is the gravitational constant, I is the rotational
inertia of the helicopter, h is the height of the rotor plane above the center of gravity, q1
and q2 are stabilizer flapping parameters, k, ki, and kd are controller parameters; all
constants > 0. The UAV is supposed to pick up a payload; when this occurs, the mass,
height, and inertia change to m′, h′, and I′, respectively, all still > 0. Show that the
helicopter will remain stable as long as

>

47.Figure P6.13 shows the model of the dynamics of an economic system (Wingrove,
2012). In this diagram x represents the rate of growth in real Gross National Product
(GNP), x0 the long-term trend (dc value) of the GNP, Δx the change over the long-term
trend of the GNP, rx the real and psychological disturbance inputs that affect the
economy, rm the random monetary inputs, and Δu fluctuations in unemployment rate.
The diagram has two feedback loops: one through Friedman's model in which the
economy dynamics are approximated by

K
s

mgh

I

mgh

I

mgh

I

m'gh'

I'

q1 + kki − q1gk

k(q2 + kkd)



F(s) =

and a second loop through Okun's law that relates the GNP to unemployment changes.
Assuming the following parameter values: Kx = 2 years, ωn = 1.5 rad/year, 
ζ = 0.8,  Ku = 0.4 and Gx = −0.4. Find the range of Gu for closed-loop stability.

FIGURE P6.13

48. The system shown in Figure P6.14 has G1(s) = 1/s(s + 2) (s + 4). Find the
following:

FIGURE P6.14

a. The value of K2 for which the inner loop will have two equal negative real poles
and the associated range of K1 for system stability.

b. The value of K1 at which the system oscillates and the associated frequency of
oscillation.

c. The gain K1 at which a real closed-loop pole is at s = –5. Can the step response,
c(t), be approximated by a second-order, underdamped response in this case? Why
or why not?

d. If the response in Part d can be approximated as a second-order response, find
the %OS and settling time, Ts, when the input is a unit step, r(t) = u(t).

49. A drive system with an elastically coupled load was presented in Problems 52 and
48 in Chapters 4 and 5, respectively (Thomsen, 2011). That drive was shown in Figure

Kxs( )
2

+ 2ξs
ωn

( )+1s
ωn



P5.32 as the controlled unit in a feedback control system, where ΩL(s) = the load speed
and Ωr(s) = the desired (reference) speed. If the controller transfer function is 

GC(s) = Kp + , while all of the other parameters and transfer functions are the
same as in Problem 48 in Chapter 5, find the range of KP for stability of the system if KI
= 0.1.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
50. Control of HIV/AIDS. The HIV infection linearized model developed in Problem
61, Chapter 4, can be shown to have the transfer function

P (s) = =

It is desired to develop a policy for drug delivery to maintain the virus count at
prescribed levels. For the purpose of obtaining an appropriate u1 (t), feedback will be
used as shown in Figure P6.15 (Craig, 2004).

FIGURE P6.15

As a first approach, consider G(s) = K, a constant to be selected. Use the Routh–
Hurwitz criteria to find the range of K for which the system is closed-loop stable.

51. Hybrid vehicle. Figure P6.16 shows the HEV system presented in Chapter 5,
where parameter values have been substituted. It is assumed here that the speed
controller has a proportional gain, Kp, to be adjusted. Use the Routh–Hurwitz stability
method to find the range of positive Kp for which the system is closed-loop stable
(Graebe, 1995).

52. Parabolic trough collector. The fluid temperature of a parabolic trough
collector (Camacho, 2012) will be controlled by using a unity feedback structure as
shown in Figure P6.9. Assume the open-loop plant transfer function is given by

P(s) = e−39s

Use the Routh-Hurwitz criteria to find the range of gain K that will result in a closed-
loop stable system. Note: Pure time-delay dynamics, such as the one in the transfer
function of the parabolic trough collector, cannot be treated directly using the Routh–
Hurwitz criterion because it is represented by a nonrational factor. However, a Padé
approximation can be used for the nonrational component. The Padé approximation
was introduced in Problem 6.43, but it can appear in different forms. Here, it is
suggested you use a first-order approximation of the form

KI

s

Y (s)

U1 (s)

−520s − 10.3844

s3 + 2.6817s2 + 0.11s + 0.0126

137.2 × 10−6

s2 + 0.0224s + 196 × 10−6



e−sT ≈

FIGURE P6.16
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Chapter 6 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Make and interpret a basic Routh table to determine the stability of a system
(Sections 6.1–6.2)

Make and interpret a Routh table where either the first element of a row is
zero or an entire row is zero (Sections 6.3–6.4)

 Use a Routh table to determine the stability of a system represented
in state space (Section 6.5)



(6.1)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with
case studies as follows:

Given the antenna azimuth position control system shown in Appendix A2,
you will be able to find the range of preamplifier gain to keep the system
stable.

Given the block diagrams for the UFSS vehicle's pitch and heading control
systems in Appendix A3, you will be able to determine the range of gain for
stability of the pitch or heading control system.

6.1 Introduction
In Chapter 1, we saw that three requirements enter into the design of a control
system: transient response, stability, and steady-state errors. Thus far, we have
covered transient response, which we will revisit in Chapter 8. We are now ready
to discuss the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system
cannot be designed for a specific transient response or steady-state error
requirement. What, then, is stability? There are many definitions for stability,
depending upon the kind of system or the point of view. In this section, we limit
ourselves to linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response
of a system is the sum of the forced and natural responses, or

c(t) = cforced(t) + cnatural(t)

Using these concepts, we present the following definitions of stability, instability,
and marginal stability:

A linear, time-invariant system is stable if the natural response approaches
zero as time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows
without bound as time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response
neither decays nor grows but remains constant or oscillates as time
approaches infinity.



Thus, the definition of stability implies that only the forced response remains as
the natural response approaches zero.

These definitions rely on a description of the natural response. When one is
looking at the total response, it may be difficult to separate the natural response
from the forced response. However, we realize that if the input is bounded and
the total response is not approaching infinity as time approaches infinity, then
the natural response is obviously not approaching infinity. If the input is
unbounded, we see an unbounded total response, and we cannot arrive at any
conclusion about the stability of the system; we cannot tell whether the total
response is unbounded because the forced response is unbounded or because the
natural response is unbounded. Thus, our alternate definition of stability, one
that regards the total response and implies the first definition based upon the
natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate definition for instability based on the total
response rather than the natural response. We realize that if the input is
bounded but the total response is unbounded, the system is unstable, since we
can conclude that the natural response approaches infinity as time approaches
infinity. If the input is unbounded, we will see an unbounded total response, and
we cannot draw any conclusion about the stability of the system; we cannot tell
whether the total response is unbounded because the forced response is
unbounded or because the natural response is unbounded. Thus, our alternate
definition of instability, one that regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.

These definitions help clarify our previous definition of marginal stability,
which really means that the system is stable for some bounded inputs and
unstable for others. For example, we will show that if the natural response is
undamped, a bounded sinusoidal input of the same frequency yields a natural
response of growing oscillations. Hence, the system appears stable for all
bounded inputs except this one sinusoid. Thus, marginally stable systems by the
natural response definitions are included as unstable systems under the BIBO
definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response approaches zero as time
approaches infinity.



2. A system is unstable if the natural response approaches infinity as time
approaches infinity.

3. A system is marginally stable if the natural response neither decays nor
grows but remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.

2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound can
cause damage to the system, to adjacent property, or to human life. Many times,
systems are designed with limited stops to prevent total runaway. From the
perspective of the time response plot of a physical system, instability is displayed
by transients that grow without bound and, consequently, a total response that
does not approach a steady-state value or other forced response.1

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left
half-plane (lhp) yield either pure exponential decay or damped sinusoidal
natural responses. These natural responses decay to zero as time approaches
infinity. Thus, if the closed-loop system poles are in the left half of the plane and
hence have a negative real part, the system is stable. That is, stable systems have
closed-loop transfer functions with poles only in the left half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses
approach infinity as time approaches infinity. Thus, if the closed-loop system
poles are in the right half of the s-plane and hence have a positive real part, the
system is unstable. Also, poles of multiplicity greater than 1 on the imaginary
axis lead to the sum of responses of the form Atn cos (ωt + ϕ), where n = 1, 2, …,
where the amplitude approaches infinity as time approaches infinity. Thus,
unstable systems have closed-loop transfer functions with at least one pole in
the right half-plane and/or poles of multiplicity greater than 1 on the
imaginary axis.

Finally, a system that has imaginary axis poles of multiplicity 1 yields pure
sinusoidal oscillations as a natural response. These responses neither increase
nor decrease in amplitude. Thus, marginally stable systems have closed-loop
transfer functions with only imaginary axis poles of multiplicity 1 and poles in
the left half-plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(b). The responses, also
shown in Figure 6.1, shows that while the oscillations for the stable system
diminish, those for the unstable system increase without bound. Also notice that
the stable system's response in this case approaches a steady-state value of unity.



FIGURE 6.1 Closed-loop poles and response: a. stable system; b.
unstable system

It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately, a typical problem that arises is shown in Figure 6.2.
Although we know the poles of the forward transfer function in Figure 6.2(a), we



do not know the location of the poles of the equivalent closed-loop system of
Figure 6.2(b) without factoring or otherwise solving for the roots.

FIGURE 6.2 Common cause of problems in finding closed-loop
poles: a. original system; b. equivalent system

However, under certain conditions, we can draw some conclusions about the
stability of the system. First, if the closed-loop transfer function has only left-
half-plane poles, then the factors of the denominator of the closed-loop system
transfer function consist of products of terms such as (s + ai), where ai is real
and positive, or complex with a positive real part. The product of such terms is a
polynomial with all positive coefficients.2 No term of the polynomial can be
missing, since that would imply cancellation between positive and negative
coefficients or imaginary axis roots in the factors, which is not the case. Thus, a
sufficient condition for a system to be unstable is that all signs of the coefficients
of the denominator of the closed-loop transfer function are not the same. If
powers of s are missing, the system is either unstable or, at best, marginally
stable. Unfortunately, if all coefficients of the denominator are positive and not
missing, we do not have definitive information about the system's pole locations.

If the method described in the previous paragraph is not sufficient, then a
computer can be used to determine the stability by calculating the root locations
of the denominator of the closed-loop transfer function. Today some hand-held
calculators can evaluate the roots of a polynomial. There is, however, another
method to test for stability without having to solve for the roots of the
denominator. We discuss this method in the next section.

6.2 Routh–Hurwitz Criterion
In this section, we learn a method that yields stability information without the
need to solve for the closed-loop system poles. Using this method, we can tell
how many closed-loop system poles are in the left half-plane, in the right half-



plane, and on the jω-axis. (Notice that we say how many, not where.) We can
find the number of poles in each section of the s-plane, but we cannot find their
coordinates. The method is called the Routh–Hurwitz criterion for stability
(Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table
and (2) interpret the Routh table to tell how many closed-loop system poles are
in the left half-plane, the right half-plane, and on the jω-axis. You might wonder
why we study the Routh–Hurwitz criterion when modern calculators and
computers can tell us the exact location of system poles. The power of the
method lies in design rather than analysis. For example, if you have an unknown
parameter in the denominator of a transfer function, it is difficult to determine
via a calculator the range of this parameter to yield stability. You would probably
rely on trial and error to answer the stability question. We shall see later that the
Routh–Hurwitz criterion can yield a closed-form expression for the range of the
unknown parameter.

In this section, we make and interpret a basic Routh table. In the next section, we
consider two special cases that can arise when generating this data table.

Generating a Basic Routh Table
Look at the equivalent closed-loop transfer function shown in Figure 6.3. Since
we are interested in the system poles, we focus our attention on the
denominator. We first create the Routh table shown in Table 6.1. Begin by
labeling the rows with powers of s from the highest power of the denominator of
the closed-loop transfer function to s0. Next start with the coefficient of the
highest power of s in the denominator and list, horizontally in the first row, every
other coefficient. In the second row, list horizontally, starting with the next
highest power of s, every coefficient that was skipped in the first row.

FIGURE 6.3 Equivalent closed-loop transfer function



TABLE 6.1

Initial layout for Routh table

s4 a4 a2 a0

s3 a3 a1 0

s2

s1

s0

The remaining entries are filled in as follows. Each entry is a negative
determinant of entries in the previous two rows divided by the entry in the first
column directly above the calculated row. The left-hand column of the
determinant is always the first column of the previous two rows, and the right-
hand column is the elements of the column above and to the right. The table is
complete when all of the rows are completed down to s0. Table 6.2 is the
completed Routh table. Let us look at an example.

TABLE 6.2

Completed Routh table

s4 a4 a2 a0

s3 a3 a1 0

s2 = b1 = b2 = 0

s1 = c1 = 0 = 0

s0 = d1 = 0 = 0

−
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∣
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∣
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∣

b1

−
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∣
∣

a3 0

b1 0

∣
∣
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b1
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∣
∣
∣

b1 b2

c1 0

∣
∣
∣

c1

−
∣
∣
∣

b1 0

c1 0

∣
∣
∣

c1

−
∣
∣
∣

b1 0

c1 0

∣
∣
∣

c1



Example 6.1 Creating a Routh Table
PROBLEM:
Make the Routh table for the system shown in Figure 6.4(a).

FIGURE 6.4 a. Feedback system for Example 6.1; b. equivalent
closed-loop system

SOLUTION:
The first step is to find the equivalent closed-loop system because we want to
test the denominator of this function, not the given forward transfer
function, for pole location. Using the feedback formula, we obtain the
equivalent system of Figure 6.4(b). The Routh–Hurwitz criterion will be
applied to this denominator. First label the rows with powers of s from s3

down to s0 in a vertical column, as shown in Table 6.3. Next form the first
row of the table, using the coefficients of the denominator of the closed-loop
transfer function. Start with the coefficient of the highest power and skip
every other power of s. Now form the second row with the coefficients of the
denominator skipped in the previous step. Subsequent rows are formed with
determinants, as shown in Table 6.2.

TABLE 6.3

Completed Routh table for Example 6.1

s3 1 31 0

s2 10 1 1030 103 0

s1 = −72 = 0 = 0

s0 = 103 = 0 = 0

For convenience, any row of the Routh table can be multiplied by a positive
constant without changing the values of the rows below. This can be proved
by examining the expressions for the entries and verifying that any
multiplicative constant from a previous row cancels out. In the second row of
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Table 6.3, for example, the row was multiplied by1/10. We see later that care
must be taken not to multiply the row by a negative constant.

Interpreting the Basic Routh Table
Now that we know how to generate the Routh table, let us see how to interpret it.
The basic Routh table applies to systems with poles in the left and right half-
planes. Systems with imaginary poles and the kind of Routh table that results
will be discussed in the next section. Simply stated, the Routh–Hurwitz criterion
declares that the number of roots of the polynomial that are in the right half-
plane is equal to the number of sign changes in the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane, the
system is stable. Thus, a system is stable if there are no sign changes in the first
column of the Routh table. For example, Table 6.3 has two sign changes in the
first column. The first sign change occurs from 1 in the s2 row to −72 in the s1

row. The second occurs from −72 in the s1 row to 103 in the s0 row. Thus, the
system of Figure 6.4 is unstable since two poles exist in the right half-plane.

Skill-Assessment Exercise 6.1
PROBLEM:
Make a Routh table and tell how many roots of the following polynomial are
in the right half-plane and in the left half-plane.

P (s) = 3s7 + 9s6 + 6s5 + 4s4 + 7s3 + 8s2 + 2s + 6

ANSWER:
Four in the right half-plane (rhp), three in the left half-plane (lhp).

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Now that we have described how to generate and interpret a basic Routh table,
let us look at two special cases that can arise.

6.3 Routh–Hurwitz Criterion: Special Cases
Two special cases can occur: (1) The Routh table sometimes will have a zero only
in the first column of a row, or (2) the Routh table sometimes will have an entire
row that consists of zeros. Let us examine the first case.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Zero Only in the First Column
If the first element of a row is zero, division by zero would be required to form
the next row. To avoid this phenomenon, an epsilon, ε, is assigned to replace the
zero in the first column. The value ε is then allowed to approach zero from either
the positive or the negative side, after which the signs of the entries in the first
column can be determined. Let us look at an example.



(6.2)

Example 6.2 Stability via Epsilon Method
PROBLEM:
Determine the stability of the closed-loop transfer function

T (s) =

TryIt 6.1
Use the following MATLAB statement to find the poles of the closed-loop
transfer function in Eq. (6.1).

roots([1 2 3 6 5 3])

SOLUTION:
The solution is shown in Table 6.4. We form the Routh table using the
denominator of Eq. (6.2). Begin by assembling the Routh table down to the
row where a zero appears only in the first column (the s3 row). Next replace
the zero by a small number, ε, and complete the table. To begin the
interpretation, we must first assume a sign, positive or negative, for the
quantity ε. Table 6.5 shows the first column of Table 6.4 along with the
resulting signs for choices of ε positive and ε negative.

TABLE 6.4

Completed Routh table for Example 6.2

s5 1 3 5

s4 2 6 3

s3 0 ε 0

s2 3 0

s1 0 0

s0 3 0 0

10

s5 + 2s4 + 3s3 + 6s2 + 5s + 3

7
2

6ε−7
ε

42ε−49−6ε2

12ε−14

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_5.zip


TABLE 6.5

Determining signs in first column of a Routh table with zero as
first element in a row

Label First column ε = + ε = −

s5 1 + +

s4 2 + +

s3 0 ε + −

s2 − +

s1 + +

s0 3 + +

If ε is chosen positive, Table 6.5 will show a sign change from the s3 row to
the s2 row, and there will be another sign change from the s2 row to the s1

row. Hence, the system is unstable and has two poles in the right half-plane.

Alternatively, we could choose ε negative. Table 6.5 would then show a sign
change from the s4 row to the s3 row. Another sign change would occur from
the s3 row to the s2 row. Our result would be exactly the same as that for a
positive choice for ε. Thus, the system is unstable, with two poles in the right
half-plane.

 Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB's Symbolic Math Toolbox should

now run ch6apF1 in Appendix F. You will learn how to use the Symbolic

Math Toolbox to calculate the values of cells in a Routh table even if

the table contains symbolic objects, such as ε. You will see that the

Symbolic Math Toolbox and MATLAB yield an alternate way to generate

the Routh table for Example 6.2.

Another method that can be used when a zero appears only in the first column of
a row is derived from the fact that a polynomial that has the reciprocal roots of
the original polynomial has its roots distributed the same—right half-plane, left
half-plane, or imaginary axis—because taking the reciprocal of the root value
does not move it to another region. Thus, if we can find the polynomial that has
the reciprocal roots of the original, it is possible that the Routh table for the new
polynomial will not have a zero in the first column. This method is usually
computationally easier than the epsilon method just described.

6ε−7
ε

42ε−49−6ε2

12ε−14

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_F_for_Chapter_6.zip
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(6.4)
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We now show that the polynomial we are looking for, the one with the reciprocal
roots, is simply the original polynomial with its coefficients written in reverse
order (Phillips, 1991). Assume the equation

sn + an−1s
n−1 + ⋯ + a1s + a0 = 0

If s is replaced by 1/d, then d will have roots which are the reciprocal of s.
Making this substitution in Eq. (6.3),

( )
n

+ an−1( )
n−1

+ ⋯ + a1( )+a0 = 0

Factoring out (1/d) n,

( )
n

[1 + an−1( )
−1

+ ⋯ + a1( )
( 1−n )

+ a0( )
−n

]=

( )
n

[1 + an−1d + ⋯ + a1d
(n−1) + a0d

n] = 0

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients
written in reverse order. Let us redo the previous example to show the
computational advantage of this method.

1

d

1

d

1

d

1
d

1
d

1
d

1
d

1
d
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Example 6.3 Stability via Reverse Coefficients
PROBLEM:
Determine the stability of the closed-loop transfer function

T (s) =

SOLUTION:
First write a polynomial that has the reciprocal roots of the denominator of
Eq. (6.6). From our discussion, this polynomial is formed by writing the
denominator of Eq. (6.6) in reverse order. Hence,

D (s) = 3s5 + 5s4 + 6s3 + 3s2 + 2s + 1

We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there
are two sign changes, the system is unstable and has two right-half-plane
poles. This is the same as the result obtained in Example 6.2. Notice that
Table 6.6 does not have a zero in the first column.

TABLE 6.6

Routh table for Example 6.3

s5 3 6 2

s4 5 3 1

s3 4.2 1.4

s2 1.33 1

s1 −1.75

s0 1

Entire Row is Zero
We now look at the second special case. Sometimes while making a Routh table,
we find that an entire row consists of zeros because there is an even polynomial
that is a factor of the original polynomial. This case must be handled differently
from the case of a zero in only the first column of a row. Let us look at an

10

s5 + 2s4 + 3s3 + 6s2 + 5s + 3



example that demonstrates how to construct and interpret the Routh table when
an entire row of zeros is present.
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(6.9)

(6.10)

Example 6.4 Stability via Routh Table with Row of
Zeros
PROBLEM:
Determine the number of right-half-plane poles in the closed-loop transfer
function

T (s) =

SOLUTION:
Start by forming the Routh table for the denominator of Eq. (6.8) (see Table
6.7). At the second row, we multiply through by 1/7 for convenience. We stop
at the third row, since the entire row consists of zeros, and use the following
procedure. First we return to the row immediately above the row of zeros
and form an auxiliary polynomial, using the entries in that row as
coefficients. The polynomial will start with the power of s in the label column
and continue by skipping every other power of s. Thus, the polynomial
formed for this example is

P (s) = s4 + 6s2 + 8

Next we differentiate the polynomial with respect to s and obtain

= 4s3 + 12s + 0

Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros.
Again, for convenience, the third row is multiplied by 1/4 after replacing the
zeros.

10

s5 + 7s4 + 6s3 + 42s2 + 8s + 56

dP(s)

ds



TABLE 6.7

Routh table for Example 6.4

s5 1 6 8

s4 7 1 42 6 56 8

s3 0 4 1 0 12 3 0 0 0

s2 3 8 0

s1 0 0

s0 8 0 0

The remainder of the table is formed in a straightforward manner by
following the standard form shown in Table 6.2. Table 6.7 shows that all
entries in the first column are positive. Hence, there are no right-half-plane
poles.

Let us look further into the case that yields an entire row of zeros. An entire row
of zeros will appear in the Routh table when a purely even or purely odd
polynomial is a factor of the original polynomial. For example, s4 + 5s2 + 7 is an
even polynomial; it has only even powers of s. Even polynomials only have roots
that are symmetrical about the origin.3 This symmetry can occur under three
conditions of root position: (1) The roots are symmetrical and real, (2) the roots
are symmetrical and imaginary, or (3) the roots are quadrantal. Figure 6.5 shows
examples of these cases. Each case or combination of these cases will generate an
even polynomial.

1
3



FIGURE 6.5 Root positions to generate even polynomials: A, B, C,
or any combination

It is this even polynomial that causes the row of zeros to appear. Thus, the row of
zeros tells us of the existence of an even polynomial whose roots are symmetric
about the origin. Some of these roots could be on the jω-axis. On the other hand,
since jω roots are symmetric about the origin, if we do not have a row of zeros,
we cannot possibly have jω roots.

Another characteristic of the Routh table for the case in question is that the row
previous to the row of zeros contains the even polynomial that is a factor of the
original polynomial. Finally, everything from the row containing the even
polynomial down to the end of the Routh table is a test of only the even
polynomial. Let us put these facts together in an example.
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Example 6.5 Pole Distribution via Routh Table with
Row of Zeros
PROBLEM:
For the transfer function

T (s) =

tell how many poles are in the right half-plane, in the left half-plane, and on
the jω-axis.

SOLUTION:
Use the denominator of Eq. (6.11) and form the Routh table in Table 6.8. For
convenience the s6 row is multiplied by 1/10, and the s5 row is multiplied by
1/20. At the s3 row, we obtain a row of zeros. Moving back one row to s4, we
extract the even polynomial, P(s), as

P(s) = s4 + 3s2 + 2

This polynomial will divide evenly into the denominator of Eq. (6.11) and
thus is a factor. Taking the derivative with respect to s to obtain the
coefficients that replace the row of zeros in the s3 row, we find

= 4s3 + 6s + 0

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for
convenience. Finally, continue the table to the s0 row, using the standard
procedure.

20

s8 + s7 + 12s6 + 22s5 + 39s4 + 59s3 + 48s2 + 38s + 20

dP(s)

ds



TABLE 6.8

Routh table for Example 6.5

s8 1 12 39 48 20

s7 1 22 59 38 0

s6 − 10 − 1 − 20 − 2 10 1 20 2 0

s5 20 1 60 3 40 2 0 0

s4 1 3 2 0 0

s3 0 4 2 0 6 3 0 0 0 0 0

s2 3 2 4 0 0 0

s1 0 0 0 0

s0 4 0 0 0 0

How do we now interpret this Routh table? Since all entries from the even
polynomial at the s4 row down to the s0 row are a test of the even
polynomial, we begin to draw some conclusions about the roots of the even
polynomial. No sign changes exist from the s4 row down to the s0 row. Thus,
the even polynomial does not have right-half-plane poles. Since there are no
right-half-plane poles, no left-half-plane poles are present because of the
requirement for symmetry. Hence, the even polynomial, Eq. (6.12), must
have all four of its poles on the jω-axis.4 These results are summarized in the
first column of Table 6.9.

TABLE 6.9

Summary of pole locations for Example 6.5
Polynomial

Location Even (fourth-
order)

Other (fourth-
order)

Total (eighth-
order)

Right half-
plane

0 2 2

Left half-
plane

0 2 2

jω 4 0 4

3
2

1
3



The remaining roots of the total polynomial are evaluated from the s8 row
down to the s4 row. We notice two sign changes: one from the s7 row to the
s6 row and the other from the s6 row to the s5 row. Thus, the other
polynomial must have two roots in the right half-plane. These results are
included in Table 6.9 under Other. The final tally is the sum of roots from
each component, the even polynomial and the other polynomial, as shown
under Total in Table 6.9. Thus, the system has two poles in the right half-
plane, two poles in the left half-plane, and four poles on the jω-axis; it is
unstable because of the right-half-plane poles.

We now summarize what we have learned about polynomials that generate
entire rows of zeros in the Routh table. These polynomials have a purely even
factor with roots that are symmetrical about the origin. The even polynomial
appears in the Routh table in the row directly above the row of zeros. Every entry
in the table from the even polynomial's row to the end of the chart applies only to
the even polynomial. Therefore, the number of sign changes from the even
polynomial to the end of the table equals the number of right-half-plane roots of
the even polynomial. Because of the symmetry of roots about the origin, the even
polynomial must have the same number of left-half-plane roots as it does right-
half-plane roots. Having accounted for the roots in the right and left half-planes,
we know the remaining roots must be on the jω-axis.

Every row in the Routh table from the beginning of the chart to the row
containing the even polynomial applies only to the other factor of the original
polynomial. For this factor, the number of sign changes, from the beginning of
the table down to the even polynomial, equals the number of right-half-plane
roots. The remaining roots are left-half-plane roots. There can be no jω roots
contained in the other polynomial.



Virtual Experiment 6.1 Stability
Put theory into practice and evaluate the stability of the Quanser Linear
Inverted Pendulum in LabVIEW. When in the upward balanced position,
this system addresses the challenge of stabilizing a rocket during take-off. In
the downward position, it emulates the construction gantry crane.

Run Experiment 6.1

Skill-Assessment Exercise 6.2
PROBLEM:
Use the Routh-Hurwitz criterion to find how many poles of the following
closed-loop system, T(s), are in the rhp, in the lhp, and on the jω-axis:

T (s) =

ANSWER:
Two rhp, two lhp, and two jω

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Let us demonstrate the usefulness of the Routh–Hurwitz criterion with a few
additional examples.

6.4 Routh–Hurwitz Criterion: Additional Examples
The previous two sections have introduced the Routh–Hurwitz criterion. Now we
need to demonstrate the method's application to a number of analysis and design
problems.

s3 + 7s2 − 21s + 10

s6 + s5 − 6s4 + 0s3 − s2 − s + 6

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp07.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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Example 6.6 Standard Routh–Hurwitz
PROBLEM:
Find the number of poles in the left half-plane, the right half-plane, and on
the jω-axis for the system of Figure 6.6.

FIGURE 6.6 Feedback control system for Example 6.6

SOLUTION:
First, find the closed-loop transfer function as

T (s) =

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10.
For clarity, we leave most zero cells blank. At the s1 row, there is a negative
coefficient; thus, there are two sign changes. The system is unstable, since it
has two right-half-plane poles and two left-half-plane poles. The system
cannot have jω poles since a row of zeros did not appear in the Routh table.

TABLE 6.10

Routh table for Example 6.6
s4 1 11 200

s3 6 1 6 1

s2 10 1 200 20

s1 −19

s0 20

The next example demonstrates the occurrence of a zero in only the first column
of a row.

200

s4 + 6s3 + 11s2 + 6s + 200
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Example 6.7 Routh–Hurwitz with Zero in First Column
PROBLEM:
Find the number of poles in the left half-plane, the right half-plane, and on
the jω-axis for the system of Figure 6.7.

FIGURE 6.7 Feedback control system for Example 6.7

SOLUTION:
The closed-loop transfer function is

T (s) =

Form the Routh table shown as Table 6.11, using the denominator of Eq.
(6.15). A zero appears in the first column of the s3 row. Since the entire row
is not zero, simply replace the zero with a small quantity, ε, and continue the
table. Permitting ε to be a small, positive quantity, we find that the first term
of the s2 row is negative. Thus, there are two sign changes, and the system is
unstable, with two poles in the right half-plane. The remaining poles are in
the left half-plane.

TABLE 6.11

Routh table for Example 6.7
s5 2 2 2

s4 3 3 1

s3 0 ε

s2 1

s1

s0 1

1

2s5 + 3s4 + 2s3 + 3s2 + 2s + 1

4
3

3ε−4
ε

12ε−16−3ε2

9ε−12
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We also can use the alternative approach, where we produce a polynomial
whose roots are the reciprocal of the original. Using the denominator of Eq.
(6.15), we form a polynomial by writing the coefficients in reverse order,

s5 + 2s4 + 3s3 + 2s2 + 3s + 2

The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in
this case, we also produce a zero only in the first column at the s2 row.
However, the table is easier to work with than Table 6.11. Table 6.12 yields
the same results as Table 6.11: three poles in the left half-plane and two poles
in the right half-plane. The system is unstable.

TABLE 6.12

Alternative Routh table for Example 6.7

s5 1 3 3

s4 2 2 2

s3 2 2

s2 0 ε 2

s1

s0 2

 Students who are using MATLAB should now run ch6apB1 in
Appendix B. You will learn how to perform block diagram reduction to

find T(s), followed by an evaluation of the closed-loop system's poles

to determine stability. This exercise uses MATLAB to do Example 6.7.

In the next example, we see an entire row of zeros appear along with the
possibility of imaginary roots.

2ε−4
ε

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_6.zip
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Example 6.8 Routh–Hurwitz with Row of Zeros
PROBLEM:
Find the number of poles in the left half-plane, the right half-plane, and on
the jω-axis for the system of Figure 6.8. Draw conclusions about the stability
of the closed-loop system.

FIGURE 6.8 Feedback control system for Example 6.8

TryIt 6.2
Use MATLAB, The Control System Toolbox, and the following
statements to find the closed-loop transfer function, T(s), for Figure 6.8
and the closed-loop poles.

numg=128; deng=[131024 ...48 96 128 192 0]; G=tf(numg, deng); 
T=feedback(G, 1) poles=pole(T)

SOLUTION:
The closed-loop transfer function for the system of Figure 6.8 is

T (s) =

Using the denominator, form the Routh table shown as Table 6.13. A row of
zeros appears in the s5 row. Thus, the closed-loop transfer function
denominator must have an even polynomial as a factor. Return to the s6 row
and form the even polynomial:

P (s) = s6 + 8s4 + 32s2 + 64

Differentiate this polynomial with respect to s to form the coefficients that
will replace the row of zeros:

= 6s5 + 32s3 + 64s + 0

128

s8 + 3s7 + 10s6 + 24s5 + 48s4 + 96s3 + 128s2 + 192s + 128

dP (s)

ds

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_6.zip


Replace the row of zeros at the s5 row by the coefficients of Eq. (6.19) and
multiply through by 1/2 for convenience. Then complete the table.

TABLE 6.13

Routh table for Example 6.8
s8 1 10 48 128 128

s7 3 1 24 8 96 32 192 64

s6 2 1 16 8 64 32 128 64

s5 0 6 3 0 32 16 0 64 32 0 0 0

s4 1 8 64 24

s3 −8 − 1 −40 − 5

s2 3 1 24 8

s1 3

s0 8

We note that there are two sign changes from the even polynomial at the s6

row down to the end of the table. Hence, the even polynomial has two right-
half-plane poles. Because of the symmetry about the origin, the even
polynomial must have an equal number of left-half-plane poles. Therefore,
the even polynomial has two left-half-plane poles. Since the even polynomial
is of sixth order, the two remaining poles must be on the jω-axis.

There are no sign changes from the beginning of the table down to the even
polynomial at the s6 row. Therefore, the rest of the polynomial has no right-
half-plane poles. The results are summarized in Table 6.14. The system has
two poles in the right half-plane, four poles in the left half-plane, and two
poles on the jω-axis, which are of unit multiplicity. The closed-loop system is
unstable because of the right-half-plane poles.

8
3

64
3



TABLE 6.14

Summary of pole locations for Example 6.8
Polynomial

Location Even (sixth-
order)

Other (second-
order)

Total (eighth-
order)

Right half-
plane

2 0 2

Left half-
plane

2 2 4

jω 2 0 2

The Routh–Hurwitz criterion gives vivid proof that changes in the gain of a
feedback control system result in differences in transient response because of
changes in closed-loop pole locations. The next example demonstrates this
concept. We will see that for control systems, such as the robotic hand machine
tool shown in Figure 6.9, gain variations can move poles from stable regions of
the s-plane onto the jω-axis and then into the right half-plane.



FIGURE 6.9 Robotic hand machine tool at an industrial
manufacturing factory
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Example 6.9 Stability Design via Routh–Hurwitz
PROBLEM:
Find the range of gain, K, for the system of Figure 6.10 that will cause the
system to be stable, unstable, and marginally stable. Assume K > 0.

FIGURE 6.10 Feedback control system for Example 6.9

SOLUTION:
First find the closed-loop transfer function as

T (s) =

Next form the Routh table shown as Table 6.15.

TABLE 6.15

Routh table for Example 6.9
s3 1 77

s2 18 K

s1

s0 K

Since K is assumed positive, we see that all elements in the first column are
always positive except the s1 row. This entry can be positive, zero, or
negative, depending upon the value of K. If K < 1386, all terms in the first
column will be positive, and since there are no sign changes, the system will
have three poles in the left half-plane and be stable.

If K > 1386, the s1 term in the first column is negative. There are two sign
changes, indicating that the system has two right-half-plane poles and one
left-half-plane pole, which makes the system unstable.

K

s3 + 18s2 + 77s + K

1386−K

18
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(6.22)

If K = 1386, we have an entire row of zeros, which could signify jω poles.
Returning to the s2 row and replacing K with 1386, we form the even
polynomial

P(s) = 18s2 + 1386

Differentiating with respect to s, we have

= 36s + 0

Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the
Routh–Hurwitz table shown as Table 6.16 for the case of K = 1386.

TABLE 6.16

Routh table for Example 6.9 with K = 1386

s3 1 77

s2 18 1386

s1 0 36

s0 1386

Since there are no sign changes from the even polynomial (s2 row) down to
the bottom of the table, the even polynomial has its two roots on the jω-axis
of unit multiplicity. Since there are no sign changes above the even
polynomial, the remaining root is in the left half-plane. Therefore the system
is marginally stable.

 Students who are using MATLAB should now run ch6apB2 in
Appendix B. You will learn how to set up a loop to search for the

range of gain to yield stability. This exercise uses MATLAB to do

Example 6.6.

dP(s)

ds

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_6.zip


 Students who are performing the MATLAB exercises and want
to explore the added capability of MATLAB's Symbolic Math Toolbox

should now run ch6apF2 in Appendix F. You will learn how to use the

Symbolic Math Toolbox to calculate the values of cells in a Routh

table even if the table contains symbolic objects, such as a

variable gain, K. You will see that the Symbolic Math Toolbox and

MATLAB yield an alternative way to solve Example 6.6.

The Routh–Hurwitz criterion is often used in limited applications to factor
polynomials containing even factors. Let us look at an example.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_F_for_Chapter_6.zip
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Example 6.10 Factoring via Routh–Hurwitz
PROBLEM:
Factor the polynomial

s4 + 3s3 + 30s2 + 30s + 200

SOLUTION:

Form the Routh table of Table 6.17. We find that the s1 row is a row of zeros.
Now form the even polynomial at the s2 row:

P (s) = s2 + 10

This polynomial is differentiated with respect to s in order to complete the
Routh table. However, since this polynomial is a factor of the original
polynomial in Eq. (6.23), dividing Eq. (6.23) by (6.24) yields (s2 + 3s + 20)
as the other factor. Hence,

s4 + 3s3 + 30s2 + 30s + 200=(s2 + 10) (s2 + 3s + 20)

=(s + j3.1623)(s − j3.1623)

×(s + 1.5 + j4.213)(s + 1.5 − j4.213)

TABLE 6.17

Routh table for Example 6.10

s4 1 30 200

s3 3 1 30 10

s2 20 1 200 10

s1 0 2 0 0

s0 10
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Skill-Assessment Exercise 6.3
PROBLEM:
For a unity-feedback system with the forward transfer function

G (s) =

find the range of K to make the system stable.

ANSWER:
0 < K < 2

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

6.5 Stability in State Space

Up to this point, we have examined stability from the s-plane viewpoint. Now
we look at stability from the perspective of state space. In Section 4.10, we
mentioned that the values of the system's poles are equal to the eigenvalues
of the system matrix, A. We stated that the eigenvalues of the matrix A were
solutions of the equation det (sI − A) = 0, which also yielded the poles of the
transfer function. Eigenvalues appeared again in Section 5.8, where they
were formally defined and used to diagonalize a matrix. Let us now formally
show that the eigenvalues and the system poles have the same values.

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of λ that permit
a nontrivial solution (other than 0) for x in the equation

Ax = λx

In order to solve for the values of λ that do indeed permit a solution for x, we
rearrange Eq. (6.26) as follows:

λx − Ax = 0

or

(λI − A) x = 0

K(s + 20)

s(s + 2)(s + 3)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(6.29)

(6.30)

(6.31)

(6.32)

Solving for x yields

x = (λI − A)
−1

0

or

x = 0

We see that all solutions will be the null vector except for the occurrence of zero
in the denominator. Since this is the only condition where elements of x will be
0/0, or indeterminate, it is the only case where a nonzero solution is possible.

The values of λ are calculated by forcing the denominator to zero:

det(λI − A) = 0

This equation determines the values of λ for which a nonzero solution for x in
Eq. (6.26) exists. In Section 5.8, we defined x as eigenvectors and the values of
λ as the eigenvalues of the matrix A.

Let us now relate the eigenvalues of the system matrix, A, to the system's poles.
In Chapter 3 we derived the equation of the system transfer function, Eq. (3.73),
from the state equations. The system transfer function has det(sI − A) in the
denominator because of the presence of (sI − A) −1. Thus,

det(sI − A) = 0

is the characteristic equation for the system from which the system poles can be
found.

Since Eqs. (6.31) and (6.32) are identical apart from a change in variable name,
we conclude that the eigenvalues of the matrix A are identical to the system's
poles before cancellation of common poles and zeroes in the transfer function.
Thus, we can determine the stability of a system represented in state space by
finding the eigenvalues of the system matrix, A, and determining their locations
on the s-plane.

adj (λI − A)

det (λI − A)



(6.33a)

(6.33b)

(6.34)

(6.35)

Example 6.11 Stability in State Space
PROBLEM:
Given the system

ẋ =
⎡
⎢
⎣

0 3 1

2 8 1

−10 −5 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

10

0

0

⎤
⎥
⎦
u

y = [1 0 0]x

find out how many poles are in the left half-plane, in the right half-plane,
and on the jω-axis.

SOLUTION:
First form (sI − A):

⎛
⎜
⎝
sI − A

⎞
⎟
⎠

=
⎡
⎢
⎣

s 0 0

0 s 0

0 0 s

⎤
⎥
⎦

−
⎡
⎢
⎣

0 3 1

2 8 1

−10 −5 −2

⎤
⎥
⎦

=
⎡
⎢
⎣

s −3 −1

−2 s − 8 −1

10 5 s + 2

⎤
⎥
⎦

Now find the det(sI − A):

det(sI − A) = s3 − 6s2 − 7s − 52

Using this polynomial, form the Routh table of Table 6.18.

TABLE 6.18

Routh table for Example 6.11

s3 1 −7

s2 −6 − 3 −52 − 26

s1 − − 1 0 0

s0 −26

Since there is one sign change in the first column, the system has one right-
half-plane pole and two left-half-plane poles. It is therefore unstable. Yet,
you may question the possibility that if a nonminimum-phase zero cancels

47
3



the unstable pole, the system will be stable. However, in practice, the
nonminimum-phase zero or unstable pole will shift due to a slight change in
the system's parameters. This change will cause the system to become
unstable.

 Students who are using MATLAB should now run ch6apB3 in

Appendix B. You will learn how to determine the stability of a

system represented in state space by finding the eigenvalues of the

system matrix. This exercise uses MATLAB to do Example 6.11.

Skill-Assessment Exercise 6.4
PROBLEM:
For the following system represented in state space, find out how many poles
are in the left half-plane, in the right half-plane, and on the jω-axis.

ẋ =
⎡
⎢
⎣

2 1 1

1 7 1

−3 4 −5

⎤
⎥
⎦

x +
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦
r

y =[ 0 1 0 ]x

TryIt 6.3
Use the following MATLAB statements to find the eigenvalues of the
system described in Skill-Assessment Exercise 6.4.

A = [211 171 −34−5]; Eig = eig(A)

ANSWER:
Two rhp and one lhp.

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we have evaluated the stability of feedback control systems from
the state-space perspective. Since the closed-loop poles and the eigenvalues of a
system are the same, the stability requirement of a system represented in state
space dictates that the eigenvalues cannot be in the right half of the s-plane or be
multiple on the jω-axis.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_6.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_6.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


We can obtain the eigenvalues from the state equations without first converting
to a transfer function to find the poles: The equation det(sI − A) = 0 yields the
eigenvalues directly. If det(sI − A), a polynomial in s, cannot be factored easily,
we can apply the Routh–Hurwitz criterion to it to evaluate how many
eigenvalues are in each region of the s-plane.

We now summarize this chapter, first with case studies and then with a written
summary. Our case studies include the antenna azimuth position control system
and the UFSS. Stability is as important to these systems as it is to the system
shown in Figure 6.11.

FIGURE 6.11 A FANUC M-410iB™ has 4 axes of motion. It is seen
here performing bag palletizing



(6.36)

Case Studies Antenna Control: Stability Design via
Gain

 This chapter has covered the elements of stability. We saw that stable
systems have their closed-loop poles in the left half of the s-plane. As the
loop gain is changed, the locations of the poles are also changed, creating the
possibility that the poles can move into the right half of the s-plane, which
yields instability. Proper gain settings are essential for the stability of closed-
loop systems. The following case study demonstrates the proper setting of
the loop gain to ensure stability.

PROBLEM:
You are given the antenna azimuth position control system shown in
Appendix A2, Configuration 1. Find the range of preamplifier gain required
to keep the closed-loop system stable.

SOLUTION:
The closed-loop transfer function was derived in the case studies in Chapter
5 as

T(s) =

Using the denominator, create the Routh table shown as Table 6.19. The
third row of the table shows that a row of zeros occurs if K = 2623. This value
of K makes the system marginally stable. Therefore, there will be no sign
changes in the first column if 0 < K < 2623. We conclude that, for stability, 0
< K < 2623. An animation PowerPoint presentation (PPT) demonstrating
this system is available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See Antenna (Ch.
6).

TABLE 6.19

Routh table for antenna control case study
s3 1 171

s2 101.71 6.63K

s1 17392.41–6.63K 0

s0 6.63K

6.63K

s3 + 101.71s2 + 171s + 6.63K

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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CHALLENGE
We now give you a problem to test your knowledge of this chapter's
objectives. Refer to the antenna azimuth position control system shown in
Appendix A2, Configuration 2. Find the range of preamplifier gain required
to keep the closed-loop system stable.

UFSS Vehicle: Stability Design via Gain
 For this case study, we return to the UFSS vehicle and study the

stability of the pitch control system, which is used to control depth.
Specifically, we find the range of pitch gain that keeps the pitch control loop
stable.

PROBLEM:
The pitch control loop for the UFSS vehicle (Johnson, 1980) is shown in
Appendix A3. Let K2 = 1 and find the range of K1 that ensures that the
closed-loop pitch control system is stable.

SOLUTION:
The first step is to reduce the pitch control system to a single, closed-loop
transfer function. The equivalent forward transfer function, Ge (s), is

Ge (s) =

With unity feedback the closed-loop transfer function, T(s), is

T (s) =

The denominator of Eq. (6.38) is now used to form the Routh table shown as
Table 6.20.

0.25K1 (s + 0.435)

s4 + 3.456s3 + 3.457s2 + 0.719s + 0.0416

0.25K1 (s + 0.435)

s4 + 3.456s3 + 3.457s2 + (0.719 + 0.25K1) s + (0.0416 + 0.109K1)



TABLE 6.20

Routh table for UFSS case study

s4 1 3.457 0.0416 + 0.109K1

s3 3.456 0.719 + 0.25K1

s2 11.228 − 0.25K1 0.144 + 0.377K1

s1

s0 0.144 + 0.377K1

Note: Some rows have been multiplied by a positive constant for convenience.

Looking at the first column, the s4 and s3 rows are positive. Thus, all
elements of the first column must be positive for stability. For the first
column of the s2 row to be positive, −∞ < K1 < 44.91. For the first column of
the s1 row to be positive, the numerator must be positive, since the
denominator is positive from the previous step. The solution to the quadratic
term in the numerator yields roots of K1 = − 4.685 and 25.87. Thus, for a
positive numerator, −4.685 < K1 < 25.87. Finally, for the first column of the
s0 row to be positive, −0.382 < K1 < ∞. Using all three conditions, stability
will be ensured if −0.382 < K1 < 25.87.

CHALLENGE
You are now given a problem to test your knowledge of this chapter's
objectives. For the UFSS vehicle (Johnson, 1980) heading control system
shown in Appendix A3 and introduced in the UFSS Case Study Challenge in
Chapter 5, do the following:

a. Find the range of heading gain that ensures the vehicle's stability. Let K2
= 1

b. Repeat Part a using MATLAB.

In our case studies, we calculated the ranges of gain to ensure stability. The
student should be aware that although these ranges yield stability, setting
gain within these limits may not yield the desired transient response or
steady-state error characteristics. In Chapters 9 and 11, we will explore
design techniques, other than simple gain adjustment, that yield more
flexibility in obtaining desired characteristics.

−0.0625K2
1 +1.324K1+7.575

11.228−0.25K1



Summary
In this chapter, we explored the concepts of system stability from both the
classical and the state-space viewpoints. We found that for linear systems,
stability is based on a natural response that decays to zero as time approaches
infinity. On the other hand, if the natural response increases without bound, the
forced response is overpowered by the natural response, and we lose control.
This condition is known as instability. A third possibility exists: The natural
response may neither decay nor grow without bound but oscillate. In this case,
the system is said to be marginally stable.

We also used an alternative definition of stability when the natural response is
not explicitly available. This definition is based on the total response and says
that a system is stable if every bounded input yields a bounded output (BIBO)
and unstable if any bounded input yields an unbounded output.

Mathematically, stability for linear, time-invariant systems can be determined
from the location of the closed-loop poles:

If the poles are only in the left half-plane, the system is stable.

If any poles are in the right half-plane, the system is unstable.

If the poles are on the jω-axis and in the left half-plane, the system is
marginally stable as long as the poles on the jω-axis are of unit multiplicity;
it is unstable if there are any multiple jω poles.

Unfortunately, although the open-loop poles may be known, we found that in
higher-order systems it is difficult to find the closed-loop poles without a
computer program.

The Routh–Hurwitz criterion lets us find how many poles are in each section of
the s-plane without giving us the coordinates of the poles. Just knowing that
there are poles in the right half-plane is enough to determine that a system is
unstable. Under certain limited conditions, when an even polynomial is present,
the Routh table can be used to factor the system's characteristic equation.

Obtaining stability from the state-space representation of a system is based on
the same concept—the location of the roots of the characteristic equation. These
roots are equivalent to the eigenvalues of the system matrix and can be found by
solving det(sI − A) = 0. Again, the Routh–Hurwitz criterion can be applied to
this polynomial. The point is that the state-space representation of a system need
not be converted to a transfer function in order to investigate stability. In the
next chapter, we will look at steady-state errors, the last of three important
control system requirements we emphasize.

Review Questions



1. What part of the output response is responsible for determining the stability
of a linear system?

2. What happens to the response named in Question 1 that creates instability?

3. What would happen to a physical system that becomes unstable?

4. Why are marginally stable systems considered unstable under the BIBO
definition of stability?

5. Where do system poles have to be to ensure that a system is not unstable?

6. What does the Routh–Hurwitz criterion tell us?

7. Under what conditions would the Routh–Hurwitz criterion easily tell us the
actual location of the system's closed-loop poles?

8. What causes a zero to show up only in the first column of the Routh table?

9. What causes an entire row of zeros to show up in the Routh table?

10. Why do we sometimes multiply a row of a Routh table by a positive
constant?

11. Why do we not multiply a row of a Routh table by a negative constant?

12. If a Routh table has two sign changes above the even polynomial and five
sign changes below the even polynomial, how many right-half-plane poles
does the system have?

13. Does the presence of an entire row of zeros always mean that the system has
jω poles?

14. If a seventh-order system has a row of zeros at the s3 row and two sign
changes below the s4 row, how many jω poles does the system have?

15.  Is it true that the eigenvalues of the system matrix are the same as
the closed-loop poles?

16.  How do we find the eigenvalues?

Cyber Exploration Laboratory

EXPERIMENT 6.1
Objectives
To verify the effect of pole location upon stability. To verify the effect upon
stability of loop gain in a negative feedback system.

Minimum Required Software Packages



MATLAB, Simulink, and the Control System Toolbox

Prelab

1. Find the equivalent transfer function of the negative feedback system of
Figure 6.17 if

G (s) = and H (s) = 1

2. For the system of Prelab 1, find two values of gain that will yield closed-loop,
overdamped, second-order poles. Repeat for underdamped poles.

FIGURE 6.17

3. For the system of Prelab 1, find the value of gain, K, that will make the
system critically damped.

4. For the system of Prelab 1, find the value of gain, K, that will make the
system marginally stable. Also, find the frequency of oscillation at that value
of K that makes the system marginally stable.

5. For each of Prelab 2 through 4, plot on one graph the pole locations for each
case and write the corresponding value of gain, K, at each pole.

Lab

1. Using Simulink, set up the negative feedback system of Prelab 1. Plot the
step response of the system at each value of gain calculated to yield
overdamped, underdamped, critically damped, and marginally stable
responses.

2. Plot the step responses for two values of gain, K, above that calculated to
yield marginal stability.

3. At the output of the negative feedback system, cascade the transfer function

G1 (s) =

K

s(s+2)
2

1

s2 + 4



Set the gain, K, at a value below that calculated for marginal stability and
plot the step response. Repeat for K calculated to yield marginal stability.

Postlab

1. From your plots, discuss the conditions that lead to unstable responses.

2. Discuss the effect of gain upon the nature of the step response of a closed-
loop system.

EXPERIMENT 6.2
Objective
To use the LabVIEW Control Design and Simulation Module for stability
analysis.

Minimum Required Software Package
LabVIEW with the Control Design and Simulation Module

Prelab

1. Select six transfer functions of various orders and use Routh–Hurwitz to
determine their stability.

Lab

1. Create a LabVIEW VI that receives the order and the coefficients of the
characteristic equation and outputs the location of the poles and
information regarding stability.

Postlab

1. Verify the stability of the systems from your Prelab.
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Notes
1 Care must be taken here to distinguish between natural responses growing

without bound and a forced response, such as a ramp or exponential increase,
that also grows without bound. A system whose forced response approaches
infinity is stable as long as the natural response approaches zero.

2 The coefficients can also be made all negative by multiplying the polynomial by
−1. This operation does not change the root location.

3 The polynomial s5 + 5s3 + 7s is an example of an odd polynomial; it has only
odd powers of s. Odd polynomials are the product of an even polynomial and
an odd power of s. Thus, the constant term of an odd polynomial is always
missing.



4 A necessary condition for stability is that the jω roots have unit multiplicity.
The even polynomial must be checked for multiple jω roots. For this case, the
existence of multiple jω roots would lead to a perfect, fourth-order square
polynomial. Since Eq. (6.12) is not a perfect square, the four jω roots are
distinct.



Chapter 7
Steady-State Errors



Chapter 7 Problems
1. In Figure P7.1, let

G (s) =

Find the steady-state errors for the following inputs: 17u(t), 32tu(t), 48t2u(t).
[Section: 7.2]

FIGURE P7.1

 2. Figure P7.2 shows the ramp input r(t) and the output c(t) of a system.
Assuming the output's steady state can be approximated by a ramp, find
[Section: 7.1]

a. the steady-state error;

b. the steady-state error if the input becomes r(t) = tu(t).

FIGURE P7.2

1350 (s + 2) (s + 10) (s + 32)

s (s + 4) (s2 + 8s + 32)



Check Answer!

3. In the unity-feedback system shown of Figure P7.1,

G (s) =

Find the steady-state error when the input is 8t2u(t). [Section: 7.2]

 4. For the system shown in Figure P7.3, what steady-state error can be
expected for the following test inputs: 10u(t), 10 tu(t), 10 t2u(t). [Section: 7.2]

FIGURE P7.3

Check Answer!

5. Find the steady-state error for inputs 4u(t), 7tu(t), and 5t2 u(t) for the system
of Figure P7.1, when

G (s) =

[Section: 7.3]

375 (s + 5) (s + 18) (s + 54)

s2 (s + 8) (s + 24)

2

(s + 0.5) (s2 + 1s + 2)



 6. An input of 25t3u(t) is applied to the input of a Type 3 unity-feedback
system, as shown in Figure P7.1, where

G (s) =

Find the steady-state error in position. [Section: 7.3]

Check Answer!

7. The velocity steady-state error of a system can be defined to be

( − )∣
∣
∣t→∞

where r(t) is the input, and c(t) is the output. Find the velocity steady-state
error for the configuration of Figure P7.1 when [Section: 7.2]

G (s) =

and the input is r(t) = t3u(t).

8. For a system, the proportional error constant is KP = 2. Indicate what will be
the steady-state error if the inputs are 50u(t) and 50tu(t)? [Section: 7.3]

 9. For the unity-feedback system shown in Figure P7.1, where [Section: 7.3]

210 (s + 4) (s + 6) (s + 11) (s + 13)

s3 (s + 7) (s + 14) (s + 19)

dr

dt

dc

dt

200 (s + 2) (s + 3)

s2 (s + 1) (s + 15)



G (s) =

a. What is the expected percent overshoot for a unit step input?

b. What is the settling time for a unit step input?

c. What is the steady-state error for an input of 5u(t)?

d. What is the steady-state error for an input of 5tu(t)?

e. What is the steady-state error for an input of 5t2u(t)?

Check Answer!

10. It is desired to achieve Kv = 40,000 for the system of Figure P7.1 when

G (s) =

Find the required value of α. [Section: 7.4]

 11. For the unity-feedback system of Figure P7.1, where

G (s) =

find the value of K to yield a static error constant of 10,000. [Section: 7.4]

Check Answer!

12. Refer to the system of Figure P7.4. [Section: 7.3]

a. Find the steady-state error for inputs 20u(t), 20tu(t), and 20t2u(t).

b. Find the error constants Kp, Kv, andKa.

5000

s (s + 75)

300, 000 (s + 5) (s + 10) (s + 30)

s (s + 60) (s + α) (s + 90)

K (s + 2) (s + 4) (s + 6)

s2 (s + 5) (s + 7)



c. Find the system type.

FIGURE P7.4

13. For the system of Figure P7.5, find the system type when [Section: 7.3]

a. M(s) = 5.

b. M(s) = 5/s.

FIGURE P7.5

14. It is desired to obtain a zero steady-state error for step inputs in Figure
P7.6. Find the restrictions on the feedforward transfer function G2(s) when:
[Section: 7.3]

a. G1(s) is a Type 0 transfer function;

b. G1(s) is a Type 1 transfer function;

c. G1(s) is a Type 2 transfer function?

FIGURE P7.6



 15. The steady-state error is defined to be the difference in position
between input and output as time approaches infinity. Let us define a steady-
state velocity error, which is the difference in velocity between input and
output. Derive an expression for the error in velocity, ⋅e (∞) = ⋅r (∞) − ⋅c (∞),
and complete Table P7.1 for the error in velocity. [Sections: 7.2, 7.3]

TABLE P7.1

Check Answer!

16. Given the unity-feedback system of Figure P7.1, where

G (s) =

find the value of Ka so that a ramp input of slope 30 will yield an error of 0.005
in the steady state when compared to the output. [Section: 7.4]

17. For an input 50tu(t) to the system of Figure P7.7, find the value of K that
will yield a steady-state error of 0.05. [Section: 7.4]

K (s + a)

s (s + 2) (s + 15)



FIGURE P7.7

18. The unity-feedback system of Figure P7.1, where

G (s) =

is to have 1/6000 error between an input of 10tu(t) and the output in the
steady state. [Section: 7.4]

a. Find K and n to meet the specification.

b. What are Kp, Kv, and Ka?

19. For the unity-feedback system of Figure P7.1, where [Section: 7.3]

G (s) =

a. Find the system type.

b. What error can be expected for an input of 12u(t)?

c. What error can be expected for an input of 12tu(t)?

20. Assume in the unity-feedback system of Figure P7.1 that

K (s2 + 3s + 30)
sn (s + 5)

K (s2 + 6s + 6)

(s + 5)2 (s + 3)



G (s) =

Find the value of K that will result in a 5% steady-state error. [Section: 7.4]

 21. The unity-feedback system of Figure P7.1, where

G (s) =

is to be designed to meet the following specifications: steady-state error for a
unit step input = 0.1; damping ratio = 0.5; natural frequency = √10. Find K, α,
and β. [Section: 7.4]

Check Answer!

22. A second-order, unity-feedback system is to follow a ramp input with the
following specifications: the steady-state output position shall differ from the
input position by 0.01 of the input velocity; the natural frequency of the closed-
loop system shall be 10 rad/s. Find the following:

a. The system type

b. The exact expression for the forward-path transfer function

c. The closed-loop system's damping ratio

23. The unity-feedback system of Figure P7.1 has a transfer function 
G(s) = =  and is to follow a ramp input, r(t) = tu(t), so that the

steady-state output position differs from the input position by 0.01 of the input
velocity (e.g., e(∞) = ). The natural frequency of the closed-loop system
will be ωn = 5 rad/s. [Section: 7.4]

Find the following:

a. The system type

b. The values of K and α

c. The closed-loop system's damping ratio, ζ

K (s + 4)

(s + 1) (s2 + 7s + 30)

K (s + α)

(s + β)2

C(s)

E(s)
K

s(s+α)

1
Kv=0.01



d. If K is reduced to 4 and α = 0.4, find the corresponding new values of 
e(∞), ωn, and ζ.

24. The unity-feedback system of Figure P7.1, where

G (s) =

is to be designed to meet the following requirements: The steady-state position
error for a unit ramp input equals 1/10; the closed-loop poles will be located at
−1 ±j1. Find K, α, and β in order to meet the specifications. [Section: 7.4]

 25. Given the unity-feedback control system of Figure P7.1 where

G (s) =

find the following: [Section: 7.4]

a. K and a to yield Kv = 1000 and a 20% overshoot

b. K and a to yield a 1% error in the steady state and a 10% overshoot.

Check Answer!

26. Given the system in Figure P7.8, find the following: [Section: 7.3]

a. The closed-loop transfer function

b. The system type

c. The steady-state error for an input of 5u(t)

d. The steady-state error for an input of 5tu(t)

e. Discuss the validity of your answers to Parts c and d.

K (s + α)

s (s + β)

K

s (s + a)



FIGURE P7.8

 27. The system of Figure P7.9 is to have the following specifications: Kv =
20; ζ = 0.7. Find the values of K1 and Kf required for the specifications of the
system to be met. [Section: 7.4]

FIGURE P7.9

Check Answer!

28. Design the values of K1 and K2 in the system of Figure P7.10 to meet the
following specifications: Steady-state error component due to a unit step
disturbance is −0.00001; steady-state error component due to a unit ramp
input is 0.002. [Section: 7.5]

FIGURE P7.10

29. In Figure P7.11, let G(s) = 5 and P (s) = .

 a. Calculate the steady-state error due to a command input R (s) =
with D(s) = 0.

7
s+2

3
s



Check Answer!

b.  Verify the result of Part a using Simulink.

c. Calculate the steady-state error due to a disturbance input D (s) = −
with R(s) = 0.

d.  Verify the result of Part c using Simulink.

e. Calculate the total steady-state error due to a command input R (s) =

and a disturbance D (s) = −  applied simultaneously.

f.  Verify the result of Part e using Simulink.

FIGURE P7.11

30. Derive Eq. (7.72) in the text, which is the final value of the actuating signal
for nonunity-feedback systems. [Section: 7.6]

31. For each system shown in Figure P7.12, find the following: [Section: 7.6]

a. The system type

b. The appropriate static error constant

c. The input waveform to yield a constant error

d. The steady-state error for a unit input of the waveform found in Part c
e. The steady-state value of the actuating signal.

1
s

3
s

1
s



FIGURE P7.12 Closed-loop systems with nonunity feedback

32. For each system shown in Figure P7.13, find the appropriate static error
constant as well as the steady-state error, r(∞) − c(∞), for unit step, ramp, and
parabolic inputs. [Section: 7.6]



FIGURE P7.13

33. Given the system shown in Figure P7.14, find the following: [Section: 7.6]

a. The system type

b. The value of K to yield 0.1% error in the steady state.

FIGURE P7.14

34.  For the system shown in Figure P7.15, use MATLAB to find the
following for K = 10, and K = 106: [Section: 7.6]

a. The system type

b. Kp, Kv, and Ka
c. The steady-state error for inputs of 30u(t), 30tu(t), and 30t2u(t)



FIGURE P7.15

 35. A dynamic voltage restorer (DVR) is a device that is connected in series
to a power supply. It continuously monitors the voltage delivered to the load,
and compensates voltage sags by applying the necessary extra voltage to
maintain the load voltage constant.

In the model shown in Figure P7.16, ur represents the desired reference
voltage, uo is the output voltage, and ZL is the load impedance. All other
parameters are internal to the DVR (Lam, 2004).

a. Assuming ZL = , and β ≠ 1, find the system's type.

b. Find the steady-state error to a unit step input as a function of β./li>

FIGURE P7.16 DVR Model

Check Answer!

 36. Derive Eq. (7.69) in the text. [Section: 7.6]

Check Answer!

37. Given the system shown in Figure P7.17, do the following: [Section: 7.6]

a. Derive the expression for the error, E(s) = R(s) − C(s), in terms of R(s)
and D(s).

1
sCL



b. Derive the steady-state error, e(∞), if R(s) and D(s) are unit step
functions.

c. Determine the attributes of G1(s), G2(s), and H(s) necessary for the
steady-state error to become zero.

FIGURE P7.17 System with input and disturbance

38. Given the system shown in Figure P7.18, find the sensitivity of the steady-
state error to parameter a. Assume a step input. Plot the sensitivity as a
function of parameter a. [Section: 7.7]

FIGURE P7.18

39. For the system shown in Figure P7.19, find the sensitivity of the steady-state
error for changes in K1 and in K2, when K1 = 100 and K2 = 0.1. Assume step
inputs for both the input and the disturbance. [Section: 7.7]

FIGURE P7.19 System with input and disturbance



40. Given the block diagram of the active suspension system shown in Figure
P5.26 (Lin, 1997)

a. Find the transfer function from a road disturbance r to the error signal e.

b. Use the transfer function in Part a to find the steady-state value of e for a
unit step road disturbance.

c. Use the transfer function in Part a to find the steady-state value of e for a
unit ramp road disturbance.

d. From your results in Parts b and c, what is the system's type for e?

41. A simplified model of the steering of a four-wheel drive vehicle is shown in
Figure P7.20.

FIGURE P7.20 Steering model for a four-wheel drive vehicle1

In this block diagram, the output r is the vehicle's yaw rate, while δf and δr are
the steering angles of the front and rear tires, respectively. In this model,

r∗(s) = ,Gf(s) = Gr(s) =

and K(s) is a controller to be designed. (Yin, 2007).

a. Assuming a step input for δf, find the minimum system type of the
controller K(s) necessary so that in steady-state the error, as defined by the
signal e in Figure P7.20, is zero if at all possible.

b. Assuming a step input for δf, find the system type of the controller K(s)
necessary so that in steady state the error as defined by δf(∞) − r(∞) is zero
if at all possible.

42. As part of the development of a textile cross-lapper machine (Kuo, 2010), a

torque input, u(t) ={ 1 0 ≤ t < 50

−1 50 ≤ t < 100
}, is applied to the motor of one of

the movable racks embedded in a feedback loop. The corresponding velocity
output response is shown in Figure P7.21.

a. What is the open-loop system's type?

+ 0.8s
300

+ 1s
10

h1s + h2

s2 + a1s + a2

h3s + b1

s2 + a1s + a2



b. What is the steady-state error?

c. What would be the steady-state error for a ramp input?

FIGURE P7.21 Velocity output response2

43. The block diagram in Figure P7.22 represents a motor driven by an
amplifier with double-nested tachometer feedback loops (Mitchell, 2010).

a. Find the steady-state error of this system to a step input.

b. What is the system type?

FIGURE P7.223

44. PID control, which is discussed in Chapter 9, may be recommended for
Type 3 systems when the output in a feedback system is required to perfectly
track a parabolic as well as step and ramp reference signals (Papadopoulos,



2013). In the system of Figure P7.23, the transfer functions of the plant, GP(s),
and the recommended controller, GC(s), are given by:

GP (s) =

GC(s) =

 Use Simulink to model this system and plot its response (from 0 to
300 seconds) to a unit-step reference input, r(t), applied at t = 0, and

(on the same graph) to a disturbance, d(t) = 0.25 r(t), applied at t =

150 seconds. What are the values of the steady-state error due to the

reference input and due to the disturbance? What about the relative

stability of this Type 3 system as evidenced by the percent overshoot in

response to the unit-step reference input?

FIGURE P7.23

45.  A Type 3 feedback control system (Papadopoulos, 2013) was
presented in Problem 44. Modify the Simulink model you developed in that

problem to plot its response (from 0 to 100 seconds) to a unit-ramp

reference input, r(t)= tu(t), applied at t = 0, and (on the same graph) to

a disturbance, d(t) = 0.25tu(t), applied at t = 50 seconds. What are the

values of the steady-state position error due to the reference-input and

disturbance ramps?

Copy this model and paste it in the same file. Then, in that copy,

change the reference input to a unit parabola, r(t) = 0.5 t2 u(t),

applied at t = 0, and the disturbance to d(t) = 0.125t2u(t), applied at

127e−0.2s

s(s + 1)(s + 2)(s + 5)2(s + 10)

(92.9s2 + 13.63s + 1)

97.6s2(0.1s + 1)



t = 50 seconds, and plot, on a new graph (Scope 1), the system's

response to these parabolic signals.

DESIGN PROBLEMS
46. Motion control, which includes position or force control, is used in robotics
and machining. Force control requires the designer to consider two phases:
contact and noncontact motions. Figure P7.24(a) is a diagram of a mechanical
system for force control under contact motion. A force command, Fcmd(s), is the
input to the system, while the output, F(s), is the controlled contact force.

In the figure, a motor is used as the force actuator. The force output from the
actuator is applied to the object through a force sensor. A block diagram
representation of the system is shown in Figure P7.24(b). K2 is velocity
feedback used to improve the transient response. The loop is actually
implemented by an electrical loop (not shown) that controls the armature
current of the motor to yield the desired torque at the output. Recall that Tm =
Ktia (Ohnishi, 1996). Find an expression for the range of K2 to keep the steady-
state force error below 10% for ramp inputs of commanded force.

FIGURE P7.24 a. Force control mechanical loop under contact
motion;4 b. block diagram4

47. An open-loop swivel controller and plant for an industrial robot has the
transfer function



Ge (s) = =

where ωo(s) is the Laplace transform of the robot's angular swivel velocity and
Vi(s) is the input voltage to the controller. Assume Ge(s) is the forward transfer
function of a velocity control loop with an input transducer and sensor, each
represented by a constant gain of 3 (Schneider, 1992).

a. Find the value of gain, K, to minimize the steady-state error between the
input commanded angular swivel velocity and the output actual angular
swivel velocity.

b. What is the steady-state error for the value of K found in Part a?

c. For what kind of input does the design in Part a apply?

48. In Figure P7.11, the plant, P (s) = , represents the dynamics of a
robotic manipulator joint. The system's output, C(s), is the joint's angular
position (Low, 2005). The system is controlled in a closed-loop configuration as
shown with G (s) = KP + , a proportional-plus-integral (PI) controller to be
discussed in Chapter 9. R(s) is the joint's desired angular position. D(s) is an
external disturbance, possibly caused by improper dynamics modeling,
Coulomb friction, or other external forces acting on the joint.

a. Find the system's type.

b. Show that for a step disturbance input, ess = 0 when KI ≠ 0.

c. Find the value of KI that will result in ess = 5 % for a parabolic input.

d. Using the value of KI found in Part c, find the range of KP for closed-
loop stability.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
49. Control of HIV/AIDS. Consider the HIV infection model of Problem 50
in Chapter 6 and its block diagram in Figure P6.15 (Craig, 2004).

a. Find the system's type if G(s) is a constant.

b. It was shown in Problem 50, Chapter 6, that when G(s) = K the system
will be stable when K < 2.04 × 10−4. What value of K will result in a unit
step input steady-state error of 10%?

c. It is suggested that to reduce the steady-state error the system's type
should be augmented by making G (s) = . Is this a wise choice? What is

ωo (s)

Vi (s)

K

(s + 10) (s2 + 4s + 10)

48,500

s2+2.89s

KI

s

K
s



the resulting stability range for K?

50. Hybrid vehicle. Figure P7.25 shows the block diagram of the speed
control of an HEV taken from Figure P5.39, and rearranged as a unity-feedback
system (Preitl, 2007). Here the system output is C(s) = KSSV(s), the output
voltage of the speed sensor/transducer.

FIGURE P7.25

a. Assume the speed controller is given as GSC(s) = KPSC
. Find the gain, 

KPSC
, that yields a steady-state error, estep(∞) = 1%.

b. Now assume that in order to reduce the steady-state error for step
inputs, integration is added to the controller yielding 
GSC(s) = KPSC

+ (KISC/s) = 100 + (KISC/s)). Find the value of the
integral gain, KISC , that results in a steady-state error, eramp(∞) = 2.5%.

c. In Parts a and b, the HEV was assumed to be driven on level ground.
Consider the case when, after reaching a steady-state speed with a
controller given by GSC(s) = 100 + , the car starts climbing up a hill
with a gradient angle, α = 5°. For small angles sinα = α (in radians) and,
hence, when reflected to the motor shaft the climbing torque is

Tst = = sinα = = = 83.7Nm.

The block diagram in Figure P7.26 represents the control system of the
HEV rearranged for Part c.

40
s

Fstr

itot

mgr

itot

mgrα

itot

1590 × 9.8 × 0.3 × 5

4.875 × 57.3



FIGURE P7.26

In this diagram, the input is Tst(t) = 83.7 u(t), corresponding to α = 5°, and
the output is the negative error, −e(t) = − c(t) = − KSSv (t), proportional to
the change in car speed, v(t). Find the steady-state error e(∞) due to a step
change in the disturbance; for example, the climbing torque, Tst(t) = 83.7 
u(t).

51. Parabolic trough collector. The parabolic trough collector (Camacho,
2012) is embedded in a unit feedback configuration as shown in Figure P7.1,
where G(s) = GC(s)P(s) and

P(s) = e−39s

a. Assuming GC(s) = K, find the value of K required for a unit-step input
steady-state error of 3%. Use the result you obtained in Problem 52,
Chapter 6, to verify that the system is closed-loop stable when that value of
K is used.

b. What is the minimum unit-step input steady-state error achievable with 
GC(s) = K?

c. What is the simplest compensator, GC(s), that can be used to achieve a
steady-state error of 0%?

137.2 × 10−6

S2 + 0.0224s + 196 × 10−6
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Chapter 7 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Find the steady-state error for a unity-feedback system (Sections 7.1–7.2)

Specify a system's steady-state error performance (Section 7.3)

Design the gain of a closed-loop system to meet a steady-state error specification (Section
7.4)

Find the steady-state error for disturbance inputs (Section 7.5)

Find the steady-state error for nonunity-feedback systems (Section 7.6)

Find the steady-state error sensitivity to parameter changes (Section 7.7)

Find the steady-state error for systems represented in state space (Section 7.8)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case studies as
follows:

Given the antenna azimuth position control system shown in Appendix A2, you will be able
to find the preamplifier gain to meet steady-state error performance specifications.

Given a video laser disc recorder, you will be able to find the gain required to permit the
system to record on a warped disc.

7.1 Introduction



In Chapter 1, we saw that control systems analysis and design focus on three specifications: (1)
transient response, (2) stability, and (3) steady-state errors, taking into account the robustness of
the design along with economic and social considerations. Elements of transient analysis were
derived in Chapter 4 for first- and second-order systems. These concepts are revisited in Chapter
8, where they are extended to higher-order systems. Stability was covered in Chapter 6, where we
saw that forced responses were overpowered by natural responses that increase without bound if
the system is unstable. Now we are ready to examine steady-state errors. We define the errors
and derive methods of controlling them. As we progress, we find that control system design
entails tradeoffs between desired transient response, steady-state error, and the requirement that
the system be stable.

Definition and Test Inputs
Steady-state error is the difference between the input and the output for a prescribed test
input as t → ∞. Test inputs used for steady-state error analysis and design are summarized in
Table 7.1.

In order to explain how these test signals are used, let us assume a position control system, where
the output position follows the input commanded position. Step inputs represent constant
position and thus are useful in determining the ability of the control system to position itself with
respect to a stationary target, such as a satellite in geostationary orbit (see Figure 7.1). An antenna
position control is an example of a system that can be tested for accuracy using step inputs.



TABLE 7.1

Test waveforms for evaluating steady-state errors of position control systems
Waveform Name Physical interpretation Time function Laplace transform

Step Constant position 1

Ramp Constant velocity t

Parabola Constant acceleration t2

1
s

1
s2

1
2

1
s3



FIGURE 7.1 Test inputs for steady-state error analysis and design vary with target
type

Ramp inputs represent constant-velocity inputs to a position control system by their linearly
increasing amplitude. These waveforms can be used to test a system's ability to follow a linearly
increasing input or, equivalently, to track a constant-velocity target. For example, a position
control system that tracks a satellite that moves across the sky at a constant angular velocity, as
shown in Figure 7.1, would be tested with a ramp input to evaluate the steady-state error between
the satellite's angular position and that of the control system.

Finally, parabolas, whose second derivatives are constant, represent constant-acceleration inputs
to position control systems and can be used to represent accelerating targets, such as the missile
in Figure 7.1, to determine the steady-state error performance.

Application to Stable Systems
Since we are concerned with the difference between the input and the output of a feedback
control system after the steady state has been reached, our discussion is limited to stable systems,
where the natural response approaches zero as t → ∞. Unstable systems represent loss of control
in the steady state and are not acceptable for use at all. The expressions we derive to calculate the
steady-state error can be applied erroneously to an unstable system. Thus, the engineer must
check the system for stability while performing steady-state error analysis and design. However,
in order to focus on the topic, we assume that all the systems in examples and problems in this
chapter are stable. For practice, you may want to test some of the systems for stability.

Evaluating Steady-State Errors
Let us examine the concept of steady-state errors. In Figure 7.2(a), a step input and two possible
outputs are shown. Output 1 has zero steady-state error, and Output 2 has a finite steady-state
error, e2(∞). A similar example is shown in Figure 7.2(b), where a ramp input is compared with



Output 1, which has zero steady-state error, and Output 2, which has a finite steady-state error,
e2(∞). Errors are measured vertically between the Input and Output 2 after the transients have
died down. For the ramp input, another possibility exists. If the output's slope is different from
that of the input, then Output 3, shown in Figure 7.2(b), results. Here the steady-state error is
infinite as measured vertically between the Input and Output 3 after the transients have died
down, and t approaches infinity.

FIGURE 7.2 Steady-state error: a. step input; b. ramp input

Let us now look at the error from the perspective of the most general block diagram. Since the
error is the difference between the input and the output of a system, we assume a closed-loop
transfer function, T(s), and form the error, E(s), by taking the difference between the input and
the output, as shown in Figure 7.3(a). Here we are interested in the steady-state, or final, value of
e(t). For unity-feedback systems, E(s) appears as shown in Figure 7.3(b). In this chapter, we study
and derive expressions for the steady-state error for unity-feedback systems first and then expand



(7.1)

to nonunity-feedback systems. Before we begin our study of steady-state errors for unity-feedback
systems, let us look at the sources of the errors with which we deal.

FIGURE 7.3 Closed-loop control system error: a. general representation; b.
representation for unity-feedback systems

Sources of Steady-State Error
Many steady-state errors in control systems arise from nonlinear sources, such as backlash in
gears or a motor that will not move unless the input voltage exceeds a threshold. Nonlinear
behavior as a source of steady-state errors, although a viable topic for study is beyond the scope
of a text on linear control systems. The steady-state errors we study here are errors that arise
from the configuration of the system itself and the type of applied input.

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s) is the output, and
E(s) = R(s) − C(s) is the error. Consider a step input. In the steady state, if c(t) equals r(t), e(t)
will be zero. But with a pure gain, K, the error, e(t), cannot be zero if c(t) is to be finite and
nonzero. Thus, by virtue of the configuration of the system (a pure gain of K in the forward path),
an error must exist. If we call csteady-state the steady-state value of the output and esteady-state the
steady-state value of the error, then csteady-state = Kesteady-state, or

esteady−state = csteady−state

Thus, the larger the value of K, the smaller the value of esteady-state would have to be to yield a
similar value of csteady-state. The conclusion we can draw is that with a pure gain in the forward
path, there will always be a steady-state error for a step input. This error diminishes as the value
of K increases.

FIGURE 7.4 System with a. finite steady-state error for a step input; b. zero
steady-state error for step input

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b), there will be zero
error in the steady state for a step input. The reasoning is as follows: As c(t) increases, e(t) will
decrease, since e(t) = r(t) − c(t). This decrease will continue until there is zero error, but there will
still be a value for c(t) since an integrator can have a constant output without any input. For
example, a motor can be represented simply as an integrator. A voltage applied to the motor will
cause rotation. When the applied voltage is removed, the motor will stop and remain at its
present output position. Since it does not return to its initial position, we have an angular
displacement output without an input to the motor. Therefore, a system similar to Figure 7.4(b),
which uses a motor in the forward path, can have zero steady-state error for a step input.

1
K
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(7.3)
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We have examined two cases qualitatively to show how a system can be expected to exhibit
various steady-state error characteristics, depending upon the system configuration. We now
formalize the concepts and derive the relationships between the steady-state errors and the
system configuration generating these errors.

7.2 Steady-State Error for Unity-Feedback Systems
Steady-state error can be calculated from a system's closed-loop transfer function, T(s), or the
open-loop transfer function, G(s), for unity-feedback systems. We begin by deriving the system's
steady-state error in terms of the closed-loop transfer function, T(s), in order to introduce the
subject and the definitions. Next we obtain insight into the factors affecting steady-state error
using the open-loop transfer function, G(s), in unity-feedback systems for our calculations. Later
in the chapter, we generalize this discussion to nonunity-feedback systems.

Steady-State Error in Terms of T(s)
Consider Figure 7.3(a). To find E(s), the error between the input, R(s), and the output, C(s), we
write

E(s) = R(s) − C(s)

But

C(s) = R(s)T (s)

Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields

E(s) = R(s)[1 − T (s)]

Although Eq. (7.4) allows us to solve for e(t) at any time, t, we are interested in the final value of
the error, e(∞). Applying the final value theorem,1 which allows us to use the final value of e(t)
without taking the inverse Laplace transform of E(s), and then letting t approach infinity, we
obtain

e(∞) = lim
t→∞

e(t) = lim
s→0

sE(s)

Substituting Eq. (7.4) into Eq. (7.5) yields

e(∞) = lim
s→0

sR(s) [1 − T (s)]

Let us look at an example.



(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

Example 7.1 Steady-State Error in Terms of T(s)
PROBLEM:

Find the steady-state error for the system of Figure 7.3(a) if T(s) = 5/(s2 + 7s + 10) and the
input is a unit step.

SOLUTION:

From the problem statement, R(s) = 1/s and T(s) = 5/(s2 + 7s + 10). Substituting into Eq.
(7.4) yields

E(s) =

Since T(s) is stable and, subsequently, E(s) does not have right-half-plane poles or jω poles
other than at the origin, we can apply the final value theorem. Substituting Eq. (7.7) into Eq.
(7.5) gives e(∞) = 1/2.

Steady-State Error in Terms of G(s)
Many times we have the system configured as a unity-feedback system with a forward transfer
function, G(s). Although we can find the closed-loop transfer function, T(s), and then proceed as
in the previous subsection, we find more insight for analysis and design by expressing the steady-
state error in terms of G(s) rather than T(s).

Consider the feedback control system shown in Figure 7.3(b). Since the feedback, H(s), equals 1,
the system has unity feedback. The implication is that E(s) is actually the error between the input,
R(s), and the output, C(s). Thus, if we solve for E(s), we will have an expression for the error. We
will then apply the final value theorem, Item 11 in Table 2.2, to evaluate the steady-state error.

Writing E(s) from Figure 7.3(b), we obtain

E(s) = R(s) − C(s)

But

C(s) = E(s)G(s)

Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields

E(s) =

We now apply the final value theorem, Eq. (7.5). At this point in a numerical calculation, we must
check to see whether the closed-loop system is stable, using, for example, the Routh–Hurwitz
criterion. For now, though, assume that the closed-loop system is stable and substitute Eq. (7.10)
into Eq. (7.5), obtaining

e (∞) = lim
s→0

s2 + 7s + 5
s(s2 + 7s + 10)

R(s)
1 + G(s)

sR(s)

1+G(s)
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(7.13)

(7.14)

(7.15)

Equation (7.11) allows us to calculate the steady-state error, e(∞), given the input, R(s), and the
system, G(s). We now substitute several inputs for R(s) and then draw conclusions about the
relationships that exist between the open-loop system, G(s), and the nature of the steady-state
error, e(∞).

The three test signals we use to establish specifications for a control system's steady-state error
characteristics are shown in Table 7.1. Let us take each input and evaluate its effect on the steady-
state error using Eq. (7.11).

Step Input.
Using Eq. (7.11) with R(s) = 1/s, we find

e (∞) = estep (∞) = lim
s→0

=

The term

lim
s→0

G (s)

is the dc gain of the forward transfer function, since s, the frequency variable, is approaching
zero. In order to have zero steady-state error,

lim
s→0

G (s) = ∞

Hence, to satisfy Eq. (7.13), G(s) must take on the following form:

G(s) ≡

For the limit to be infinite, the denominator must be equal to zero as s goes to zero. Thus, n ≥ 1;
that is, at least one pole must be at the origin. Since division by s in the frequency domain is
integration in the time domain (see Table 2.2, Item 10), we are also saying that at least one pure
integration must be present in the forward path. The steady-state response for this case of zero
steady-state error is similar to that shown in Figure 7.2(a), Output 1.

If there are no integrations, then n = 0. Using Eq. (7.14), we have

lim
s→0

G (s) =

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), Output 2, is an example of
this case of finite steady-state error.

In summary, for a step input to a unity-feedback system, the steady-state error will be zero if
there is at least one pure integration in the forward path. If there are no integrations, then there
will be a nonzero finite error. This result is comparable to our qualitative discussion in Section
7.1, where we found that a pure gain yields a constant steady-state error for a step input, but an
integrator yields zero error for the same type of input. We now repeat the development for a ramp
input.

Ramp Input.

Using Eq. (7.11), with R(s) = 1/s2, we obtain

s ( 1/s )

1+G(s)
1

1+lim
s→0

G(s)

(s + z1)(s + z2) ⋯
sn(s + p1)(s + p2) ⋯

z1z2 ⋯
p1p2 ⋯
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(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

e (∞) = eramp (∞) = lim
s→0

= lim
s→0

=

To have zero steady-state error for a ramp input, we must have

lim
s→0

sG(s) = ∞

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except that n ≥ 2. In other words,
there must be at least two integrations in the forward path. An example of zero steady-state error
for a ramp input is shown in Figure 7.2(b), Output 1.

If only one integration exists in the forward path, then, assuming Eq. (7.14),

lim
s→0

sG(s) =

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration leads to a
constant error, as shown in Figure 7.2(b), Output 2.

If there are no integrations in the forward path, then

lim
s→0

sG(s) = 0

and the steady-state error would be infinite and lead to diverging ramps, as shown in Figure
7.2(b), Output 3. Finally, we repeat the development for a parabolic input.

Parabolic Input.

Using Eq. (7.11), with R(s) = 1/s3, we obtain

e (∞) = eparabola (∞) = lim
s→0

= lim
s→0

=

In order to have zero steady-state error for a parabolic input, we must have

lim
s→0

s2G(s) = ∞

To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that n ≥ 3. In other
words, there must be at least three integrations in the forward path.

If there are only two integrations in the forward path, then

lim
s→0

s2G(s) =

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to a constant
error.

If there is only one or less integrations in the forward path, then

s (1/s2 )

1+G(s)
1

s+sG(s)
1

lim
s→0

sG(s)

z1z2 ⋯
p1p2 ⋯

s (1/s3 )

1+G(s)
1

s2+s2G(s)
1

lim
s→0

s2G(s)

z1z2 ⋯
p1p2 ⋯
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(7.24)

(7.25)

(7.26)

lim
s→0

s2G(s) = 0

and the steady-state error is infinite. Two examples demonstrate these concepts.

Example 7.2 Steady-State Errors for Systems with No Integrations
PROBLEM:

Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t2u(t) to the system shown in
Figure 7.5. Thefunction u(t) is the unit step.

FIGURE 7.5 Feedback control system for Example 7.2

SOLUTION:
First we verify that the closed-loop system is indeed stable. For this example, we leave out
the details. Next, for the input 5u(t), whose Laplace transform is 5/s, the steady-state error
will be five times as large as that given by Eq. (7.12), or

e

⎛
⎜ ⎜ ⎜
⎝

∞

⎞
⎟ ⎟ ⎟
⎠

= estep (∞) = = =

which implies a response similar to Output 2 of Figure 7.2(a).

For the input 5tu(t), whose Laplace transform is 5/s2, the steady-state error will be five
times as large as that given by Eq. (7.16), or

e (∞) = eramp (∞) = = = ∞

which implies a response similar to Output 3 of Figure 7.2(b).

For the input 5t2u(t), whose Laplace transform is 10/s3, the steady-state error will be 10
times as large as that given by Eq. (7.20), or

e (∞) = eparabola (∞) = = = ∞

5

1 + lim
s→0

G(s)

5
1 + 20

5
21

5

lim
s→0

sG(s)

5
0

10

lim
s→0

s2G(s)

10
0
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Example 7.3 Steady-State Errors for Systems with One Integration
PROBLEM:

Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t2u(t) to the system shown in
Figure 7.6. The function u(t) is the unit step.

FIGURE 7.6 Feedback control system for Example 7.3

SOLUTION:
First verify that the closed-loop system is indeed stable. For this example, we leave out the
details. Next note that since there is an integration in the forward path, the steady-state
errors for some of the input waveforms will be less than those found in Example 7.2. For the
input 5u(t), whose Laplace transform is 5/s, the steady-state error will be five times as large
as that given by Eq. (7.12), or

e (∞) = estep (∞) = = = 0

which implies a response similar to Output 1 of Figure 7.2(a). Notice that the integration in
the forward path yields zero error for a step input, rather than the finite error found in
Example 7.2.

For the input 5tu(t), whose Laplace transform is 5/s2, the steady-state error will be five
times as large as that given by Eq. (7.16), or

e (∞) = eramp (∞) = = =

which implies a response similar to Output 2 of Figure 7.2(b). Notice that the integration in
the forward path yields a finite error for a ramp input, rather than the infinite error found in
Example 7.2.

For the input, 5t2u(t), whose Laplace transform is 10/s3, the steady-state error will be 10
times as large as that given by Eq. (7.20), or

e (∞) = eparabola (∞) = = = ∞

Notice that the integration in the forward path does not yield any improvement in steady-
state error over that found in Example 7.2 for a parabolic input.

5

1 + lim
s→0

G(s)

5
∞

5

lim
s→0

sG(s)

5
100

1
20

10

lim
s→0

s2G(s)

10
0
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Skill-Assessment Exercise 7.1
PROBLEM:
A unity-feedback system has the following forward transfer function:

G(s) =

a. Find the steady-state error for the following inputs: 15u(t), 15tu(t), and 15t2u(t).

b. Repeat for

G(s) =

ANSWERS:

a. The closed-loop system is stable. For 15u(t), estep(∞) = 0; for 15tu(t), eramp(∞) = 2.1875;
for 15(t2)u(t), eparabola(∞) = ∞.

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

7.3 Static Error Constants and System Type
We continue our focus on unity negative feedback systems and define parameters that we can use
as steady-state error performance specifications. These definitions parallel our defining damping
ratio, natural frequency, settling time, percent overshoot, and so on as performance specifications
for the transient response. The steady-state error performance specifications are called static
error constants. Let us see how they are defined, how to calculate them, and, in the next
section, how to use them for design.

Static Error Constants
In the previous section, we derived the following relationships for steady-state error. For a step
input, u(t),

e (∞) = estep (∞) =

For a ramp input, tu(t),

e (∞) = eramp (∞) =

For a parabolic input, t2u (t).

10(s + 20)(s + 30)
s(s + 25)(s + 35)

10(s + 20)(s + 30)

s2(s + 25)(s + 35)(s + 50)

1

1+lim
s→0

G(s)

1

lim
s→0

sG(s)

1
2

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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(7.33)

(7.34)

(7.35)

e (∞) = eparabola (∞) =

The three terms in the denominator that are taken to the limit determine the steady-state error.
We call these limits static error constants. Individually, their names are

position constant, Kp, where

Kp = lim
s→0

G(s)

velocity constant, Kv, where

Kv = lim
s→0

sG(s)

acceleration constant, Ka, where

Ka = lim
s→0

s2G(s)

As we have seen, these quantities, depending upon the form of G(s), can assume values of zero,
finite constant, or infinity. Since the static error constant appears in the denominator of the
steady-state error. Equations (7.30) through (7.32), the value of the steady-state error decreases
as the static error constant increases.

In Section 7.2, we evaluated the steady-state error using the final value theorem. An alternate
method makes use of the static error constants. A few examples follow:

1

lim
s→0

s2G(s)
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(7.37)

(7.38)

(7.39)

Example 7.4 Steady-State Error via Static Error Constants
PROBLEM:
For each system of Figure 7.7, evaluate the static error constants and find the expected error
for the standard step, ramp, and parabolic inputs.

FIGURE 7.7 Feedback control systems for Example 7.4

SOLUTION:
First verify that all closed-loop systems shown are indeed stable. For this example, we leave
out the details. Next, for Figure 7.7(a),

Kp = lim
s→0

G(s) = = 5.208

Kv = lim
s→0

sG(s) = 0

Ka = lim
s→0

s2G(s) = 0

Thus, for a step input,

e (∞) = = 0.161

For a ramp input,

500 × 2 × 5
8 × 10 × 12

1
1 + Kp
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(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

e (∞) = = ∞

For a parabolic input,

e (∞) = = ∞

Now, for Figure 7.7(b),

Kp = lim
s→0

G(s) = ∞

Kv = lim
s→0

sG(s) = = 31.25

and

Ka = lim
s→0

s2G(s) = 0

Thus, for a step input,

e (∞) = = 0

For a ramp input,

e (∞) = = = 0.032

For a parabolic input,

e (∞) = = ∞

Finally, for Figure 7.7(c),

Kp = lim
s→0

G(s) = ∞

Kv = lim
s→0

sG(s) = ∞

and

Ka = lim
s→0

s2G(s) = = 875

Thus, for a step input,

1
Kv

1
Ka

500 × 2 × 5 × 6
8 × 10 × 12

1
1 + Kp

1
Kv

1
31.25

1
Ka

500 × 2 × 4 × 5 × 6 × 7
8 × 10 × 12
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e (∞) = = 0

For a ramp input,

e (∞) = = 0

For a parabolic input,

e (∞) = = = 1.14 × 10−3

 Students who are using MATLAB should now run ch7apB1 in Appendix B. You 

will learn how to test the system for stability, evaluate static error 
constants, and calculate steady-state error using MATLAB. This exercise applies 
MATLAB to solve Example 7.4 with System (b).

System Type
Let us continue to focus on a unity negative feedback system. The values of the static error
constants, again, depend upon the form of G(s), especially the number of pure integrations in the
forward path. Since steady-state errors are dependent upon the number of integrations in the
forward path, we give a name to this system attribute. Given the system in Figure 7.8, we define
system type to be the value of n in the denominator or, equivalently, the number of pure
integrations in the forward path. Therefore, a system with n = 0 is a Type 0 system. If n = 1 or n =
2, the corresponding system is a Type 1 or Type 2 system, respectively.

FIGURE 7.8 Feedback control system for defining system type

Table 7.2 ties together the concepts of steady-state error, static error constants, and system type.
The table shows the static error constants and the steady-state errors as functions of input
waveform and system type.

1
1 + Kp

1
Kv

1
Ka

1
875

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_7.zip


TABLE 7.2

Relationships between input, system type, static error constants, and steady-state
errors

Type 0 Type 1 Type 2
Input Steady-state

error formula
Static error

constant
Error Static error

constant
Error Static

error
constant

Error

Step, u(t) Kp = Constant Kp = ∞ 0 Kp = ∞ 0

Ramp,
tu(t)

Kv = 0 ∞ Kv =
Constant

Kv = ∞ 0

Parabola, 
t2u(t)

Ka = 0 ∞ Ka = 0 ∞ Ka =
Constant

1
1+Kp

1
1+Kp

1
Kv

1
Kv

1
2

1
Ka

1
Ka



Skill-Assessment Exercise 7.2
PROBLEM:
A unity-feedback system has the following forward transfer function:

G(s) =

a. Evaluate system type, Kp, Kv, and Ka.

b. Use your answers to a. to find the steady-state errors for the standard step, ramp, and
parabolic inputs.

ANSWERS:

a. The closed-loop system is stable. System type = Type 0. Kp = 127, Kv = 0, and Ka = 0.

b. estep(∞) = 7.8 × 10−3, eramp(∞) = ∞, and eparabola(∞) = ∞

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 7.1
Use MATLAB, the Control System Toolbox, and the following statements to find Kp,
estep(∞), and the closed-loop poles to check for stability for the system of Skill-
Assessment Exercise 7.2.

numg=1000*[1 8];
deng=poly([−7 −9]);
G=tf(numg,deng);
Kp=dcgain(G)
estep=1/(1+Kp)
T=feedback(G,1);
poles=pole(T)

In this section, we defined steady-state errors, static error constants, and system type. Now the
specifications for a control system's steady-state errors will be formulated, followed by some
examples.

7.4 Steady-State Error Specifications
Static error constants can be used to specify the steady-state error characteristics of control
systems, such as that shown in Figure 7.9. Just as damping ratio, ζ, settling time, Ts, peak time,
Tp, and percent overshoot, %OS, are used as specifications for a control system's transient
response, so the position constant, Kp, velocity constant, Kv, and acceleration constant, Ka, can be
used as specifications for a control system's steady-state errors. We will soon see that a wealth of
information is contained within the specification of a static error constant.

1000(s + 8)
(s + 7)(s + 9)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_7.zip


FIGURE 7.9 A robot used in automated soldering. Steady-state error is an
important design consideration for assembly-line robots

For example, if a control system has the specification Kv = 1000, we can draw several
conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems have Kv's that are finite constants. Recall
that Kv = 0 for Type 0 systems, whereas Kv = ∞ for Type 2 systems.

3. A ramp input is the test signal. Since Kv is specified as a finite constant, and the steady-state
error for a ramp input is inversely proportional to Kv, we know the test input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1/Kv per unit of input
slope.

Let us look at two examples that demonstrate analysis and design using static error constants.



(7.54)

Example 7.5 Interpreting the Steady-State Error Specification
PROBLEM:
What information is contained in the specification Kp = 1000?

SOLUTION:
The system is stable. The system is Type 0, since only a Type 0 system has a finite Kp. Type 1
and Type 2 systems have Kp = ∞. The input test signal is a step, since Kp is specified. Finally,
the error per unit step is

e (∞) = = =
1

1 + Kp

1
1 + 1000

1
1001
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Example 7.6 Gain Design to Meet a Steady-State Error
Specification
PROBLEM:
Given the control system in Figure 7.10, find the value of K so that there is 10% error in the
steady state.

FIGURE 7.10 Feedback control system for Example 7.6

SOLUTION:
Since the system is Type 1, the error stated in the problem must apply to a ramp input; only a
ramp yields a finite error in a Type 1 system. Thus,

e (∞) = = 0.1

Therefore,

Kv = 10 = lim
s→0

sG(s) =

which yields

K = 672

Applying the Routh–Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it may not yield a
desirable transient response. In Chapter 9, we will design feedback control systems to meet
all three specifications.

 Students who are using MATLAB should now run ch7apB2 in Appendix B. You 

will learn how to find the gain to meet a steady-state error specification using 
MATLAB. This exercise solves Example 7.6 using MATLAB.

1
Kv

K × 5
6 × 7 × 8

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_7.zip


Skill-Assessment Exercise 7.3
PROBLEM:
A unity-feedback system has the following forward transfer function:

G(s) =

Find the value of K to yield a 10% error in the steady state.

ANSWER:

K = 189

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 7.2
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 7.3 and check the resulting system for stability.

numg=[1  12];
deng=poly([−14 −18]);
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(1/estep-1)/Kpdk
T=feedback(G,1);
poles=pole(T)

This example and exercise complete our discussion of unity-feedback systems. In the remaining
sections, we will deal with the steady-state errors for disturbances and the steady-state errors for
feedback control systems in which the feedback is not unity.

7.5 Steady-State Error for Disturbances
Feedback control systems are used to compensate for disturbances or unwanted inputs that enter
a system. The advantage of using feedback is that regardless of these disturbances, the system can
be designed to follow the input with small or zero error, as we now demonstrate. Figure 7.11
shows a feedback control system with a disturbance, D(s), injected between the controller and the
plant. We now rederive the expression for steady-state error with the disturbance included.

K(s + 12)
(s + 14)(s + 18)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_7.zip
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(7.59)

(7.60)

(7.61)

FIGURE 7.11 Feedback control system showing disturbance

The transform of the output is given by

C(s) = E(s)G1(s)G2(s) + D(s)G2(s)

But

C(s) = R(s) − E(s)

Substituting Eq. (7.59) into Eq. (7.58) and solving for E(s), we obtain

E(s) = R(s) − D(s)

where we can think of 1/[1 + G1(s)G2(s)] as a transfer function relating E(s) to R(s) and −G2(s)/[1
+ G1(s)G2(s)] as a transfer function relating E(s) to D(s).

To find the steady-state value of the error, we apply the final value theorem3 to Eq. (7.60) and
obtain

e (∞) = lim
s→0

sE (s) = lim
s→0

R (s) − lim
s→0

D (s)

= eR (∞) + eD (∞)

where

eR (∞) = lim
s→0

R(s)

and

eD(∞) = −lim
s→0

D(s)

The first term, eR(∞), is the steady-state error due to R(s), which we have already obtained. The
second term, eD(∞), is the steady-state error due to the disturbance. Let us explore the conditions
on eD(∞) that must exist to reduce the error due to the disturbance.

At this point, we must make some assumptions about D(s), the controller, and the plant. First we
assume a step disturbance, D(s) = 1/s. Substituting this value into the second term of Eq. (7.61),
eD(∞), the steady-state error component due to a step disturbance is found to be

1
1 + G1(s)G2(s)

G2(s)

1 + G1(s)G2(s)

s

1+G1(s)G2(s)

sG2(s)

1+G1(s)G2(s)

s

1+G1(s)G2(s)

sG2(s)

1+G1(s)G2(s)



(7.62)
eD(∞) = −

This equation shows that the steady-state error produced by a step disturbance can be reduced by
increasing the dc gain of G1(s) or decreasing the dc gain of G2(s).

This concept is shown in Figure 7.12, where the system of Figure 7.11 has been rearranged so that
the disturbance, D(s), is depicted as the input and the error, E(s), as the output, with R(s) set
equal to zero. If we want to minimize the steady-state value of E(s), shown as the output in Figure
7.12, we must either increase the dc gain of G1(s) so that a lower value of E(s) will be fed back to
match the steady-state value of D(s), or decrease the dc value of G2(s), which then yields a smaller
value of e(∞) as predicted by the feedback formula.

FIGURE 7.12 Figure 7.11 system rearranged to show disturbance as input and
error as output, with R(s) = 0

Let us look at an example and calculate the numerical value of the steady-state error that results
from a disturbance.

1
lim
s→0

+lim
s→0

G1(s)1
G2(s)



(7.63)

Example 7.7 Steady-State Error Due to Step Disturbance
PROBLEM:
Find the steady-state error component due to a step disturbance for the system of Figure
7.13.

FIGURE 7.13 Feedback control system for Example 7.7

SOLUTION:
The system is stable. Using Figure 7.12 and Eq. (7.62), we find

eD (∞) = − = − = −

The result shows that the steady-state error produced by the step disturbance is inversely
proportional to the dc gain of G1(s). The dc gain of G2(s) is infinite in this example.

Virtual Experiment 7.1 Steady-State Error with Disturbance
Put theory into practice finding the steady-state error of the Quanser Rotary Servo when
subject to an input or a disturbance by simulating it in LabVIEW. This analysis becomes
important when developing controllers for bottle labeling machines or robot joint
control.

Run Experiment 7.1

1

lim
s→0

+ lim
s→0

G1(s)1
G2(s)

1
0 + 1000

1
1000

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp08.zip


Skill-Assessment Exercise 7.4
PROBLEM:
Evaluate the steady-state error component due to a step disturbance for the system of Figure
7.14.

FIGURE 7.14 System for Skill-Assessment Exercise 7.4

ANSWER:

eD(∞) = − 9.98 × 10−4

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

7.6 Steady-State Error for Nonunity-Feedback Systems
Control systems often do not have unity feedback because of the compensation used to improve
performance or because of the physical model for the system. The feedback path can be a pure
gain other than unity or have some dynamic representation.

A general feedback system, showing the input transducer, G1(s), controller and plant, G2(s), and
feedback, H1(s), is shown in Figure 7.15(a). Pushing the input transducer to the right past the
summing junction yields the general nonunity-feedback system shown in Figure 7.15(b), where
G(s) = G1(s)G2(s) and H(s) = H1(s)/G1(s). Notice that unlike a unity-feedback system, where H(s)
= 1, the error is not the difference between the input and the output. For this case, we call the
signal at the output of the summing junction the actuating signal, Ea(s). If r(t) and c(t) have
the same units, we can find the steady-state error, e(∞) = r(∞) − c(∞). The first step is to show
explicitly E(s) = R(s) − C(s) on the block diagram.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 7.15 Forming an equivalent unity-feedback system from a general
nonunity-feedback system

Take the nonunity-feedback control system shown in Figure 7.15(b) and form a unity-feedback
system by adding and subtracting unity-feedback paths, as shown in Figure 7.15(c). This step
requires that input and output units be the same. Next combine H(s) with the negative unity
feedback, as shown in Figure 7.15(d). Finally, combine the feedback system consisting of G(s) and
[H(s) − 1], leaving an equivalent forward path and a unity feedback, as shown in Figure 7.15(e).
Notice that the final figure shows E(s) = R(s) − C(s) explicitly.

The following example summarizes the concepts of steady-state error, system type, and static
error constants for nonunity-feedback systems.



(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

Example 7.8 Steady-State Error for Nonunity-Feedback Systems
PROBLEM:
For the system shown in Figure 7.16, find the system type, the appropriate error constant
associated with the system type, and the steady-state error for a unit step input. Assume
input and output units are the same.

FIGURE 7.16 Nonunity-feedback control system for Example 7.8

SOLUTION:
After determining that the system is indeed stable, one may impulsively declare the system
to be Type 1. This may not be the case, since there is a nonunity-feedback element, and the
plant's actuating signal is not the difference between the input and the output. The first step
in solving the problem is to convert the system of Figure 7.16 into an equivalent unity-
feedback system. Using the equivalent forward transfer function of Figure 7.15(e) along with

G(s) =

and

H(s) =

we find

Ge(s) = =

Thus, the system is Type 0, since there are no pure integrations in Eq. (7.66). The
appropriate static error constant is then Kp, whose value is

Kp = lim
s→0

Ge(s) = = −

The steady-state error, e(∞), is

e(∞) = = = −4

The negative value for steady-state error implies that the output step is larger than the input
step.

100
s(s + 10)

1
(s + 5)

G(s)
1 + G(s)H(s) − G(s)

100(s + 5)

s3 + 15s2 − 50s − 400

100 × 5
−400

5
4

1
1 + Kp

1
1 − (5/4)



(7.69)

(7.70)

(7.71)

TryIt 7.3
Use MATLAB, the Control System Toolbox, and the following statements to find Ge(s)
in Example 7.8.

G=zpk([],[0  −10],100);
H=zpk([], −5,1);
Ge=feedback...(G,(H-1));
'Ge(s)'
Ge=tf(Ge)T=feedback (Ge,1);
'Poles of T(s)'
pole(T)

To continue our discussion of steady-state error for systems with nonunity feedback, let us look at
the general system of Figure 7.17, which has both a disturbance and nonunity feedback. We will
derive a general equation for the steady-state error and then determine the parameters of the
system in order to drive the error to zero for step inputs and step disturbances.4

FIGURE 7.17 Nonunity-feedback control system with disturbance

The steady-state error for this system, e(∞) = r(∞) − c(∞), is

e (∞) = lim
s→0

sE(s) = lim
s→0

s[1 − ]R(s) −[ D(s)]

Now limiting the discussion to step inputs and step disturbances, where R(s) = D(s) = 1/s, Eq.
(7.69) becomes

e

⎛
⎜ ⎜ ⎜
⎝

∞

⎞
⎟ ⎟ ⎟
⎠

= lim
s→0

sE

⎛
⎜ ⎜ ⎜
⎝
s

⎞
⎟ ⎟ ⎟
⎠

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 −

⎤
⎥ ⎥ ⎥ ⎥
⎦

−

⎡
⎢ ⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥ ⎥
⎦

For zero error,

= 1 and = 0

G1(s)G2(s)
1 + G1(s)G2(s)H(s)

G2(s)
1 + G1(s)G2(s)H(s)

lim
s→0

[G1(s)G2(s)]

lim
s→0

[1 + G1(s)G2(s)H(s)]

lim
s→0

G2(s)

lim
s→0

[1 + G1(s)G2(s)H(s)]

lim
s→0

[G1(s)G2(s)]

lim
s→0

[1 + G1(s)G2(s)H(s)]

lim
s→0

G2(s)

lim
s→0

[1 + G1(s)G2(s)H(s)]

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_7.zip


(7.72)

(7.73)

(7.74)

The two equations in Eq. (7.71) can always be satisfied if (1) the system is stable, (2) G1(s) is a
Type 1 system, (3) G2(s) is a Type 0 system, and (4) H(s) is a Type 0 system with a dc gain of
unity.

To conclude this section, we discuss finding the steady-state value of the actuating signal, Ea1(s),
in Figure 7.15(a). For this task, there is no restriction that the input and output units be the same,
since we are finding the steady-state difference between signals at the summing junction, which
do have the same units.5 The steady-state actuating signal for Figure 7.15(a) is

ea1(∞) = lim
s→0

The derivation is left to the student in the problem set in this chapter.

Example 7.9 Steady-State Actuating Signal for Nonunity-Feedback
Systems
PROBLEM:
Find the steady-state actuating signal for the system of Figure 7.16 for a unit step input.
Repeat for a unit ramp input.

SOLUTION:
Use Eq. (7.72) with R(s) = 1/s, a unit step input, G1(s) = 1, G2(s) = 100/[s (s + 10)], and H1(s)
= 1/(s + 5). Also, realize that ea1(∞) = ea(∞), since G1(s) = 1. Thus,

ea(∞)= lim
s→0

= 0

Now use Eq. (7.72) with R(s) = 1/s2, a unit ramp input, and obtain

ea (∞) = lim
s→0

=

sR(s)G1(s)
1 + G2(s)H1(s)

s( )1
s

1 +( )( )100
s(s+10)

1
(s+5)

s( )1
s2

1 +( )( )100
s(s+10)

1
(s+5)

1
2



Skill-Assessment Exercise 7.5
PROBLEM:

a. Find the steady-state error, e(∞) = r(∞) − c(∞), for a unit step input given the nonunity-
feedback system of Figure 7.18. Repeat for a unit ramp input. Assume input and output
units are the same.

b. Find the steady-state actuating signal, ea(∞), for a unit step input given the nonunity-
feedback system of Figure 7.18. Repeat for a unit ramp input.

FIGURE 7.18 Nonunity-feedback system for Skill-Assessment Exercise 7.5

ANSWERS:

a. estep(∞) = 3.846 × 10−2; eramp(∞) = ∞

b. For a unit step input, ea(∞) = 3.846 × 10−2; for a unit ramp input, ea(∞) = ∞

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we have applied steady-state error analysis to nonunity-feedback systems. When
nonunity feedback is present, the plant's actuating signal is not the actual error or difference
between the input and the output. With nonunity feedback we may choose to (1) find the steady-
state error for systems where the input and output units are the same or (2) find the steady-state
actuating signal.

We also derived a general expression for the steady-state error of a nonunity-feedback system
with a disturbance. We used this equation to determine the attributes of the subsystems so that
there was zero error for step inputs and step disturbances.

Before concluding this chapter, we will discuss a topic that is not only significant for steady-state
errors but are also generally useful throughout the control systems design process.

7.7 Sensitivity
During the design process, the engineer may want to consider the extent to which changes in
system parameters affect the behavior of a system. Ideally, parameter changes due to heat or
other causes should not appreciably affect a system's performance. The degree to which changes
in system parameters affect system transfer functions, and hence performance, is called
sensitivity. A system with zero sensitivity (i.e., changes in the system parameters have no effect
on the transfer function) is ideal. The greater the sensitivity, the less desirable the effect of a
parameter change.

For example, assume the function F = K/(K + a). If K = 10 and a = 100, then F = 0.091. If
parameter a triples to 300, then F = 0.032. We see that a fractional change in parameter a of
(300 − 100)/100 = 2 (a 200% change) yields a change in the function F of (0.032 − 0.091)/0.091

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(7.75)

(7.76)

(7.77)

= − 0.65 (− 65 % change). Thus, the function F has reduced sensitivity to changes in parameter a.
As we proceed, we will see that another advantage of feedback is that in general it affords reduced
sensitivity to parameter changes.

Based upon the previous discussion, let us formalize a definition of sensitivity: Sensitivity is the
ratio of the fractional change in the function to the fractional change in the parameter as the
fractional change of the parameter approaches zero. That is,

SF :P = lim
ΔP→0

= lim
ΔP→0

= lim
ΔP→0

which reduces to

SF :P =

Let us now apply the definition, first to a closed-loop transfer function and then to the steady-
state error.

Example 7.10 Sensitivity of a Closed-Loop Transfer Function
PROBLEM:
Given the system of Figure 7.19, calculate the sensitivity of the closed-loop transfer function
to changes in the parameter a. How would you reduce the sensitivity?

FIGURE 7.19 Feedback control system for Examples 7.10 and 7.11

SOLUTION:
The closed-loop transfer function is

T(s) =

Using Eq. (7.75), the sensitivity is given by

ST :a = = ( )=

which is, in part, a function of the value of s. For any value of s, however, an increase in K
reduces the sensitivity of the closed-loop transfer function to changes in the parameter a.

Fractional change in the function, F
Fractional change in the parameter, P

ΔF/F

ΔP/P

PΔF
FΔP

P
F

δF

δP

K

s2 + as + K

a

T

δT

δa

a

( )K

s2+as+K

−Ks

(s2 + as + K)2

−as

s2 + as + K



(7.78)

(7.79)

(7.80)

Example 7.11 Sensitivity of Steady-State Error with Ramp Input
PROBLEM:
For the system of Figure 7.19, find the sensitivity of the steady-state error to changes in
parameter K and parameter a with ramp inputs.

SOLUTION:
The steady-state error for the system is

e (∞) = =

The sensitivity of e(∞) to changes in parameter a is

Se:a = = [ ]= 1

The sensitivity of e(∞) to changes in parameter K is

Se:K = = [ ]= −1

Thus, changes in either parameter a or parameter K are directly reflected in e(∞), and there
is no reduction or increase in sensitivity. The negative sign in Eq. (7.80) indicates a decrease
in e(∞) for an increase in K. Both of these results could have been obtained directly from Eq.
(7.78) since e(∞) is directly proportional to parameter a and inversely proportional to
parameter K.

1
Kv

a

K

a

e

δe

δa

a

a/K
1
K

K

e

δe

δK

K

a/K
−a

K2



(7.81)

(7.82)

(7.83)

Example 7.12 Sensitivity of Steady-State Error with Step Input
PROBLEM:
Find the sensitivity of the steady-state error to changes in parameter K and parameter a for
the system shown in Figure 7.20 with a step input.

FIGURE 7.20 Feedback control system for Example 7.12

SOLUTION:
The steady-state error for this Type 0 system is

e (∞) = = =

The sensitivity of e(∞) to changes in parameter a is

Se:a = = =

The sensitivity of e(∞) to changes in parameter K is

Se:K = = =

Equations (7.82) and (7.83) show that the sensitivity to changes in parameter K and
parameter a is less than unity for positive a and b. Thus, feedback in this case yields reduced
sensitivity to variations in both parameters.

TryIt 7.4
Use MATLAB, the Symbolic Math Toolbox, and the following statements to find Se:a in
Example 7.12.

syms K a b s
G=K/((s+a)*(s+b));
Kp=subs(G,s,0);
e=1/(1+Kp);
Sea=(a/e)*diff(e,a);
Sea=simplify(Sea);
'Sea'
pretty(Sea)

1
1 + Kp

1

1 + K
ab

ab

ab + K

a

e

δe

δa

a

( )ab

ab+K

(a, b, +,K)b − ab2

(a, b, +,K)2

K

ab + K

K

e

δe

δK

K

( )ab

ab+K

−ab

(ab + K)2

−K

ab + K

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_7.zip


(7.84b)

(7.85)

(7.86)

(7.84a)

Skill-Assessment Exercise 7.6
PROBLEM:
Find the sensitivity of the steady-state error to changes in K for the system of Figure 7.21.

FIGURE 7.21 System for Skill-Assessment Exercise 7.6

ANSWER:

Se:k =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we defined sensitivity and showed that in some cases feedback reduces the
sensitivity of a system's steady-state error to changes in system parameters. The concept of
sensitivity can be applied to other measures of control system performance, as well; it is not
limited to the sensitivity of the steady-state error performance.

7.8 Steady-State Error for Systems in State Space
Up to this point, we have evaluated the steady-state error for systems modeled as transfer
functions. In this section, we will discuss how to evaluate the steady-state error for systems
represented in state space. Two methods for calculating the steady-state error will be covered: (1)
analysis via final value theorem and (2) analysis via input substitution. We will consider these
methods individually.

Analysis via Final Value Theorem
A single-input, single-output system represented in state space can be analyzed for steady-state
error using the final value theorem and the closed-loop transfer function, Eq. (3.73), derived in
terms of the state-space representation. Consider the closed-loop system represented in state
space:

⋅
x = Ax + Br

y = Cx

The Laplace transform of the error is

E(s) = R(s) − Y (s)

But

Y (s) = R(s)T (s)

where T(s) is the closed-loop transfer function. Substituting Eq. (7.86) into (7.85), we obtain

−7K
10+7K

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(7.87)

(7.88)

(7.89)

E(s) = R(s)[1 − T (s)]

Using Eq. (3.73) for T(s), we find

E(s) = R(s)[1 − C(sI − A)−1
B]

Applying the final value theorem, we have

lim
s→0

sE(s) = lim
s→0

sR(s) [1 − C(sI − A)−1
B]

Let us apply the result to an example.



(7.90)

(7.91)

Example 7.13 Steady-State Error Using the Final Value Theorem
PROBLEM:
Evaluate the steady-state error for the system described by Eqs. (7.90) for unit step and unit
ramp inputs. Use the final value theorem.

A =
⎡
⎢
⎣

−5 1 0
0 −2 1

20 −10 1

⎤
⎥
⎦

; B =
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦

; C = [ −1 1 0 ]

SOLUTION:
Substituting Eqs. (7.90) into (7.89), we obtain

e (∞) = lim
s→0

sR(s)(1 − )

= lim
s→0

sR(s)( )

For a unit step, R(s) = 1/s, and e(∞) = 4/5. For a unit ramp, R(s) = 1/s2, and e(∞) = ∞. Notice
that the system behaves like a Type 0 system.

TryIt 7.5
Use MATLAB, the Symbolic Math Toolbox, and the following statements to find the
steady-state error for a step input to the system of Example 7.13.

syms s
A=[−5  1  0
     0  −2  1
    20 −10 1];
B=[0; 0; 1];
C=[−110];
I=[1  0  0
   0  1  0
   0  0  1];
E=(1/s)*[1−C*...
 [(s*I-A)^-1]*B];
%New command:
%subs(X,old,new):
%Replace old in...
%X(old) with new.
error=subs(s*E,s,0)

Analysis via Input Substitution
Another method for steady-state analysis avoids taking the inverse of (sI − A) and can be
expanded to multiple-input, multiple-output systems; it substitutes the input along with an
assumed solution into the state equations (Hostetter, 1989). We will derive the results for unit
step and unit ramp inputs.

s+4
s3+6s2+13s+20

s3+6s2+12s+16
s3+6s2+13s+20

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_7.zip


(7.92)

(7.94b)

(7.95)

(7.96)

(7.93)

(7.94a)

(7.97)

(7.98)

Step Inputs.
Given the state Eqs. (7.84), if the input is a unit step where r = 1, a steady-state solution, xss, for
x, is

xss =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

V1

V2

⋮
Vn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= V

where Vi is constant. Also,

⋅
xss = 0

Substituting r = 1, a unit step, along with Eqs. (7.92) and (7.93), into Eqs. (7.84) yields

0 = AV + B

yss = CV

where yss is the steady-state output. Solving for V yields

V = −A
−1

B

But the steady-state error is the difference between the steady-state input and the steady-state
output. The final result for the steady-state error for a unit step input into a system represented in
state space is

e(∞) = 1 − yss = 1 − CV = 1 + CA
−1

B

Ramp Inputs.
For unit ramp inputs, r = t, a steady-state solution for x is

xss =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

V1t + W1

V2t + W2

⋮
Vnt + Wn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= Vt + W

where Vi and Wi are constants. Hence,

⋅
xss =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

V1

V2

⋮
Vn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

= V

Substituting r = t along with Eqs. (7.97) and (7.98) into Eqs. (7.84) yields



(7.99a)

(7.99b)

(7.100)

(7.101)

(7.102)

(7.103)

(7.104)

(7.105)

(7.106)

V = A(Vt + W) + Bt

yss = C(Vt + W)

In order to balance Eq. (7.99a), we equate the matrix coefficients of t, AV = − B, or

V = −A
−1

B

Equating constant terms in Eq. (7.99a), we have AW = V, or

W = A
−1

V

Substituting Eqs. (7.100) and (7.101) into ((7.99b)) yields

yss = C [−A
−1

Bt + A
−1 (−A

−1
B)] = −C [A

−1
Bt + (A

−1)
2
B]

The steady-state error is therefore

e (∞) = lim
t→∞

(t − yss) = lim
t→∞

[(1 + CA
−1

B)t + C(A
−1)

2
B]

Notice that in order to use this method, A−1 must exist. That is, det A ≠ 0.

We now demonstrate the use of Eqs. (7.96) and (7.103) to find the steady-state error for step and
ramp inputs.

Example 7.14 Steady-State Error Using Input Substitution
PROBLEM:
Evaluate the steady-state error for the system described by the three equations in Eq. (7.90)
for unit step and unit ramp inputs. Use input substitution.

SOLUTION:
For a unit step input, the steady-state error given by Eq. (7.96) is

e(∞) = 1 + CA
−1

B = 1 − 0.2 = 0.8

where C, A, and B are as follows:

A =
⎡
⎢
⎣

−5 1 0
0 −2 1

20 −10 1

⎤
⎥
⎦

; B =
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦

; C = [ −1 1 0 ]

For a ramp input, using Eq. (7.103), we have

e (∞) = [ lim
t→∞

[(1 + CA
−1

B)] t + C(A
−1)

2
B] = lim

t→∞
(0.8t + 0.08) = ∞



Skill-Assessment Exercise 7.7
PROBLEM:
Find the steady-state error for a step input given the system represented in state space
below. Calculate the steady-state error using both the final value theorem and input
substitution methods.

A =[ 0 1
−3 −6

]; B =[ 0
1
]; C = [ 1 1 ]

ANSWER:

estep (∞) =

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this chapter, we covered the evaluation of steady-state error for systems represented by
transfer functions as well as systems represented in state space. For systems represented in state
space, two methods were presented: (1) final value theorem and (2) input substitution.

2
3

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(7.107)

(7.108)

(7.109)

Case Studies

Antenna Control: Steady-State Error Design via Gain
 This chapter showed how to find steady-state errors for step, ramp, and parabolic

inputs to a closed-loop feedback control system. We also learned how to evaluate the gain to
meet a steady-state error requirement. This ongoing case study uses our antenna azimuth
position control system to summarize the concepts.

PROBLEM:
For the antenna azimuth position control system shown in Appendix A2, Configuration 1,

a. Find the steady-state error in terms of gain, K, for step, ramp, and parabolic inputs.

b. Find the value of gain, K, to yield a 10% error in the steady state.

SOLUTION:

a. The simplified block diagram for the system is shown in Appendix A2. The steady-state
error is given by

e (∞) = lim
s→0

sE (s) = lim
s→0

From the block diagram, after pushing the potentiometer to the right past the summing
junction, the equivalent forward transfer function is

G (s) =

To find the steady-state error for a step input, use R(s) = 1/s along with Eq. (7.108),
and substitute these in Eq. (7.107). The result is e(∞) = 0.

To find the steady-state error for a ramp input, use R(s) − 1/s2 along with Eq. (7.108),
and substitute these in Eq. (7.107). The result is e(∞) = 25.79/K.

To find the steady-state error for a parabolic input, use R(s) = 1/s3 along with Eq.
(7.108), and substitute these in Eq. (7.107). The result is e(∞) = ∞.

b. Since the system is Type 1, a 10% error in the steady state must refer to a ramp input.
This is the only input that yields a finite, nonzero error. Hence, for a unit ramp input,

e (∞) = 0.1 = = =

from which K = 257.9. You should verify that the value of K is within the range of gains
that ensures system stability. In the antenna control case study in the last chapter, the
range of gain for stability was found to be 0 < K < 2623.29. Hence, the system is stable
for a gain of 257.9.

CHALLENGE

sR (s)
1 + G (s)

6.63K
s (s + 1.71) (s + 100)

1
Kv

(1.71) (100)
6.63K

25.79
K



You are now given a problem to test your knowledge of this chapter's objectives: Referring to
the antenna azimuth position control system shown in Appendix A2, Configuration 2, do the
following:

a. Find the steady-state errors in terms of gain, K, for step, ramp, and parabolic inputs.

b. Find the value of gain, K, to yield a 20% error in the steady state.

Video Laser Disc Recorder: Steady-State Error Design via Gain
As a second case study, let us look at a video laser disc focusing system for recording.

PROBLEM:
In order to record on a video laser disc, a 0.5 μm laser spot must be focused on the recording
medium to burn pits that represent the program material. The small laser spot requires that
the focusing lens be positioned to an accuracy of ±0.1μm. A model of the feedback control
system for the focusing lens is shown in Figure 7.22.

The detector detects the distance between the focusing lens and the video disc by measuring
the degree of focus as shown in Figure 7.23(a). Laser light reflected from the disc, D, is split
by beam splitters B1 and B2 and focused behind aperture A. The remainder is reflected by
the mirror and focuses in front of aperture A. The amount of light of each beam that passes
through the aperture depends on how far the beam's focal point is from the aperture. Each
side of the split photodiode, P, measures the intensity of each beam. Thus, as the disc’s
distance from the recording objective lens changes, so does the focal point of each beam. As
a result, the relative voltage detected by each part of the split photodiode changes. When the
beam is out of focus, one side of the photodiode outputs a larger voltage. When the beam is
in focus, the voltage outputs from both sides of the photodiode are equal.

FIGURE 7.22 Video laser disc recording: control system for focusing write
beam



FIGURE 7.23 Video laser disc recording: a. focus detector optics6; b.
linearized transfer function for focus detector6

A simplified model for the detector is a straight line relating the differential voltage output
from the two elements to the distance of the laser disc from nominal focus. A linearized plot
of the detector input–output relationship is shown in Figure 7.23(b) (Isailović, 1985).
Assume that a warp on the disc yields a worst-case disturbance in the focus of 10t2μm. Find
the value of K1K2K3 in order to meet the focusing accuracy required by the system.

SOLUTION:
Since the system is Type 2, it can respond to parabolic inputs with finite error. We can
assume that the disturbance has the same effect as an input of 10t2μm. The Laplace
transform of 10t2 is 20/s3, or 20 units greater than the unit acceleration used to derive the
general equation of the error for a parabolic input. Thus, e(∞) = 20/Ka. But 
Ka = lim

s→0
s2G (s).

From Figure 7.22, Ka = 0.0024K1K2K3. Also, from the problem statement, the error must be
no greater than 0.1μm. Hence, e(∞) = 8333.33/K1K2K3 = 0.1. Thus, K1K2K3 ≥ 83333.3, and
the system is stable.

CHALLENGE
You are now given a problem to test your knowledge of this chapter’s objectives: Given the
video laser disc recording system whose block diagram is shown in Figure 7.24, do the
following:

a. If the focusing lens needs to be positioned to an accuracy of ±0.005μm, find the value of
K1K2K3 if the warp on the disc yields a worst-case disturbance in the focus of 15t2μm.

b. Use the Routh–Hurwitz criterion to show that the system is stable when the conditions
of a. are met.



(7.110)

(7.111)

(7.112)

c.  Use MATLAB to show that the system is stable when the conditions of a.

are met.

FIGURE 7.24 Video laser disc recording focusing system

Summary
This chapter covered the analysis and design of feedback control systems for steady-state errors.
The steady-state errors studied resulted strictly from the system configuration. On the basis of a
system configuration and a group of selected test signals, namely steps, ramps, and parabolas, we
can analyze or design for the system's steady-state error performance. The greater the number of
pure integrations a system has in the forward path, the higher the degree of accuracy, assuming
the system is stable.

The steady-state errors depend upon the type of test input. Applying the final value theorem to
stable systems, the steady-state error for unit step inputs is

e (∞) =

The steady-state error for ramp inputs of unit velocity is

e (∞) =

and for parabolic inputs of unit acceleration, it is

e (∞) =

The terms taken to the limit in Eqs. (7.110) through (7.112) are called static error constants.
Beginning with Eq. (7.110), the terms in the denominator taken to the limit are called the
position constant, velocity constant, and acceleration constant, respectively. The static
error constants are the steady-state error specifications for control systems. By specifying a static
error constant, one is stating the number of pure integrations in the forward path, the test signal
used, and the expected steady-state error.

Another definition covered in this chapter was that of system type. The system type is the
number of pure integrations in the forward path, assuming a unity-feedback system. Increasing
the system type decreases the steady-state error as long as the system remains stable.

1
1 + lim

s→0
G (s)

1

lim
s→0

sG (s)

1

lim
s→0

s2G (s)



Since the steady-state error is, for the most part, inversely proportional to the static error
constant, the larger the static error constant, the smaller the steady-state error. Increasing system
gain increases the static error constant. Thus, in general, increasing system gain decreases the
steady-state error as long as the system remains stable.

Nonunity-feedback systems were handled by deriving an equivalent unity-feedback system whose
steady-state error characteristics followed all previous development. The method was restricted
to systems where input and output units are the same.

We also saw how feedback decreases a system's steady-state error caused by disturbances. With
feedback, the effect of a disturbance can be reduced by system gain adjustments.

Finally, for systems represented in state space, we calculated the steady-state error using the final
value theorem and input substitution methods.

In the next chapter, we will examine the root locus, a powerful tool for the analysis and design of
control systems.

Review Questions
1. Name two sources of steady-state errors.

2. A position control, tracking with a constant difference in velocity, would yield how much
position error in the steady state?

3. Name the test inputs used to evaluate steady-state error.

4. How many integrations in the forward path are required in order for there to be zero steady-
state error for each of the test inputs listed in Question 3?

5. Increasing system gain has what effect upon the steady-state error?

6. For a step input, the steady-state error is approximately the reciprocal of the static error
constant if what condition holds true?

7. What is the exact relationship between the static error constants and the steady-state errors
for ramp and parabolic inputs?

8. What information is contained in the specification Kp = 10,000?

9. Define system type.

10. The forward transfer function of a control system has three poles at −1, − 2, and − 3. What is
the system type?

11. What effect does feedback have upon disturbances?

12. For a step input disturbance at the input to the plant, describe the effect of controller and
plant gain upon minimizing the effect of the disturbance.

13. Is the forward-path actuating signal the system error if the system has nonunity feedback?

14. How are nonunity-feedback systems analyzed and designed for steady-state errors?

15. Define, in words, sensitivity and describe the goal of feedback-control-system engineering as
it applies to sensitivity.

16. Name two methods for calculating the steady-state error for systems represented in state
space.

Cyber Exploration Laboratory

EXPERIMENT 7.1



Objective
To verify the effect of input waveform, loop gain, and system type upon steady-state errors.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox

Prelab
1. What system types will yield zero steady-state error for step inputs?

2. What system types will yield zero steady-state error for ramp inputs?

3. What system types will yield infinite steady-state error for ramp inputs?

4. What system types will yield zero steady-state error for parabolic inputs?

5. What system types will yield infinite steady-state error for parabolic inputs?

6. For the negative feedback system of Figure 7.25, where G (s) =  and H(s)

= 1, calculate the steady-state error in terms of K for the following inputs: 5u(t), 5tu(t), and
5t2u(t).

FIGURE 7.25

7. Repeat Prelab 6 for G (s) =  and H(s) = 1.

8. Repeat Prelab 6 for G (s) =  and H(s) = 1.

Lab
1. Using Simulink, set up the negative feedback system of Prelab 6. Plot on one graph the error

signal of the system for an input of 5u(t) and K = 50, 500, 1000, and 5000. Repeat for inputs
of 5tu(t) and 5t2u(t).

2. Using Simulink, set up the negative feedback system of Prelab 7. Plot on one graph the error
signal of the system for an input of 5u(t) and K = 50, 500, 1000, and 5000. Repeat for inputs
of 5tu(t) and 5t2u(t).

3. Using Simulink, set up the negative feedback system of Prelab 8. Plot on one graph the error
signal of the system for an input of 5u(t) and K = 200, 400, 800, and 1000. Repeat for inputs
of 5tu(t) and 5t2u(t).

Postlab
1. Use your plots from Lab 1 and compare the expected steady-state errors to those calculated

in the Prelab. Explain the reasons for any discrepancies.

K(s+6)

(s+4)(s+7)(s+9)(s+12)

K(s+6)(s+8)

s(s+4)(s+7)(s+9)(s+12)

K(s+1)(s+6)(s+8)

s2(s+4)(s+7)(s+9)(s+12)



2. Use your plots from Lab 2 and compare the expected steady-state errors to those calculated
in the Prelab. Explain the reasons for any discrepancies.

3. Use your plots from Lab 3 and compare the expected steady-state errors to those calculated
in the Prelab. Explain the reasons for any discrepancies.

EXPERIMENT 7.2

Objective
To use the LabVIEW Control Design and Simulation Module for analysis of steady-state
performance for step and ramp inputs.

Minimum Required Software Package
LabVIEW with the Control Design and Simulation Module

Prelab
You are given the model of a single joint of a robotic manipulator shown in Figure 7.26 (Spong,
2005), where B is the coefficient of viscous friction, θd(s) is the desired angle, θ(s) is the output
angle, and D(s) is the disturbance. We want to track the joint angle using a PD controller, which
we will study in Chapter 9. Assume J = B = 1. Find the step and ramp responses of this system for
the following combinations of PD gains (KP, KD): (16, 7), (64, 15), and (144, 23).

FIGURE 7.26

Lab
1. Create a LabVIEW VI to simulate the response of this system to a step and a ramp inputs,

under no-disturbance conditions. Use the functions available in the Control Design and
Simulation/Control Design palette.

2. Create a LabVIEW VI using the functions available in the Control Design and
Simulation/Simulation palette, to track an input set-point of 10 under a disturbance of D 
= 40.

Postlab
Compare your results with those of the Prelab. What conclusions can you draw from the various
responses of this system to different inputs and different PD parameters? What is the system
type? Does the steady-state behavior corroborate the theory you learned regarding system type
and the steady-state error for various inputs? Explain your answer.
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1 The final value theorem is derived from the Laplace transform of the derivative. Thus,

L [ ⋅
f(t)] = ∫

∞

0−

⋅
f(t)e−stdt = sF(s) − f(0−)

As s → 0,

∫
∞

0−

⋅
f (t)dt = f(∞) − f(0−) = lim

s→0
sF(s) − f(0−)

or

f(∞) = lim
s→0

sF(s)

For finite steady-state errors, the final value theorem is valid only if F(s) has poles only in the
left half-plane and, at most, one pole at the origin. However, correct results that yield steady-
state errors that are infinite can be obtained if F(s) has more than one pole at the origin (see
D'Azzo and Houpis, 1988). If F(s) has poles in the right half-plane or poles on the imaginary
axis other than at the origin, the final value theorem is invalid.

2 Valid only if (1) E(s) has poles only in the left half-plane and at the origin, and (2) the closed-
loop transfer function, T(s), is stable. Notice that by using Eq. (7.5), numerical results can be
obtained for unstable systems. These results, however, are meaningless.

3 Remember that the final value theorem can be applied only if the system is stable, with the
roots of [1 + G1(s)G2(s)] in the left half-plane.

4 Details of the derivation are included as a problem in this chapter.

5 For clarity, steady-state error is the steady-state difference between the input and the output.
Steady-state actuating signal is the steady-state difference at the output of the summing
junction. In questions asking for steady-state error in problems, examples, and skill-
assessment exercises, it will be assumed that input and output units are the same.

6 Isailović, J. Videodisc and Optical Memory Technologies, 1st Edition, © 1985. Reprinted by
permission of Pearson Education, Inc., Upper Saddle River, NJ.



Chapter 8
Root Locus Techniques



Chapter 8 Problems
1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If
the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4]

FIGURE P8.1

2. Sketch the general shape of the root locus for each of the open-loop pole-zero plots shown in
Figure P8.2. [Section: 8.4]



FIGURE P8.2

3. Let

G (s) =

in Figure P8.3. [Section: 8.5]

FIGURE P8.3

a. Plot the root locus.

K(s + )2
3

s2(s + 6)



b. Write an expression for the closed-loop transfer function at the point where the three closed-
loop poles meet.

4. For the open-loop pole-zero plot shown in Figure P8.4, sketch the root locus and find the break-
in point. [Section: 8.5]

FIGURE P8.4

5. For Figure P8.3,

G (s) =

Sketch the root locus and find the value of K for which the system is closed-loop stable. Also find
the break-in and breakaway points. [Section: 8.5]

6. The characteristic polynomial of a feedback control system, which is the denominator of the
closed-loop transfer function, is given by s3 + 2s2 + (20K + 7) s +100K. Sketch the root locus for this
system. [Section: 8.8]

7. Plot the root locus for the unity-feedback system shown in Figure P8.3, where

G (s) =

For what range of K will the poles be in the right half-plane? [Section: 8.5]

8. Given the unity-feedback system of Figure P8.3, where

G (s) =

draw the root locus and indicate for what ranges of K the system is closed-loop stable. [Section:
8.5]

 9. For each system shown in Figure P8.5, make an accurate plot of the root locus and find the
following: [Section: 8.5]

a. The breakaway and break-in points

b. The range of K to keep the system stable

c. The value of K that yields a stable system with critically damped second-order poles

d. The value of K that yields a stable system with a pair of second-order poles that have a
damping ratio of 0.707

K (s + 1) (s + 10)

(s + 4) (s − 6)

K (s + 2) (s2 + 4)
(s + 5) (s − 3)

K(s2 − 16)
(s2 + 9)



FIGURE P8.5

Check Answer!

10. Sketch the root locus and find the range of K for stability for the unity-feedback system shown
in Figure P8.3 for the following conditions: [Section: 8.5]

a. G (s) =

b. G (s) =

11. Sketch the root locus and find the range of K for which the closed-loop system of Figure P8.3
will have only two right half-plane poles when [Section: 8.5]

G (s) =

12. For the unity-feedback system of Figure P8.3, where

G (s) =

plot the root locus and calibrate your plot for gain. Find all the critical points, such as breakaways,
asymptotes, jω-axis crossing, and so forth. [Section: 8.5]

13. Given the root locus shown in Figure P8.6. [Section: 8.5]

a. Find the value of gain that will make the system marginally stable.

b. Find the value of gain for which the closed-loop transfer function will have a pole on the real
axis at −5.

K(s2+1)

(s−1)(s+2)(s+3)

K(s2−2s+2)

s(s+1)(s+2)

K (s + 6)

(s2 + 1) (s − 2) (s + 4)

K

s (s + 5) (s + 8)



FIGURE P8.6

14. Let the unity-feedback system of Figure P8.3 be defined with

G (s) =

Then do the following: [Section: 8.5]

a. Draw the root locus.

b. Obtain the asymptotes.

c. Obtain the value of gain that will make the system marginally stable.

d. Obtain the value of gain for which the closed-loop transfer function will have two identical
real roots.

 15. For the unity-feedback system of Figure P8.3, where

G (s) =

find the values of α and K that will yield a second-order closed-loop pair of poles at −1 ±j100.
[Section: 8.5]

Check Answer!

16. Sketch the root locus for a unity-feedback system where

G (s) =

Then find the following: [Section: 8.5]

a. The breakaway and break-in points

b. The crossing of the jω-axis

c. The range of K for closed-loop stability

d. The value of K that will result in a stable system with complex conjugate poles and damping
factor of 0.5

 17. For the system of Figure P8.7(a), sketch the root locus and find the following: [Section: 8.7]

a. Asymptotes

K (s + 3)

s (s + 1) (s + 4) (s + 6)

K (s + α)

s (s + 3) (s + 6)

K (s − 2) (s − 3)

s (s + 2) (s + 3)



b. Breakaway points

c. The range of K for stability

d. The value of K to yield a 0.7 damping ratio for the dominant second-order pair

To improve stability, we desire the root locus to cross the jω-axis at j5.5. To accomplish this,
the open-loop function is cascaded with a zero, as shown in Figure P8.7(b).

e. Find the value of α and sketch the new root locus.

f. Repeat Part c for the new locus.

g. Compare the results of Part c and Part f. What improvement in transient response do you
notice?

FIGURE P8.7

Check Answer!

18. Sketch the root locus for the positive-feedback system shown in Figure P8.8. [Section: 8.9]

FIGURE P8.8

19. Given the unity-feedback system shown in Figure P8.3, where

G (s) =

do the following problem parts by first making a second-order approximation. After you are
finished with all of the parts, justify your second-order approximation. [Section: 8.7]

a. Sketch the root locus.

b. Find K for 20% overshoot.

c. For K found in Part b, what is the settling time, and what is the peak time?

d. Find the locations of higher-order poles for K found in Part b.

e. Find the range of K for stability.

20. Assume for the unity-feedback system shown in Figure P8.3, that

K

(s + 1) (s + 2) (s + 3)



G (s) =

Then do the following: [Section: 8.7]

a. Make a sketch of the root locus.

b. Calculate the asymptotes.

c. Find the range of K for which the system is closed-loop stable.

d. Caculate the breakaway points.

e. Obtain the value of K that results in a step response with 20% overshoot.

f. Obtain the locations of all closed-loop poles when the system has 20% over shoot.

g. Discuss the validity of a second-order approximation for the given overshoot specification.

h.  Use MATLAB to verify or reject a second-order approximation for the closed-
loop step response with the given percent overshoot.

 21. The unity-feedback system shown in Figure P8.3, where

G (s) =

is to be designed for minimum damping ratio. Find the following: [Section: 8.7]

a. The value of K that will yield minimum damping ratio

b. The estimated percent overshoot for that case

c. The estimated settling time and peak time for that case

d. The justification of a second-order approximation (discuss)

e. The expected steady-state error for a unit ramp input for the case of minimum damping ratio

Check Answer!

22. For the closed-loop system of Figure P8.3, it is specified to have a settling time of 1 second for
large values of K when

G (s) =

Find the appropriate value of α and sketch the resulting root locus. [Section: 8.8]

 23. For the unity-feedback system shown in Figure 8.3, where

G (s) =

design K and α so that the dominant complex poles of the closed-loop function have a damping
ratio of 0.5 and a natural frequency of 1.2 rad/s.

Check Answer!

24. For the unity-feedback system shown in Figure 8.3, where

K (s2 − 2s + 2)

(s + 1) (s + 3) (s + 4) (s + 5)

K (s + 2) (s + 3)

s (s + 1)

K (s + α)

s (s + 5) (s + 20)

K (s + 5)

(s2 + 8s + 25) (s + 1)
2

(s + α)



G (s) =

do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the value of K that will yield a 10% overshoot.

c. Locate all nondominant poles. What can you say about the second-order approximation that
led to your answer in Part b?

d. Find the range of K that yields a stable system.

 25. For the unity-feedback system shown in Figure 8.3, where

G (s) =

do the following: [Section: 8.7]

a. Find the gain, K, to yield a 1-second peak time if one assumes a second-order approximation.

b.  Check the accuracy of the second-order approximation using MATLAB to simulate
the system.

Check Answer!

26. For the unity-feedback system shown in Figure P8.3, where

G (s) =

do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the jω-axis crossing and the gain, K, at the crossing.

c. Find all breakaway and break-in points.

d. Find angles of departure from the complex poles.

e. Find the gain, K, to yield a damping ratio of 0.3 for the closed-loop dominant poles.

27. Repeat Parts a through c and e of Problem 26 for [Section: 8.7]

G (s) =

 28. For the system shown in Figure P8.9, do the following: [Section: 8.7]

FIGURE P8.9

K

s (s + 3) (s + 4) (s + 8)

K (s2 + 4s + 5)
(s2 + 2s + 5) (s + 3) (s + 4)

K (s + 2) (s + 3)

(s2 + 2s + 2) (s + 4) (s + 5) (s + 6)

K(s + 4)

s(s + 1) (s + 2) (s + 10)



a. Sketch the root locus.

b. Find the jω-axis crossing and the gain, K, at the crossing.

c. Find the real-axis breakaway to two-decimal-place accuracy.

d. Find angles of arrival to the complex zeros.

e. Find the closed-loop zeros.

f. Find the gain, K, for a closed-loop step response with 30% overshoot.

g. Discuss the validity of your second-order approximation.

Check Answer!

29. Sketch the root locus for the system of Figure P8.10 and find the following: [Section: 8.7]

a. The range of gain to yield stability

b. The value of gain that will yield a damping ratio of 0.707 for the system's dominant poles

c. The value of gain that will yield closed-loop poles that are critically damped

FIGURE P8.10

30.  Repeat Problem 29 using MATLAB. The program will do the following in one
program:

a. Display a root locus and pause.

b. Display a close-up of the root locus where the axes go from −2 to 0.5 on the real
axis and −2 to 2 on the imaginary axis.

c. Overlay the 0.707 damping ratio line on the close-up root locus.

d. Allow you to select interactively the point where the root locus crosses the 0.707
damping ratio line, and respond by displaying the gain at that point as well as all of

the closed-loop poles at that gain. The program will then allow you to select

interactively the imaginary-axis crossing and respond with a display of the gain at

that point as well as all of the closed-loop poles at that gain. Finally, the program

will repeat the evaluation for critically damped dominant closed-loop poles.

e. Generate the step response for the critically damped case.

31. Given the unity-feedback system shown in Figure P8.3, where

G (s) =

do the following: [Section: 8.7]

a. If z = 2, find K so that the damped frequency of oscillation of the transient response is 5
rad/s.

K (s + z)

s2 (s + 10)



b. For the system of Part a, what static error constant (finite) can be specified? What is its
value?

c. The system is to be redesigned by changing the values of z and K. If the new specifications
are % OS = 4.32 % and Ts = 0.8 s, find the new values of z and K.

32. Given the unity-feedback system shown in Figure P8.3, where

G (s) =

find the following: [Section: 8.7]

a. The value of gain, K, that will yield a settling time of 4 seconds

b. The value of gain, K, that will yield a critically damped system

33.  You are given the unity-feedback system of Figure P8.3, where

G(s) =

Use MATLAB to plot the root locus. Use a closeup of the locus (from −5 to 0 and —1 to 6) to

find the gain, K, that yields a closed-loop unit–step response, c(t), with 20.5% overshoot

and a settling time of Ts = 3 seconds. Mark on the time response graph all other relevant

characteristics, such as the peak time, rise time, and final steady-state value.

 34. Let

G (s) =

in Figure P8.3. [Section: 8.7].

a. Find the range of K for closed-loop stability.

b. Plot the root locus for K > 0.

c. Plot the root locus for K < 0.

d. Assuming a step input, what value of K will result in the smallest attainable settling time?

e. Calculate the system's ess for a unit-step input assuming the value of K obtained in Part d.

f. Make an approximate hand sketch of the unit-step response of the system if K has the value
obtained in Part d.

Check Answer!

35. Figure P8.11 shows the block diagram of a closed-loop control of a linearized magnetic levitation
system (Galvão, 2003).

FIGURE P8.11 Linearized magnetic levitation system block diagram

Assuming A = 1300 and η = 860, draw the root locus and find the range of K for closed-loop
stability when:

K

(s + 1) (s + 3) (s + 6)
2

K(s + 0.02)

s2(s + 4)(s + 10)(s + 25)

K (s − 1)

(s + 2) (s + 3)



a. G(s) = K;

b. G (s) =

36. The simplified transfer function model from steering angle δ(s) to tilt angle φ(s) in a bicycle is
given by

G (s) = = ×

In this model, h represents the vertical distance from the center of mass to the floor, so it can be
readily verified that the model is open-loop unstable. (Åström, 2005). Assume that for a specific
bicycle, a = 0.6 m, b = 1.5 m, h = 0.8 m, and g = 9.8 m / sec. In order to stabilize the bicycle, it is
assumed that the bicycle is placed in the closed-loop configuration shown in Figure P8.3 and that
the only available control variable is V, the rear wheel velocity.

a. Find the range of V for closed-loop stability.

a. Explain why the methods presented in this chapter cannot be used to obtain the root locus.

c.  Use MATLAB to obtain the system's root locus.

37. A technique to control the steering of a vehicle that follows a line located in the middle of a lane
is to define a look-ahead point and measure vehicle deviations with respect to the point. A linearized
model for such a vehicle is

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

⋅
V
⋅r
⋅
ψ
⋅
Y g

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 −b1K

a21 a22 −b2K

0 1 0 0

1 0 U 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢ ⎢
⎣

V

r

ψ

Yg

⎤
⎥ ⎥ ⎥ ⎥
⎦

where V = vehicle's lateral velocity, r = vehicle's yaw velocity, ψ = vehicle's yaw position, and Yg =
the y-axis coordinate of the vehicle's center of gravity. K is a parameter to be varied depending
upon trajectory changes. In a specific vehicle traveling at a speed of U = − 10 m / sec, the
parameters are a11 = − 11.6842, a12 = 6.7632, b1 = − 61.5789, a21 = − 3.5143, a22 =24.0257, and b2
= 66.8571.d = 5 m is the look-ahead distance (Ünyelioğlu, 1997). Assuming the vehicle will be
controlled in closed loop:

a. Find the system's characteristic equation as a function of K.

b. Find the system's root locus as K is varied.

c. Using the root locus found in Part b, show that the system will be unstable for all values K.

38. For the dynamic voltage restorer (DVR) discussed in Problem 35, Chapter 7, do the following:

a. When ZL = , a pure capacitance, the system is more inclined toward instability. Find the
system's characteristic equation for this case.

b. Using the characteristic equation found in Part a, sketch the root locus of the system as a
function of CL. Let L = 7.6 mH, C = 11 μ F, α = 26.4, β = 1, Km = 25, Kv = 15, KT = 0.09565, and
τ =2 ms (Lam, 2004).

 39. The closed-loop vehicle response in stopping a train depends on the train's dynamics and
the driver, who is an integral part of the feedback loop. In Figure P8.3, let the input be R(s) = vr the
reference velocity, and the output C(s) = v, the actual vehicle velocity. (Yamazaki, 2008) shows that
such dynamics can be modeled by G(s) = Gd(s)Gt(s) where

K(s+200)

s+1000

ϕ (s)

δ (s)

aV

bh

s + V
a

s2 −
g

h

b1K

d

b2K

d

1
sCL



Gd(s) = h(1 + )

represents the driver dynamics with h, K, and L parameters particular to each individual driver. We
assume here that h = 0.003 and L = 1. The train dynamics are given by

Gt(s) =

where M = 8000 kg, the vehicle mass; ke = 0.1 the inertial coefficient; kb = 142.5, the brake gain; Kp
= 47.5, the pressure gain; τ = 1.2 seconds, the time constant; and f = 0.24, the normal friction
coefficient.

a. Make a root locus plot of the system as a function of the driver parameter K.

b. Discuss why this model may not be an accurate description of a real driver-train situation.

Check Answer!

40. Voltage droop control is a technique in which loads are driven at lower voltages than those
provided by the source. In general, the voltage is decreased as current demand increases in the load.
The advantage of voltage droop is that it results in lower sensitivity to load current variations.

Voltage droop can be applied to the power distribution of several generators and loads linked
through a dc bus. In (Karlsson, 2003) generators and loads are driven by 3-phase ac power, so they
are interfaced to the bus through ac/dc converters. Since each one of the loads works
independently, a feedback system shown in Figure P8.12 is used in each to respond equally to bus
voltage variations. Given that Cs = Cr = 8,000 μF, Lcable = 50 μH, Rcable = 0.06 Ω, Zr = Rr = 5 Ω,
ωlp = 200 rad/s, Gconv(s) = 1, Vdc-ref  = 750 V, and Pref-ext = 0, do the following:

a. If Zreq  is the parallel combination of Rr and Cr, and Gconv(s) = 1, find

G(s) = =

b.  Write a MATLAB M-file to plot and copy the full root locus for that system,
then zoom-in the locus by setting the x-axis (real-axis) limits to −150 to 0 and the y-

axis (imaginary-axis) limits to −150 to 150. Copy that plot, too, and find and record

the following:

(1) The gain, K, at which the system would have complex-conjugate closed-loop
dominant poles with a damping ratio ζ = 0.707

(2) The coordinates of the corresponding point selected on the root-locus

(3) The values of all closed-loop poles at that gain

(4) The output voltage vs(t) for a step input voltage vdc-ref (t) = 750 u(t) volts

c.  Plot that step response and use the MATLAB Characteristics tool (in the graph
window) to note on the curve the following parameters:

(1) The actual percent overshoot and the corresponding peak time, Tp

(2) The rise time, Tr, and the settling time, Ts

(3) The final steady-state value in volts

K

s

s − L

2

s + L

2

kbfKp

M(1 + ke)s(τs + 1)

Vs(s)

Is(s)

Vs(s)

Is−ref(s)



FIGURE P8.121

41. It has been suggested that the use of closed-loop feedback in ventilators can highly reduce
mortality and health problems in patients in need of respiratory treatments (Hahn, 2012). A good
knowledge of the transfer functions involved is necessary for the design of an appropriate
controller. In a study with 18 patients it was found that the open-loop transfer function from minute
ventilation (MV) to end-tidal carbon dioxide partial pressure (PETCO2) can be nominally modeled
as:

G(s) =

a. Make a sketch of the root locus of the system indicating the breakaway points and the value 
kc takes in each of them.

b. In the design of ventilators it is very important to have negligible overshoot with the fastest
possible settling time. It has been suggested that a value of kc = 5.35 will achieve these
specifications. Mark the position of the closed-loop poles for this value of kc and explain why
this is a reasonable gain choice.

42. Figure P8.13 shows a simplified drawing of a feedback system that includes the drive system

FIGURE P8.13

G(s) =

presented in Problem 48, Chapter 5 (Thomsen, 2011). Referring to Figures P5.32 and P8.13, Gp(s)
in Figure P8.13 is given by:

0.415kc(s + 0.092)(s + 0.25)

s(s + 0.007)(s + 0.207)

25 (s2 + 1.2s + 12500)

s (s2 + 5.6s + 62000)



Gp(s) = KM

 Given that the controller is proportional, that is, GC(s) = KP, use MATLAB and a
procedure similar to that developed in Problem 30 in this chapter to plot the root locus2

and obtain the output response, c(t) = ωL(t), when a step input, r(t)= ωr (t) = 260 u(t)

rad/s, is applied at t = 0. Mark on the time response graph, c(t), all relevant

characteristics, such as the percent overshoot (which should not exceed 16%), peak time,

rise time, settling time, and final steady-state value.

DESIGN PROBLEMS
43. A simplified block diagram of a human pupil servomechanism is shown in Figure P8.14. The
term e−0.18s represents a time delay. This function can be approximated by what is known as a Padé
approximation. This approximation can take on many increasingly complicated forms, depending
upon the degree of accuracy required. If we use the Padé approximation

e−x =

then

e−0.18s =

Since the retinal light flux is a function of the opening of the iris, oscillations in the amount of
retinal light flux imply oscillations of the iris (Guy, 1976). Find the following:

a. The value of K that will yield oscillations

b. The frequency of these oscillations

c. The settling time for the iris if K is such that the eye is operating with 20% overshoot

FIGURE P8.14 Simplified block diagram of pupil servomechanism

 44. A hard disk drive (HDD) arm has an open-loop unstable transfer function,

P (s) = =

where X(s) is arm displacement and F(s) is the applied force (Yan, 2003). Assume the arm has an
inertia of Ib = 3 × 10−5 kg-m2 and that a lead controller, Gc (s) (used to improve transient response
and discussed in Chapter 9), is placed in cascade to yield

P (s)Gc (s) = G (s) =

as in Figure P8.3.

G(s)

1 + 0.1G(s)

1

1 + x + x2

2!

61.73

s2 + 11.11s + 61.73

X (s)

F (s)

1

Ibs2

K

Ib

(s + 1)
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a. Plot the root locus of the system as a function of K.

b. Find the value of K that will result in dominant complex conjugate poles with a ζ = 0.7
damping factor.

Check Answer!

45. Wind turbines, such as the one shown in Figure P8.15(a), are becoming popular as a way of
generating electricity. Feedback control loops are designed to control the output power of the
turbine, given an input power demand. Blade-pitch control may be used as part of the control loop
for a constant-speed, pitch-controlled wind turbine, as shown in Figure P8.15(b). The drivetrain,
consisting of the windmill rotor, gearbox, and electric generator (see Figure P8.15(c)), is part of the
control loop. The torque created by the wind drives the rotor. The windmill rotor is connected to the
generator through a gearbox.





FIGURE P8.15 a. Wind turbines generating electricity near Palm Springs,
California; b. control loop for a constant-speed pitch-controlled wind turbine;3 c.
drivetrain3

The transfer function of the drivetrain is

= Gdt (s)

=

where Po (s) is the Laplace transform of the output power from the generator and TR (s) is the
Laplace transform of the input torque on the rotor. Substituting typical numerical values into the
transfer function yields

= Gdt (s)

= ×}

(3.8s2 [20 × 10−3s + 1] + 668s)+

190, 120s2(12.6 × 106)×

[(3.8s2 + 301 × 103)×

(20 × 10−3s + 1) + 668s] \}

(Anderson, 1998). Do the following for the drivetrain dynamics, making use of any computational
aids at your disposal:

a. Sketch a root locus that shows the pole locations of Gdt(s) for different values of gear ratio,
N.

b. Find the value of N that yields a pair of complex poles of Gdt(s) with a damping ratio of 0.5.

 46. Many implantable medical devices such as pacemakers, retinal implants, deep brain
stimulators, and spinal cord stimulators are powered by an in-body battery that can be charged
through a transcutaneous inductive device. Optimal battery charge can be obtained when the out-
of-body charging circuit is in resonance with the implanted charging circuit (Baker, 2007). Under
certain conditions, the coupling of both resonant circuits can be modeled by the feedback system in
Figure P8.3 where

Po(s)

TR(s)

3.92KLSSKHSSKGN
2s

{N 2KHSS (JRs2+KLSS ) (JGs2 [ τels+1 ] +KGs)+JRs2KLSS [ (JGs2+KHSS)(τels+1)+KGs ] }

Po(s)

TR(s)

(3.92)(12.6×106)(301×103)(688)N 2s

{N 2(301×103)(190,120s2+12.6×106)



G(s) =

The gain K is related to the magnetic coupling between the external and in-body circuits. K may
vary due to positioning, skin conditions, and other variations. For this problem let ζ = 0.5 and ωn =
1.

a. Find the range of K for closed-loop stability.

b. Draw the corresponding root locus.

Check Answer!

47.  Harmonic drives are very popular for use in robotic manipulators due to their low
backlash, high torque transmission, and compact size (Spong, 2006). The problem of joint

flexibility is sometimes a limiting factor in achieving good performance. Consider that the

idealized model representing joint flexibility is shown in Figure P8.16. The input to the

drive is from an actuator and is applied at θm. The output is connected to a load at θl. The

spring represents the joint flexibility and Bm and Bl represent the viscous damping of the

actuator and load, respectively. Now we insert the device into the feedback loop shown in

Figure P8.17. The first block in the forward path is a PD controller, which we will study

in the next chapter. The PD controller is used to improve transient response performance.

FIGURE P8.16 Idealized model representing joint flexibility4

FIGURE P8.17 Joint flexibility model inserted in feedback loop5

Use MATLAB to find the gain KD to yield an approximate 5% overshoot in the step response

given the following parameters: Jl = 10; Bl = 1; k = 100; Jm = 2; Bm = 0.5; 

= 0.25;pl(s) = Jls2 +Bls+ k; and pm(s) = Jms2+Bms + k

 48.  Using LabVIEW, the Control Design and Simulation Module, and the MathScript
RT Module, open and customize the Interactive Root Locus VI from the Examples to implement

the system of Problem 47. Select the parameter KD to meet the requirement of Problem 47 by

varying the location of the closed-loop poles on the root locus. Be sure your front panel

shows the following: (1) open-loop transfer function, (2) closed-loop transfer function,

(3) root locus, (4) list of closed-loop poles, and (5) step response.

Ks4

(s2 + 2ζωns + ω2
n)

2

KP
KD



Check Answer!

49.  An automatic regulator is used to control the field current of a three-phase
synchronous machine with identical symmetrical armature windings (Stapleton, 1964). The

purpose of the regulator is to maintain the system voltage constant within certain limits.

The transfer function of the synchronous machine is

Gsm(s) = =

which relates the variation of rotor angle, Δδ(s), to the change in the synchronous

machine's shaft power, ΔPm(s). The closed-loop system is shown in Figure P8.3, where G(s) =

KGC(s)Gsm(s) and K is a gain to be adjusted. The regulator's transfer function, Gc(s), is

given by

Gc(s) =

Assume the following parameter values:

μ = 4,M = 0.117,Te = 0.5, z1,2 = −0.071 ± j6.25, p1 = −0.047, and p2,3 = −0.262 ± j5.1,

and do the following:

Write a MATLAB M-file to plot the root locus for the system and to find the following:

a. The gain K at which the system becomes marginally stable

b. The closed-loop poles, p, and transfer function, T(s), corresponding to a 16%
overshoot

c. The coordinates of the point selected on the root-locus corresponding to 16%
overshoot

d. A simulation of the unit–step response of the closed-loop system corresponding to
your 16% overshoot design. Note in your simulation the following values: (1) actual

percent overshoot, (2)corresponding peak time, Tp, (3)rise time, Tr,(4) settling time,

Ts, and (5) final steady-state value.

50. It is well known that when a person ingests a significant amount of water, the blood volume
increases, causing an increase in arterial blood pressure until the kidneys are able to excrete the
excess volume and the pressure returns to normal (Shahin, 2010). In order to describe this process
mathematically, water-loading experiments are performed in various subjects while their mean
arterial pressure is monitored. It was found that the open-loop transfer function of this process is

G(s) =

where bp is an autonomous nervous activity parameter.

a. Make a sketch of the root locus of the system, indicating the breakaway points and the value
of bp for each point.

b. Indicate the range of bp for which the system is overdamped.

c. Indicate the values of bp for which the system is critically damped.

Δδ(s)

ΔPm(s)

M(s − z1)(s − z2)

(s − p1)(s − p2)(s − p3)

μ

Te

s + 1
Te

bp(1.759s3 + 2.318s2 + 2.173 × 10−4)

3.362s3 + 11.34s2 + 7.803s + 0.00293



d. Indicate the range of bp for which the system is underdamped.

e. Explain why the system will have a larger settling time for larger values of bp.

51. One of the treatments for Parkinson's disease in some patients is Deep Brain Stimulation (DBS)
(Davidson, 2012). In DBS a set of electrodes is surgically implanted and a vibrating current is
applied to the subthalamic nucleus, also known as a brain pacemaker. Root locus has been used on
a linearized model of the system to help explain the dynamics of DBS. The DBS model can be
obtained by substituting G(s) = (b > 0) in the unity-feedback diagram of Figure P8.3.

a. Make a sketch of the resulting root locus as a function of k and find the break-in point and its
corresponding value of gain.

b. Find the range of k for closed-loop stability in terms of b.

c. Find the frequency of oscillation when the system has closed-loop poles on the jω axis.

52. A linear dynamic model of the α-subsystem of a grid-connected voltage-source converter (VSC)
using a Y–Y transformer is shown in Figure P8.18(a) (Mahmood, 2012). Here, 
C = 135μF, R1 = 0.016Ω, L1 = 0.14 mH,R2 = 0.014Ω, L2 = 10μH, Rg = 1.1Ω, andLg = 0.5 m
.

a. Find the transfer function GP (s) = .

b.  If GP(s) is the plant in Figure P8.18(b) and GC(s) = K, use MATLAB to plot the
root locus. On a closeup of the locus (from −300 to 0 on the real axis and from −50 to

5000 on the imaginary axis), find K and the coordinates of the dominant poles, which

correspond to ζ = 0.012. Plot the output response, c(t) = vα(t), at that value of the

gain when a step input, r(t)= vr (t)= 208 u(t) volts, is applied at t = 0. Mark on the

time response graph, c(t), all relevant characteristics, such as the percent overshoot,

peak time, rise time, settling time, and final steady-state value.

FIGURE P8.18

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
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53. Control of HIV/AIDS. In the linearized model of Chapter 6, Problem 50, where virus levels
are controlled by means of RTIs, the open-loop plant transfer function was shown to be

P (s) = =

The amount of RTIs delivered to the patient will automatically be calculated by embedding the
patient in the control loop as G(s) shown in Figure P6.15 (Craig, 2004).

a. In the simplest case, G(s) = K, with K > 0. Note that this effectively creates a positive-
feedback loop because the negative sign in the numerator of P(s) cancels out with the negative-
feedback sign in the summing junction. Use positive-feedback rules to plot the root locus of the
system.

b. Now assume G(s) = − K with K > 0. The system is now a negative-feedback system. Use
negative-feed-back rules to draw the root locus. Show that in this case the system will be
closed-loop stable for all K > 0.

54.  Hybrid vehicle. In Chapter 7, Figure P7.25 shows the block diagram of the speed
control of an HEV rearranged as a unity-feedback system (Preitl, 2007).

Let the transfer function of the speed controller be

GSC(s) = KPsc
+ =

a.  Assume first that the speed controller is configured as a proportional
controller (KISC = 0 andGSC(s)= KPSC). Calculate the forward-path open-loop poles. Now

use MATLAB to plot the system's root locus and find the gain, KPSC
 that yields a

critically damped  closed-loop response. Finally, plot the time-domain response, c(t),

for a unit–step input using MATLAB. Note on the curve the rise time, Tr, and settling

time, Ts.

b.  Now add an integral gain, KISC, to the controller, such that KISC/KPSC = 0.4.

Use MATLAB to plot the root locus and find the proportional gain, KPSC, that could lead

to a closed-loop unit–step response with 10% overshoot. Plot c(t) using MATLAB and note

on the curve the peak time, Tp, and settling time, Ts. Does the response obtained  

resemble a second-order underdamped response?

55. Parabolic trough collector. Consider the fluid temperature control of a parabolic trough
collector (Camocho, 2012) embedded in the unity-feedback structure as shown in Figure P8.3,
where the open-loop plant transfer function is given by

G(s) = e−39s

Approximating the time-delay term with e−sT ≈ , make a sketch of the resulting root locus

(Note: After substituting the approximation, G(∞) < 0, the positive feedback rules of Section 8.9
must be used). Mark where appropriate in the plot and find:

a. The asymptotes and their intersection with the real axis;

b. The break-in and breakaway points. (The procedures presented in Section 8.5 are also valid
for positive feedback systems);

c. The range of K for closed-loop stability;

Y (s)

U1 (s)

−520s − 10.3844

s3 + 2.6817s2 + 0.11s + 0.0126

KIsc

s

KPsc
(s + )KIsc

KPsc

s

137.2 × 10−6K

s2 + 0.0224s + 196 × 10−6

1− sT
2

1+ sT
2



d. The value of K that will make the system oscillate and the oscillation frequency.

Notes
1 Karlsson, P., and Svensson, J. DC Bus Voltage Control for a Distributed Power System, IEEE Trans.

Power Electronics, vol. 18, no. 6, 2003, pp. 1405–1412. Fig. 4, p. 1406. IEEE Transactions on Power
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of Electrical and Electronic Engineers); IEEE Power Electronics Society. Reproduced with permission
of Institute of Electrical and Electronics Engineers, in the format Republish in a book via Copyright
Clearance Center.

2 Select a point on the closeup of the root locus that corresponds to a gain between 1 and 5.

3 Adapted from Anderson, C. G.; Richon, J-B.; and Campbell, T. J. An Aerodynamic Moment-Controlled
Surface for Gust Load Alleviation on Wind Turbine Rotors, IEEE Transactions on Control System
Technology, vol. 6, no. 5, September 1998, pp. 577–595. © 1998 IEEE.

4 Spong, M., Hutchinson, S., and Vidyasagar, M.; Robot Modeling and Control. John Wiley & Sons,
Hoboken, NJ, 2006. Figure 6.20, p. 221.

5 Spong, M., Hutchinson, S., and Vidyasagar, M.; Robot Modeling and Control. John Wiley & Sons,
Hoboken, NJ, 2006. Figure 6.24, p. 224.
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Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Define a root locus (Sections 8.1–8.2)

State the properties of a root locus (Section 8.3)

Sketch a root locus (Section 8.4)

Find the coordinates of points on the root locus and their
associated gains (Sections 8.5–8.6)

Use the root locus to design a parameter value to meet a transient
response specification for systems of order 2 and higher (Sections
8.7–8.8)

Sketch the root locus for positive-feedback systems (Section 8.9)

Find the root sensitivity for points along the root locus (Section
8.10)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter
objectives with case studies as follows:

Given the antenna azimuth position control system shown in
Appendix A2, you will be able to find the preamplifier gain to meet
a transient response specification.

Given the pitch or heading control system for the Unmanned Free-
Swimming Submersible vehicle shown in Appendix A3, you will be
able to plot the root locus and design the gain to meet a transient
response specification. You will then be able to evaluate other
performance characteristics.

8.1 Introduction
Root locus, a graphical presentation of the closed-loop poles as a
system parameter is varied, is a powerful method of analysis and design
for stability and transient response (Evans, 1948,  1950). Feedback



control systems are difficult to comprehend from a qualitative point of
view, and hence they rely heavily upon mathematics. The root locus
covered in this chapter is a graphical technique that gives us the
qualitative description of a control system's performance that we are
looking for and also serves as a powerful quantitative tool that yields
more information than the methods already discussed.

Up to this point, gains and other system parameters were designed to
yield a desired transient response for only first- and second-order
systems. Even though the root locus can be used to solve the same kind
of problem, its real power lies in its ability to provide solutions for
systems of order higher than 2. For example, under the right
conditions, a fourth-order system's parameters can be designed to yield
a given percent overshoot and settling time using the concepts learned
in Chapter 4.

The root locus can be used to describe qualitatively the performance of
a system as various parameters are changed. For example, the effect of
varying gain upon percent overshoot, settling time, and peak time can
be vividly displayed. The qualitative description can then be verified
with quantitative analysis.

Besides transient response, the root locus also gives a graphical
representation of a system's stability. We can clearly see ranges of
stability, ranges of instability, and the conditions that cause a system to
break into oscillation.

Before presenting root locus, let us review two concepts that we need
for the ensuing discussion: (1) the control system problem and (2)
complex numbers and their representation as vectors.

The Control System Problem
We have previously encountered the control system problem in Chapter
6: Whereas the poles of the open-loop transfer function are easily found
(typically, they are known by inspection and do not change with
changes in system gain), the poles of the closed-loop transfer function
are more difficult to find (typically, they cannot be found without
factoring the closed-loop system's characteristic polynomial, the
denominator of the closed-loop transfer function), and further, the
closed-loop poles change with changes in system gain.



(8.1)

(8.2)

A typical closed-loop feedback control system is shown in Figure 8.1(a).
The open-loop transfer function was defined in Chapter 5 as KG(s)H(s).
Ordinarily, we can determine the poles of KG(s)H(s), since these poles
arise from simple cascaded first- or second-order subsystems. Further,
variations in K do not affect the location of any pole of this function. On
the other hand, we cannot determine the poles of T(s) = KG(s)/[1 +
KG(s)H(s)] unless we factor the denominator. Also, the poles of T(s)
change with K.

FIGURE 8.1 a. Closed-loop system; b. equivalent transfer
function

Let us demonstrate. Letting

G (s) =

and

H (s) =

then

NG (s)

DG (s)

NH (s)

DH (s)



(8.3)
T (s) =

where N and D are factored polynomials and signify numerator and
denominator terms, respectively. We observe the following: Typically,
we know the factors of the numerators and denominators of G(s) and
H(s). Also, the zeros of T(s) consist of the zeros of G(s) and the poles of
H(s). The poles of T(s) are not immediately known and in fact can
change with K. For example, if G(s) = (s + 1)/[s (s + 2)] and H(s) = (s +
3)/(s + 4), the poles of KG(s)H(s) are 0, − 2, and − 4. The zeros of
KG(s)H(s) are −1 and − 3. Now, T(s) = K(s + 1)(s + 4)/[s3 + (6 + K)s2 +
(8 + 4K)s + 3K]. Thus, the zeros of T(s) consist of the zeros of G(s) and
the poles of H(s). The poles of T(s) are not immediately known without
factoring the denominator, and they are a function of K. Since the
system's transient response and stability are dependent upon the poles
of T(s), we have no knowledge of the system's performance unless we
factor the denominator for specific values of K. The root locus will be
used to give us a vivid picture of the poles of T(s) as K varies.

Vector Representation of Complex Numbers
Any complex number, σ + jω, described in Cartesian coordinates can be
graphically represented by a vector, as shown in Figure 8.2(a). The
complex number also can be described in polar form with magnitude M
and angle θ, as M∠θ. If the complex number is substituted into a
complex function, F(s), another complex number will result. For
example, if F(s) = (s + a), then substituting the complex number s = σ +
jω yields F(s) = (σ + a) + jω, another complex number. This number is
shown in Figure 8.2(b). Notice that F(s) has a zero at −a. If we translate
the vector a units to the left, as in Figure 8.2(c), we have an alternate
representation of the complex number that originates at the zero of F(s)
and terminates on the point s = σ + jω.

KNG(s)DH(s)

DG(s)DH(s)+KNG(s)NH(s)



(8.4)

FIGURE 8.2 Vector representation of complex numbers: a.s
= σ + jω; b.(s + a); c. alternate representation of (s + a); d.(s
+ 7) | s →5 + j2

We conclude that (s + a) is a complex number and can be represented
by a vector drawn from the zero of the function to the point s. For
example, (s + 7) | s →5 + j2 is a complex number drawn from the zero of
the function, −7, to the point s, which is 5 + j2, as shown in Figure
8.2(d).

Now let us apply the concepts to a complicated function. Assume a
function

F (s) = =

m

Π
i=1

(s + zi)

n

Π
j=1

(s + pj)

Π numerator's complex factors
Π denominator's complex factors



(8.5)

(8.6)

where the symbol Π means “product,” m = number of zeros, and n =
number of poles. Each factor in the numerator and each factor in the
denominator is a complex number that can be represented as a vector.
The function defines the complex arithmetic to be performed in order
to evaluate F(s) at any point, s. Since each complex factor can be
thought of as a vector, the magnitude, M, of F(s) at any point, s, is

M = =

where a zero length, | (s + zi) |, is the magnitude of the vector drawn
from the zero of F(s) at −zi to the point s, and a pole length, | (s + pj) |,
is the magnitude of the vector drawn from the pole of F(s) at −pj to the
point s. The angle, θ, of F(s) at any point, s, is

θ = ∑ zero angles −∑pole angles

=
m

∑
i=1

∠(s + zi)−
n

∑
j=1

∠ (s + pj)

where a zero angle is the angle, measured from the positive extension of
the real axis, of a vector drawn from the zero of F(s) at −zi to the point
s, and a pole angle is the angle, measured from the positive extension of
the real axis, of the vector drawn from the pole of F(s) at −pj to the
point s.

As a demonstration of Eqs. (8.5) and (8.6), consider the following
example.

Π zero lengths
Π pole lengths

m

Π
i=1

| ( s+zi ) |

n

Π
j=1

∣∣(s+pj)∣∣



(8.7)

(8.8)

(8.10)

(8.11)

(8.9)

Example 8.1 Evaluation of a Complex Function
via Vectors
PROBLEM:
Given

F (s) =

find F(s) at the point s = − 3 + j4.

SOLUTION:
The problem is graphically depicted in Figure 8.3, where each
vector, (s + α), of the function is shown terminating on the selected
point s = − 3 + j4. The vector originating at the zero at −1 is

√20∠116.6°

The vector originating at the pole at the origin is

5∠126.9°

The vector originating at the pole at −2 is

√17∠104.0°

Substituting Eqs. (8.8) through (8.10) into Eqs. (8.5) and (8.6)
yields

M∠θ = ∠116.6° − 126.9° − 104.0° = 0.217∠ − 114.3°

as the result for evaluating F(s) at the point −3 + j4.

(s + 1)

s (s + 2)

√20

5√17



FIGURE 8.3 Vector representation of Eq. (8.7)



Skill-Assessment Exercise 8.1
PROBLEM:

TryIt 8.1
Use the following MATLAB statements to solve the problem
given in Skill-Assessment Exercise 8.1.

s=-7+9j;
G=(s+2)*(s+4)/...
 (s*(s+3)*(s+6));
Theta=(180/pi)*...
 angle(G)
M=abs(G)

Given

F (s) =

find F(s) at the point s = − 7 + j9 the following ways:

a. Directly substituting the point into F(s)

b. Calculating the result using vectors

ANSWER:

−0.0339 − j0.0899 = 0.096 ∠ − 110.7°

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

We are now ready to begin our discussion of the root locus.

8.2 Defining the Root Locus

(s + 2) (s + 4)

s (s + 3) (s + 6)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_8.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


A security camera system similar to that shown in Figure 8.4(a) can
automatically follow a subject. The tracking system monitors pixel
changes and positions the camera to center the changes.

FIGURE 8.4 a. Security cameras with auto tracking can be
used to follow moving objects automatically; b. block
diagram; c. closed-loop transfer function



The root locus technique can be used to analyze and design the effect of
loop gain upon the system's transient response and stability. Assume
the block diagram representation of a tracking system as shown in
Figure 8.4(b), where the closed-loop poles of the system change
location as the gain, K, is varied. Table 8.1, which was formed by
applying the quadratic formula to the denominator of the transfer
function in Figure 8.4(c), shows the variation of pole location for
different values of gain, K. The data of Table 8.1 is graphically displayed
in Figure 8.5(a), which shows each pole and its gain.

TABLE 8.1

Pole location as function of gain for the system of Figure
8.4

K Pole 1 Pole 2
0 −10 0
5 −9.47 −0.53
10 −8.87 −1.13
15 −8.16 −1.84
20 −7.24 −2.76
25 −5 −5
30 − 5 + j2.24 − 5 − j2.24
35 − 5 + j3.16 − 5 − j3.16
40 − 5 + j3.87 − 5 − j3.87
45 − 5 + j4.47 − 5 − j4.47
50 − 5 + j5 − 5 − j5



FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop
pole, which is at −10 for K = 0, moves toward the right, and the closed-
loop pole, which is at 0 for K = 0, moves toward the left. They meet at
−5, break away from the real axis, and move into the complex plane.
One closed-loop pole moves upward while the other moves downward.
We cannot tell which pole moves up or which moves down. In Figure
8.5(b), the individual closed-loop pole locations are removed and their
paths are represented with solid lines. It is this representation of the
paths of the closed-loop poles as the gain is varied that we call a root
locus. For most of our work, the discussion will be limited to positive
gain, or K ≥ 0.

The root locus shows the changes in the transient response as the gain,
K, varies. First of all, the poles are real for gains less than 25. Thus, the
system is overdamped. At a gain of 25, the poles are real and multiple
and hence critically damped. For gains above 25, the system is
underdamped. Even though these preceding conclusions were available
through the analytical techniques covered in Chapter 4, the following
conclusions are graphically demonstrated by the root locus.

Directing our attention to the underdamped portion of the root locus,
we see that regardless of the value of gain, the real parts of the complex
poles are always the same. Since the settling time is inversely
proportional to the real part of the complex poles for this second-order
system, the conclusion is that regardless of the value of gain, the



(8.12)

settling time for the system remains the same under all conditions of
underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the
percent overshoot increases. The damped frequency of oscillation,
which is equal to the imaginary part of the pole, also increases with an
increase in gain, resulting in a reduction of the peak time. Finally, since
the root locus never crosses over into the right half-plane, the system is
always stable, regardless of the value of gain, and can never break into a
sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial.
What we are about to see is that the analysis is applicable to systems of
order higher than two. For these systems, it is difficult to tie transient
response characteristics to the pole location. The root locus will allow
us to make that association and will become an important technique in
the analysis and design of higher-order systems.

8.3 Properties of the Root Locus
In Section 8.2, we arrived at the root locus by factoring the second-
order polynomial in the denominator of the transfer function. Consider
what would happen if that polynomial were of fifth or tenth order.
Without a computer, factoring the polynomial would be quite a
problem for numerous values of gain.

We are about to examine the properties of the root locus. From these
properties we will be able to make a rapid sketch of the root locus for
higher-order systems without having to factor the denominator of the
closed-loop transfer function.

The properties of the root locus can be derived from the general control
system of Figure 8.1(a). The closed-loop transfer function for the
system is

T (s) =

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in
the denominator becomes zero, or

KG(s)

1+KG(s)H(s)



(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

KG (s)H (s) = −1 = 1∠ (2k + 1) 180° k = 0, ±1, ±2, ±3, …

where −1 is represented in polar form as 1∠(2k + 1)180°. Alternately, a
value of s is a closed-loop pole if

|KG (s)H (s)| = 1

and

∠KG (s)H (s) = (2k + 1) 180°

Equation (8.13) implies that if a value of s is substituted into the
function KG(s)H(s), a complex number results. If the angle of the
complex number is an odd multiple of 180°, that value of s is a system
pole for some particular value of K. What value of K? Since the angle
criterion of Eq. (8.15) is satisfied, all that remains is to satisfy the
magnitude criterion, Eq. (8.14). Thus,

K =

We have just found that a pole of the closed-loop system causes the
angle of KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd
multiple of 180°. Furthermore, the magnitude of KG(s)H(s) must be
unity, implying that the value of K is the reciprocal of the magnitude of
G(s)H(s) when the pole value is substituted for s.

Let us demonstrate this relationship for the second-order system of
Figure 8.4. The fact that closed-loop poles exist at −9.47 and −0.53
when the gain is 5 has already been established in Table 8.1. For this
system,

KG (s)H (s) =

Substituting the pole at −9.47 for s and 5 for K yields KG(s)H(s) = − 1.
The student can repeat the exercise for other points in Table 8.1 and
show that each case yields KG(s)H(s) = − 1.

1
|G(s)||H(s)|

K

s (s + 10)



(8.18)

(8.19)

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us
apply the complex number concepts reviewed in Section 8.1 to the root
locus of the system shown in Figure 8.6. For this system the open-loop
transfer function is

KG (s)H (s) =

The closed-loop transfer function, T(s), is

T (s) =

FIGURE 8.6 a. Example system; b. pole-zero plot of G(s)

K (s + 3) (s + 4)

(s + 1) (s + 2)

K (s + 3) (s + 4)

(1 + K) s2 + (3 + 7K) s + (2 + 12K)



(8.20)

If point s is a closed-loop system pole for some value of gain, K, then s
must satisfy Eqs. (8.14) and (8.15). Consider the point −2 + j3. If this
point is a closed-loop pole for some value of gain, then the angles of the
zeros minus the angles of the poles must equal an odd multiple of 180°.
From Figure 8.7,

θ1 + θ2 − θ3 − θ4 = 56.31° + 71.57° − 90° − 108.43° = −70.55°

Therefore, −2 + j3 is not a point on the root locus, or alternatively, −2 +
j3 is not a closed-loop pole for any gain.

FIGURE 8.7 Vector representation of G(s) from Figure
8.6(a) at −2 + j3



(8.21)

(8.22)

If these calculations are repeated for the point −2 + j(√2/2), the

angles do add up to 180°. That is, −2 + j(√2/2) is a point on the root

locus for some value of gain. We now proceed to evaluate that value of
gain.

From Eqs. (8.5) and (8.16),

K = = =

Looking at Figure 8.7 with the point −2 + j3 replaced by 
−2 + j(√2/2), the gain, K, is calculated as

K = = = 0.33

Thus, the point −2 + j(√2/2) is a point on the root locus for a gain of

0.33.

We summarize what we have found as follows: Given the poles and
zeros of the open-loop transfer function, KG(s)H(s), a point in the s-
plane is on the root locus for a particular value of gain, K, if the angles
of the zeros minus the angles of the poles, all drawn to the selected
point on the s-plane, add up to (2k + 1)180°. Furthermore, gain K at
that point for which the angles add up to (2k + 1)180° is found by
dividing the product of the pole lengths by the product of the zero
lengths.

1
|G(s)H(s)|

1
M

Π pole lengths
Π zero lengths

L3L4

L1L2

(1.22)
√2
2

(2.12) (1.22)



Skill-Assessment Exercise 8.2
PROBLEM:
Given a unity-feedback system that has the forward transfer
function

G (s) =

do the following:

a. Calculate the angle of G(s) at the point (−3 + j0) by finding the
algebraic sum of angles of the vectors drawn from the zeros and
poles of G(s) to the given point.

TryIt 8.2
Use MATLAB and the following statements to solve Skill-
Assessment Exercise 8.2.

s=-3+0j;
G=(s+2)/(s^2+4*s+13);
Theta=(180/pi)*...
 angle(G)M=abs(G);
K=1/M

b. Determine if the point specified in a is on the root locus.

c. If the point specified in a is on the root locus, find the gain, K,
using the lengths of the vectors.

ANSWERS:

a. Sum of angles = 180°

b. Point is on the root locus

c. K = 10

K (s + 2)

(s2 + 4s + 13)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_8.zip


The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.4 Sketching the Root Locus
It appears from our previous discussion that the root locus can be
obtained by sweeping through every point in the s-plane to locate those
points for which the angles, as previously described, add up to an odd
multiple of 180°. Although this task is tedious without the aid of a
computer, the concept can be used to develop rules that can be used to
sketch the root locus without the effort required to plot the locus. Once
a sketch is obtained, it is possible to accurately plot just those points
that are of interest to us for a particular problem.

The following five rules allow us to sketch the root locus using minimal
calculations. The rules yield a sketch that gives intuitive insight into the
behavior of a control system. In the next section, we refine the sketch
by finding actual points or angles on the root locus. These refinements,
however, require some calculations or the use of computer programs,
such as MATLAB.

1. Number of branches. Each closed-loop pole moves as the gain
is varied. If we define a branch as the path that one pole traverses,
then there will be one branch for each closed-loop pole. Our first
rule, then, defines the number of branches of the root locus:

The number of branches of the root locus equals the number of
closed-loop poles.

As an example, look at Figure 8.5(b), where the two branches are
shown. One originates at the origin, the other at −10.

2. Symmetry. If complex closed-loop poles do not exist in conjugate
pairs, the resulting polynomial, formed by multiplying the factors
containing the closed-loop poles, would have complex coefficients.
Physically realizable systems cannot have complex coefficients in
their transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.

An example of symmetry about the real axis is shown in Figure
8.5(b).

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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3. Real-axis segments. Let us make use of the angle property, Eq.
(8.15), of the points on the root locus to determine where the real-
axis segments of the root locus exist. Figure 8.8 shows the poles
and zeros of a general open-loop system. If an attempt is made to
calculate the angular contribution of the poles and zeros at each
point, P1, P2, P3, and P4, along the real axis, we observe the
following: (1) At each point the angular contribution of a pair of
open-loop complex poles or zeros is zero, and (2) the contribution
of the open-loop poles and open-loop zeros to the left of the
respective point is zero. The conclusion is that the only
contribution to the angle at any of the points comes from the open-
loop, real-axis poles and zeros that exist to the right of the
respective point. If we calculate the angle at each point using only
the open-loop, real-axis poles and zeros to the right of each point,
we note the following: (1) The angles on the real axis alternate
between 0° and 180°, and (2) the angle is 180° for regions of the
real axis that exist to the left of an odd number of poles and/or
zeros. The following rule summarizes the findings:

On the real axis, for K > 0 the root locus exists to the left of an
odd number of real-axis, finite open-loop poles and/or finite
open-loop zeros.

Examine Figure 8.6(b). According to the rule just developed, the
real-axis segments of the root locus are between −1 and −2 and
between −3 and −4 as shown in Figure 8.9.

4. Starting and ending points. Where does the root locus begin
(zero gain) and end (infinite gain)? The answer to this question will
enable us to expand the sketch of the root locus beyond the real-
axis segments. Consider the closed-loop transfer function, T(s),
described by Eq. (8.3). T(s) can now be evaluated for both large
and small gains, K. As K approaches zero (small gain),

T (s) ≈

From Eq. (8.23) we see that the closed-loop system poles at small
gains approach the combined poles of G(s) and H(s). We conclude
that the root locus begins at the poles of G(s)H(s), the open-loop
transfer function.

KNG (s)DH (s)

DG (s)DH (s) + ε



(8.24)

(8.25)

At high gains, where K is approaching infinity,

T (s) ≈

From Eq. (8.24) we see that the closed-loop system poles at large
gains approach the combined zeros of G(s) and H(s). Now we
conclude that the root locus ends at the zeros of G(s)H(s), the
open-loop transfer function.

Summarizing what we have found:

The root locus begins at the finite and infinite poles of G(s)H(s)
and ends at the finite and infinite zeros of G(s)H(s).

Remember that these poles and zeros are the open-loop poles and
zeros.

In order to demonstrate this rule, look at the system in Figure
8.6(a), whose real-axis segments have been sketched in Figure
8.9. Using the rule just derived, we find that the root locus begins
at the poles at −1 and −2 and ends at the zeros at −3 and −4 (see
Figure 8.10). Thus, the poles start out at −1 and −2 and move
through the real-axis space between the two poles. They meet
somewhere between the two poles and break out into the complex
plane, moving as complex conjugates. The poles return to the real
axis somewhere between the zeros at −3 and −4, where their path
is completed as they move away from each other, and end up,
respectively, at the two zeros of the open-loop system at −3 and
−4.

5. Behavior at infinity. Consider applying Rule 4 to the following
open-loop transfer function:

KG (s)H (s) =

There are three finite poles, at s = 0, − 1, and − 2, and no finite
zeros.

KNG (s)DH (s)

ε + KNG (s)NH (s)

K

s (s + 1) (s + 2)



FIGURE 8.8 Poles and zeros of a general open-loop system
with test points, Pi, on the real axis

FIGURE 8.9 Real-axis segments of the root locus for the
system of Figure 8.6



(8.26)

FIGURE 8.10 Complete root locus for the system of Figure
8.6

A function can also have infinite poles and zeros. If the function
approaches infinity as s approaches infinity, then the function has a
pole at infinity. If the function approaches zero as s approaches infinity,
then the function has a zero at infinity. For example, the function G(s)
= s has a pole at infinity, since G(s) approaches infinity as s approaches
infinity. On the other hand, G(s) = 1/s has a zero at infinity, since G(s)
approaches zero as s approaches infinity.

Every function of s has an equal number of poles and zeros if we
include the infinite poles and zeros as well as the finite poles and zeros.
In this example, Eq. (8.25) contains three finite poles and three infinite
zeros. To illustrate, let s approach infinity. The open-loop transfer
function becomes

KG (s)H (s) ≈ =

Each s in the denominator causes the open-loop function, KG(s)H(s), to
become zero as that s approaches infinity. Hence, Eq. (8.26) has three
zeros at infinity.

K

s3

K

s ⋅ s ⋅ s



(8.27)

(8.28)

Thus, for Eq. (8.25), the root locus begins at the finite poles of
KG(s)H(s) and ends at the infinite zeros. The question remains: Where
are the infinite zeros? We must know where these zeros are in order to
show the locus moving from the three finite poles to the three infinite
zeros. Rule 5 helps us locate these zeros at infinity. Rule 5 also helps us
locate poles at infinity for functions containing more finite zeros than
finite poles.1

We now state Rule 5, which will tell us what the root locus looks like as
it approaches the zeros at infinity or as it moves from the poles at
infinity. The derivation can be found in Appendix M.1 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

The root locus approaches straight lines as asymptotes as the locus
approaches infinity. Further, the equation of the asymptotes is
given by the real-axis intercept, σa and angle, θa as follows:

σa =

θa =

where k = 0, ±1, ±2, ±3 and the angle is given in radians with
respect to the positive extension of the real axis.

Notice that the running index, k, in Eq. (8.28) yields a multiplicity of
lines that account for the many branches of a root locus that
approach infinity. Let us demonstrate the concepts with an example.

∑ finite poles−∑ finite zeros

#finite poles−#finite zeros

(2k+1)π

#finite poles−#finite zeros
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(8.30a)

(8.30b)

(8.30d)

(8.30c)

Example 8.2 Sketching a Root Locus with
Asymptotes
PROBLEM:
Sketch the root locus for the system shown in Figure 8.11.

FIGURE 8.11 System for Example 8.2

SOLUTION:
Let us begin by calculating the asymptotes. Using Eq. (8.27), the
real-axis intercept is evaluated as

σa = = −

The angles of the lines that intersect at −4/3, given by Eq. (8.28),
are

θa =

= π/3 for k = 0

= π for k = 1

= 5π/3 for k = 2

If the value for k continued to increase, the angles would begin to
repeat. The number of lines obtained equals the difference between
the number of finite poles and the number of finite zeros.

(−1 − 2 − 4) − (−3)

4 − 1

4

3

(2k + 1)π

#finite poles − #finite zeros



Rule 4 states that the locus begins at the open-loop poles and ends
at the open-loop zeros. For the example there are more open-loop
poles than open-loop zeros. Thus, there must be zeros at infinity.
The asymptotes tell us how we get to these zeros at infinity.

Figure 8.12 shows the complete root locus as well as the asymptotes
that were just calculated. Notice that we have made use of all the
rules learned so far. The real-axis segments lie to the left of an odd
number of poles and/or zeros. The locus starts at the open-loop
poles and ends at the open-loop zeros. For the example there is only
one open-loop finite zero and three infinite zeros. Rule 5, then, tells
us that the three zeros at infinity are at the ends of the asymptotes.

FIGURE 8.12 Root locus and asymptotes for the system
of Figure 8.11



Skill-Assessment Exercise 8.3
PROBLEM:
Sketch the root locus and its asymptotes for a unity-feedback
system that has the forward transfer function

G (s) =

ANSWER:
The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.5 Refining the Sketch
The rules covered in the previous section permit us to sketch a root
locus rapidly. If we want more detail, we must be able to accurately find
important points on the root locus along with their associated gain.
Points on the real axis where the root locus enters or leaves the complex
plane—real-axis breakaway and break-in points—and the jω-axis
crossings are candidates. We can also derive a better picture of the root
locus by finding the angles of departure and arrival from complex poles
and zeros, respectively.

In this section, we discuss the calculations required to obtain specific
points on the root locus. Some of these calculations can be made using
the basic root locus relationship that the sum of the zero angles minus
the sum of the pole angles equals an odd multiple of 180°, and the gain
at a point on the root locus is found as the ratio of (1) the product of
pole lengths drawn to that point to (2) the product of zero lengths
drawn to that point. We have yet to address how to implement this task.
In the past, an inexpensive tool called a Spirule™ added the angles
together rapidly and then quickly multiplied and divided the lengths to
obtain the gain. Today we can rely on hand-held or programmable
calculators as well as personal computers.

K

(s + 2) (s + 4) (s + 6)
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Students pursuing MATLAB will learn how to apply it to the root locus
at the end of Section 8.6. Other alternatives are discussed in Appendix
H.2 at www.wiley.com/go/Nise/ControlSystemsEngineering8e. The
discussion can be adapted to programmable hand-held calculators. All
readers are encouraged to select a computational aid at this point. Root
locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-
axis breakaway and break-in points, jω-axis crossings, angles of
departure from complex poles, and angles of arrival to complex zeros.
We conclude by showing how to find accurately any point on the root
locus and calculate the gain.

Real-Axis Breakaway and Break-In Points
Numerous root loci appear to break away from the real axis as the
system poles move from the real axis to the complex plane. At other
times the loci appear to return to the real axis as a pair of complex poles
becomes real. We illustrate this in Figure 8.13. This locus is sketched
using the first four rules: (1) number of branches, (2) symmetry, (3)
real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between −1 and −2 and
returning to the real axis between +3 and +5. The point where the locus
leaves the real axis, −σ1, is called the breakaway point, and the point
where the locus returns to the real axis, σ2, is called the break-in
point.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 8.13 Root locus example showing real-axis
breakaway (−σ1) and break-in points (σ2)

At the breakaway or break-in point, the branches of the root locus form
an angle of 180°/n with the real axis, where n is the number of closed-
loop poles arriving at or departing from the single breakaway or break-
in point on the real axis (Kuo, 1991). Thus, for the two poles shown in
Figure 8.13, the branches at the breakaway point form 90° angles with
the real axis.

We now show how to find the breakaway and break-in points. As the
two closed-loop poles, which are at −1 and −2 when K = 0, move toward
each other, the gain increases from a value of zero. We conclude that
the gain must be maximum along the real axis at the point where the
breakaway occurs, somewhere between −1 and −2. Naturally, the gain
increases above this value as the poles move into the complex plane. We



(8.31)

conclude that the breakaway point occurs at a point of maximum gain
on the real axis between the open-loop poles.

Now let us turn our attention to the break-in point somewhere between
+3 and +5 on the real axis. When the closed-loop complex pair returns
to the real axis, the gain will continue to increase to infinity as the
closed-loop poles move toward the open-loop zeros. It must be true,
then, that the gain at the break-in point is the minimum gain found
along the real axis between the two zeros.

The sketch in Figure 8.14 shows the variation of real-axis gain. The
breakaway point is found at the maximum gain between −1 and −2, and
the break-in point is found at the minimum gain between +3 and +5.

FIGURE 8.14 Variation of gain along the real axis for the
root locus of Figure 8.13

There are three methods for finding the points at which the root locus
breaks away from and breaks into the real axis. The first method is to
maximize and minimize the gain, K, using differential calculus. For all
points on the root locus, Eq. (8.13) yields

K = −

For points along the real-axis segment of the root locus where
breakaway and break-in points could exist, s = σ. Hence, along the real

1

G (s)H (s)



(8.32)

axis Eq. (8.31) becomes

K = −

This equation then represents a curve of K versus σ similar to that
shown in Figure 8.14. Hence, if we differentiate Eq. (8.32) with respect
to σ and set the derivative equal to zero, we can find the points of
maximum and minimum gain and hence the breakaway and break-in
points. Let us demonstrate.

1

G (σ)H (σ)



(8.33)

(8.34)

(8.35)

(8.36)

Example 8.3 Breakaway and Break-in Points via
Differentiation
PROBLEM:
Find the breakaway and break-in points for the root locus of Figure
8.13, using differential calculus.

SOLUTION:
Using the open-loop poles and zeros, we represent the open-loop
system whose root locus is shown in Figure 8.13 as follows:

KG (s)H (s) = =

But for all points along the root locus, KG(s)H(s) = − 1, and along
the real axis, s = σ. Hence,

= −1

Solving for K, we find

K =

Differentiating K with respect to σ and setting the derivative equal
to zero yields

= = 0

Solving for σ, we find σ = − 1.45 and 3.82, which are the breakaway
and break-in points.

K (s − 3) (s − 5)

(s + 1) (s + 2)

K (s2 − 8s + 15)

(s2 + 3s + 2)

K (σ2 − 8σ + 15)
(σ2 + 3σ + 2)

− (σ2 + 3σ + 2)

(σ2 − 8σ + 15)

dK

dσ

(11σ2 − 26σ − 61)

(σ2 − 8σ + 15)2



(8.37)

(8.38)

(8.39)

The second method is a variation on the differential calculus method.
Called the transition method, it eliminates the step of differentiation
(Franklin, 1991). This method, derived in Appendix M.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e, is now stated:

Breakaway and break-in points satisfy the relationship

m

∑
1

=
n

∑
1

where zi and pi are the negative of the zero and pole values,
respectively, of G(s)H(s).

Solving Eq. (8.37) for σ, the real-axis values that minimize or maximize
K, yields the breakaway and break-in points without differentiating. Let
us look at an example.

Example 8.4 Breakaway and Break-in Points
Without Differentiation
PROBLEM:
Repeat Example 8.3 without differentiating.

SOLUTION:
Using Eq. (8.37),

+ = +

Simplifying,

11σ2 − 26σ − 61 = 0

Hence, σ = − 1.45 and 3.82, which agrees with Example 8.3.

1
σ+zi

1
σ+pi

1

σ − 3

1

σ − 5

1

σ + 1

1

σ + 2
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For the third method, the root locus program discussed in Appendix
H.2 at www.wiley.com/go/Nise/ControlSystemsEngineering8e can be
used to find the breakaway and break-in points. Simply use the
program to search for the point of maximum gain between −1 and −2
and to search for the point of minimum gain between +3 and +5. Table
8.2 shows the results of the search. The locus leaves the axis at −1.45,
the point of maximum gain between −1 and −2, and reenters the real
axis at +3.8, the point of minimum gain between +3 and +5. These
results are the same as those obtained using the first two methods.
MATLAB also has the capability of finding breakaway and break-in
points.

TABLE 8.2

Data for breakaway and break-in points for the root locus
of Figure 8.13

Real-axis value Gain Comment
−1.41 0.008557
−1.42 0.008585
−1.43 0.008605
−1.44 0.008617
−1.45 0.008623 ← Max. gain : breakaway
−1.46 0.008622
3.3 44.686
3.4 37.125
3.5 33.000
3.6 30.667
3.7 29.440
3.8 29.000 ← Min. gain : break-in
3.9 29.202

The jω-Axis Crossings

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


We now further refine the root locus by finding the imaginary-axis
crossings. The importance of the jω-axis crossings should be readily
apparent. Looking at Figure 8.12, we see that the system's poles are in
the left half-plane up to a particular value of gain. Above this value of
gain, two of the closed-loop system's poles move into the right half-
plane, signifying that the system is unstable. The jω-axis crossing is a
point on the root locus that separates the stable operation of the system
from the unstable operation. The value of ω at the axis crossing yields
the frequency of oscillation, while the gain at the jω-axis crossing
yields, for this example, the maximum positive gain for system stability.
We should note here that other examples illustrate instability at small
values of gain and stability at large values of gain. These systems have a
root locus starting in the right half-plane (unstable at small values of
gain) and ending in the left half-plane (stable for high values of gain).

To find the jω-axis crossing, we can use the Routh–Hurwitz criterion,
covered in Chapter 6, as follows: Forcing a row of zeros in the Routh
table will yield the gain; going back one row to the even polynomial
equation and solving for the roots yields the frequency at the
imaginary-axis crossing.



(8.40)

(8.41)

Example 8.5 Frequency and Gain at Imaginary-
Axis Crossing
PROBLEM:
For the system of Figure 8.11, find the frequency and gain, K, for
which the root locus crosses the imaginary axis. For what range of K
is the system stable?

SOLUTION:
The closed-loop transfer function for the system of Figure 8.11 is

T (s) =

Using the denominator and simplifying some of the entries by
multiplying any row by a constant, we obtain the Routh array shown
in Table 8.3.

TABLE 8.3

Routh table for Eq (8.40)

s4 1 14 3K

s3 7 8 + K

s2 90 − K 21K

s1

s0 21K

A complete row of zeros yields the possibility for imaginary axis
roots. For positive values of gain, those for which the root locus is
plotted, only the s1 row can yield a row of zeros. Thus,

−K2 − 65K + 720 = 0

K (s + 3)

s4 + 7s3 + 14s2 + (8 + K) s + 3K

−K2−65K+720
90−K



(8.43)

(8.42)

From this equation K is evaluated as

K = 9.65

Forming the even polynomial by using the s2 row with K = 9.65, we
obtain

(90 − K) s2 + 21K = 80.35s2 + 202.7 = 0

and s is found to be equal to ±j1.59. Thus the root locus crosses the
jω-axis at ±j1.59 at a gain of 9.65. We conclude that the system is
stable for 0 ≤ K < 9.65.

Another method for finding the jω-axis crossing (or any point on the
root locus, for that matter) uses the fact that at the jω-axis crossing, the
sum of angles from the finite open-loop poles and zeros must add to (2k
+ 1)180°. Thus, we can search the jω-axis until we find the point that
meets this angle condition. A computer program, such as the root locus
program discussed in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e or MATLAB,
can be used for this purpose. Subsequent examples in this chapter use
this method to determine the jω-axis crossing.

Angles of Departure and Arrival
In this subsection, we further refine our sketch of the root locus by
finding angles of departure and arrival from complex poles and zeros.
Consider Figure 8.15, which shows the open-loop poles and zeros, some
of which are complex. The root locus starts at the open-loop poles and
ends at the open-loop zeros. In order to sketch the root locus more
accurately, we want to calculate the root locus departure angle from the
complex poles and the arrival angle to the complex zeros.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e




(8.44a)

(8.44b)

FIGURE 8.15 Open-loop poles and zeros and calculation of
a. angle of departure; b. angle of arrival

If we assume a point on the root locus ε close to a complex pole, the
sum of angles drawn from all finite poles and zeros to this point is an
odd multiple of 180°. Except for the pole that is ε close to the point, we
assume all angles drawn from all other poles and zeros are drawn
directly to the pole that is near the point. Thus, the only unknown angle
in the sum is the angle drawn from the pole that is ε close. We can solve
for this unknown angle, which is also the angle of departure from this
complex pole. Hence, from Figure 8.15(a),

−θ1 + θ2 + θ3 − θ4 − θ5 + θ6 = (2k + 1) 180°

or

θ1 = θ2 + θ3 − θ4 − θ5 + θ6 − (2k + 1) 180°

If we assume a point on the root locus ε close to a complex zero, the
sum of angles drawn from all finite poles and zeros to this point is an



(8.45a)

(8.45b)

odd multiple of 180°. Except for the zero that is ε close to the point, we
can assume all angles drawn from all other poles and zeros are drawn
directly to the zero that is near the point. Thus, the only unknown angle
in the sum is the angle drawn from the zero that is ε close. We can solve
for this unknown angle, which is also the angle of arrival to this
complex zero. Hence, from Figure 8.15(b),

−θ1 + θ2 + θ3 − θ4 − θ5 + θ6 = (2k + 1) 180°

or

θ2 = θ1 − θ3 + θ4 + θ5 − θ6 + (2k + 1) 180°

Let us look at an example.



(8.46)

Example 8.6 Angle of Departure from a Complex
Pole
PROBLEM:
Given the unity-feedback system of Figure 8.16, find the angle of
departure from the complex poles and sketch the root locus.

FIGURE 8.16 Unity-feedback system with complex poles

SOLUTION:

Using the poles and zeros of G(s) = (s + 2)/[(s + 3) (s2 + 2s + 2)] as
plotted in Figure 8.17, we calculate the sum of angles drawn to a
point ε close to the complex pole, −1 + j1, in the second quadrant.
Thus,

−θ1 − θ2 + θ3 − θ4 = −θ1 − 90° + tan−1( )−tan−1( )= 180°

from which θ = − 251.6° = 108.4°. A sketch of the root locus is
shown in Figure 8.17. Notice how the departure angle from the
complex poles helps us to refine the shape.

1

1

1

2



FIGURE 8.17 Root locus for system of Figure 8.16
showing angle of departure

Plotting and Calibrating the Root Locus



(8.47)

Once we sketch the root locus using the rules from Section 8.4, we may
want to accurately locate points on the root locus as well as find their
associated gain. For example, we might want to know the exact
coordinates of the root locus as it crosses the radial line representing
20% overshoot. Further, we also may want the value of gain at that
point.

Consider the root locus shown in Figure 8.12. Let us assume we want to
find the exact point at which the locus crosses the 0.45 damping ratio
line and the gain at that point. Figure 8.18 shows the system's open-
loop poles and zeros along with the ζ = 0.45 line. If a few test points
along the ζ = 0.45 line are selected, we can evaluate their angular sum
and locate that point where the angles add up to an odd multiple of
180°. It is at this point that the root locus exists. Equation (8.20) can
then be used to evaluate the gain, K, at that point.

FIGURE 8.18 Finding and calibrating exact points on the
root locus of Figure 8.12

Selecting the point at radius 2 (r = 2) on the ζ = 0.45 line, we add the
angles of the zeros and subtract the angles of the poles, obtaining

θ2 − θ1 − θ3 − θ4 − θ5 = −251.5°

Since the sum is not equal to an odd multiple of 180°, the point at
radius = 2 is not on the root locus. Proceeding similarly for the points at
radius = 1.5, 1, 0.747, and 0.5, we obtain the table shown in Figure 8.18.



(8.48)

This table lists the points, giving their radius, r, and the sum of angles
indicated by the symbol ∠. From the table, we see that the point at
radius 0.747 is on the root locus, since the angles add up to −180°.
Using Eq. (8.21), the gain, K, at this point is

K = = 1.71

In summary, we search a given line for the point yielding a summation
of angles (zero angles–pole angles) equal to an odd multiple of 180°.
We conclude that the point is on the root locus. The gain at that point is
then found by multiplying the pole lengths drawn to that point and
dividing by the product of the zero lengths drawn to that point. A
computer program, such as that discussed in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e or MATLAB,
can be used.

|A| |C| |D| |E|

|B|
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Skill-Assessment Exercise 8.4
PROBLEM:
Given a unity-feedback system that has the forward transfer
function

G (s) =

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jω-axis crossing.

d. Find the break-in point.

e. Find the angle of departure from the complex poles.

ANSWERS:

a. See solution at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

b. s = ±j√21

c. K = 4

d. Break-in point = − 7

e. Angle of departure = − 233.1°

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.6 An Example
We now review the rules for sketching and finding points on the root
locus, as well as present an example. The root locus is the path of the

K (s + 2)

(s2 − 4s + 13)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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closed-loop poles of a system as a parameter of the system is varied.
Each point on the root locus satisfies the angle condition, ∠G(s)H(s) =
(2k + 1)180°. Using this relationship, rules for sketching and finding
points on the root locus were developed and are now summarized.

Basic Rules for Sketching the Root Locus
Number of branches The number of branches of the root locus
equals the number of closed-loop poles.

Symmetry The root locus is symmetrical about the real axis.

Real-axis segments On the real axis, for K > 0 the root locus
exists to the left of an odd number of real-axis, finite open-loop
poles and/or finite open-loop zeros.

Starting and ending points The root locus begins at the finite
and infinite poles of G(s)H(s) and ends at the finite and infinite
zeros of G(s)H(s).

Behavior at infinity The root locus approaches straight lines as
asymptotes as the locus approaches infinity. Further, the equations
of the asymptotes are given by the real-axis intercept and angle in
radians as follows:

σa =

θa =

where k = 0, ±1, ±2, ±3, …

Additional Rules for Refining the Sketch
Real-axis breakaway and break-in points The root locus
breaks away from the real axis at a point where the gain is
maximum and breaks into the real axis at a point where the gain is
minimum.

Calculation of jω-axis crossings The root locus crosses the
jω-axis at the point where ∠G(s)H(s) = (2k + 1)180°. Routh–

∑ finite poles−∑ finite zeros

#finite poles−#finite zeros

(2k+1)π

#finite poles−#finite zeros
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Hurwitz or a search of the jω-axis for (2k + 1)180° can be used to
find the jω-axis crossing.

Angles of departure and arrival The root locus departs from
complex, open-loop poles and arrives at complex, open-loop zeros
at angles that can be calculated as follows. Assume a point ε close
to the complex pole or zero. Add all angles drawn from all open-
loop poles and zeros to this point. The sum equals (2k + 1)180°.
The only unknown angle is that drawn from the ε close pole or
zero, since the vectors drawn from all other poles and zeros can be
considered drawn to the complex pole or zero that is ε close to the
point. Solving for the unknown angle yields the angle of departure
or arrival.

Plotting and calibrating the root locus All points on the root
locus satisfy the relationship ∠G(s)H(s) = (2k + 1)180°. The gain,
K, at any point on the root locus is given by

K = = −

Two animation PowerPoint presentations (PPTs) demonstrating
root locus plotting are available for instructors at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. See
Root-Locus Plotter and Dynamic Root-Locus.

Let us now look at a summary example.

1
|G(s)H(s)|

1
M

Π finite pole lengths
Π finite zero lengths
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Example 8.7 Sketching a Root Locus and
Finding Critical Points
PROBLEM:
Sketch the root locus for the system shown in Figure 8.19(a) and
find the following:

a. The exact point and gain where the locus crosses the 0.45
damping ratio line

b. The exact point and gain where the locus crosses the jω-axis

c. The breakaway point on the real axis

d. The range of K within which the system is stable





(8.52)

(8.53)

FIGURE 8.19 a. System for Example 8.7; b. root locus
sketch

SOLUTION:
The problem solution is shown, in part, in Figure 8.19(b). First
sketch the root locus. Using Rule 3, the real-axis segment is found
to be between −2 and −4. Rule 4 tells us that the root locus starts at
the open-loop poles and ends at the open-loop zeros. These two
rules alone give us the general shape of the root locus.

a. To find the exact point where the locus crosses the ζ = 0.45 line,
we can use the root locus program discussed in Appendix H.2
at www.wiley.com/go/Nise/ControlSystemsEngineering8e to
search along the line

θ = 180° − cos−1 0.45 = 116.7°

for the point where the angles add up to an odd multiple of
180°. Searching in polar coordinates, we find that the root
locus crosses the ζ = 0.45 line at 3.4∠116.7° with a gain, K, of
0.417.

b. To find the exact point where the locus crosses the jω-axis, use
the root locus program to search along the line

θ = 90°

for the point where the angles add up to an odd multiple of
180°. Searching in polar coordinates, we find that the root
locus crosses the jω-axis at ±j3.9 with a gain of K = 1.5.

c. To find the breakaway point, use the root locus program to
search the real axis between −2 and −4 for the point that yields
maximum gain. Naturally, all points will have the sum of their
angles equal to an odd multiple of 180°. A maximum gain of
0.0248 is found at the point −2.88. Therefore, the breakaway
point is between the open-loop poles on the real axis at −2.88.

d. From the answer to b, the system is stable for K between 0 and
1.5.
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 Students who are using MATLAB should now run ch8apB1
in Appendix B. You will learn how to use MATLAB to plot and

title a root locus, overlay constant ζ and ωn curves, zoom

into and zoom out from a root locus, and interact with the

root locus to find critical points as well as gains at

those points. This exercise solves Example 8.7 using

MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_8.zip


Skill-Assessment Exercise 8.5
PROBLEM:

TryIt 8.3
Use MATLAB, the Control System Toolbox, and the following
statements to plot the root locus for Skill-Assessment Exercise
8.5. Solve the remaining parts of the problem by clicking on the
appropriate points on the plotted root locus.

numg=poly([2  4]);
deng=[1  6  25];
G=tf(numg,deng)
rlocus(G)
z=0.5
sgrid(z,0)

Given a unity-feedback system that has the forward transfer
function

G (s) =

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jω-axis crossing.

d. Find the break-in point.

e. Find the point where the locus crosses the 0.5 damping ratio
line.

f. Find the gain at the point where the locus crosses the 0.5
damping ratio line.

g. Find the range of gain, K, for which the system is stable.

K (s − 2) (s − 4)

(s2 + 6s + 25)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_8.zip


ANSWERS:

a. See solution at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

b. s = ±j4.06

c. K = 1

d. Break-in point = + 2.89

e. s = − 2.42 + j4.18

f. K = 0.108

g. K < 1

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.7 Transient Response Design via Gain
Adjustment
Now that we know how to sketch a root locus, we show how to use it for
the design of transient response. In the last section we found that the
root locus crossed the 0.45 damping ratio line with a gain of 0.417.
Does this mean that the system will respond with 20.5% overshoot, the
equivalent to a damping ratio of 0.45? It must be emphasized that the
formulas describing percent overshoot, settling time, and peak time
were derived only for a system with two closed-loop complex poles and
no closed-loop zeros. The effect of additional poles and zeros and the
conditions for justifying an approximation of a two-pole system were
discussed in Sections 4.7 and 4.8 and apply here to closed-loop systems
and their root loci. The conditions justifying a second-order
approximation are restated here:

1. Higher-order poles are much farther into the left half of the s-plane
than the dominant second-order pair of poles. The response that
results from a higher-order pole does not appreciably change the
transient response expected from the dominant second-order
poles.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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2. Closed-loop zeros near the closed-loop second-order pole pair are
nearly canceled by the close proximity of higher-order closed-loop
poles.

3. Closed-loop zeros not canceled by the close proximity of higher-
order closed-loop poles are far removed from the closed-loop
second-order pole pair.

The first condition as it applies to the root locus is shown graphically in
Figure 8.20(a) and (b). Figure 8.20(b) would yield a much better
second-order approximation than Figure 8.20(a), since closed-loop
pole p3 is farther from the dominant, closed-loop second-order pair, p1
and p2.

FIGURE 8.20 Making second-order approximations

The second condition is shown graphically in Figure 8.20(c) and (d).
Figure 8.20(d) would yield a much better second-order approximation
than Figure 8.20(c), since closed-loop pole p3 is closer to canceling the
closed-loop zero.

Summarizing the design procedure for higher-order systems, we arrive
at the following:

1. Sketch the root locus for the given system.



2. Assume the system is a second-order system without any zeros and
then find the gain to meet the transient response specification.

3. Justify your second-order assumption by finding the location of all
higher-order poles and evaluating the fact that they are much
farther from the jω-axis than the dominant second-order pair. As a
rule of thumb, this textbook assumes a factor of five times farther.
Also, verify that closed-loop zeros are approximately canceled by
higher-order poles. If closed-loop zeros are not canceled by higher-
order closed-loop poles, be sure that the zero is far removed from
the dominant second-order pole pair to yield approximately the
same response obtained without the finite zero.

4. If the assumptions cannot be justified, your solution will have to be
simulated in order to be sure it meets the transient response
specification. It is a good idea to simulate all solutions, anyway.

We now look at a design example to show how to make a second-order
approximation and then verify whether or not the approximation is
valid.



Example 8.8 Third-Order System Gain Design
PROBLEM:
Consider the system shown in Figure 8.21. Design the value of gain,
K, to yield 1.52% overshoot. Also estimate the settling time, peak
time, and steady-state error.

FIGURE 8.21 System for Example 8.8

SOLUTION:
The root locus is shown in Figure 8.22. Notice that this is a third-
order system with one zero. Breakaway points on the real axis can
occur between 0 and −1 and between −1.5 and −10, where the gain
reaches a peak. Using the root locus program and searching in these
regions for the peaks in gain, breakaway points are found at −0.62
with a gain of 2.511 and at −4.4 with a gain of 28.89. A break-in
point on the real axis can occur between −1.5 and −10, where the
gain reaches a local minimum. Using the root locus program and
searching in these regions for the local minimum gain, a break-in
point is found at −2.8 with a gain of 27.91.
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(8.55)

FIGURE 8.22 Root locus for Example 8.8

Next assume that the system can be approximated by a second-
order, under-damped system without any zeros. A 1.52% overshoot
corresponds to a damping ratio of 0.8. Sketch this damping ratio
line on the root locus, as shown in Figure 8.22.

Use the root locus program to search along the 0.8 damping ratio
line for the point where the angles from the open-loop poles and
zeros add up to an odd multiple of 180°. This is the point where the
root locus crosses the 0.8 damping ratio or 1.52% overshoot line.
Three points satisfy this criterion: −0.87 ±j0.66, − 1.19 ±j0.90, and
−4.6 ±j 3.45 with respective gains of 7.36, 12.79, and 39.64. For
each point the settling time and peak time are evaluated using

Ts =

where ζωn is the real part of the closed-loop pole, and also using

Tp =

where ωn√1 − ζ2 is the imaginary part of the closed-loop pole.

4

ζωn

π

ωn√1 − ζ2
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To test our assumption of a second-order system, we must calculate
the location of the third pole. Using the root locus program, search
along the negative extension of the real axis between the zero at −1.5
and the pole at −10 for points that match the value of gain found at
the second-order dominant poles. For each of the three crossings of
the 0.8 damping ratio line, the third closed-loop pole is at −9.25,
−8.6, and −1.8, respectively. The results are summarized in Table
8.4.

TABLE 8.4

Characteristics of the system of Example 8.8
Case Closed-

loop
poles

Closed-
loop
zero

Gain Third
closed-

loop pole

Settling
time

Peak
time

Kv

1 − 0.87
±j0.66

− 1.5 + j0 7.36 −9.25 4.51 3.69 1.1

2 − 1.19
±j0.90

− 1.5 + j0 12.79 −8.61 3.43 2.26 1.9

3 − 4.60
±j3.45

− 1.5 + j0 39.64 −1.80 1.57 0.761 5.9

Finally, let us examine the steady-state error produced in each case.
Note that we have little control over the steady-state error at this
point. When the gain is set to meet the transient response, we have
also designed the steady-state error. For the example, the steady-
state error specification is given by Kv and is calculated as

Kv = lim
s→0

sG (s) =

The results for each case are shown in Table 8.4.

How valid are the second-order assumptions? From Table 8.4,
Cases 1 and 2 yield third closed-loop poles that are relatively far
from the closed-loop zero. For these two cases there is no pole-zero
cancellation, and a second-order system approximation is not valid.
In Case 3, the third closed-loop pole and the closed-loop zero are

K (1.5)

(1) (10)
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relatively close to each other, and a second-order system
approximation can be considered valid. In order to show this, let us
make a partial-fraction expansion of the closed-loop step response
of Case 3 and see that the amplitude of the exponential decay is
much less than the amplitude of the underdamped sinusoid. The
closed-loop step response, C3 (s), formed from the closed-loop poles
and zeros of Case 3 is

C3 (s) =

=

= + −

Thus, the amplitude of the exponential decay from the third pole is
0.3, and the amplitude of the underdamped response from the
dominant poles is √1.32 + 1.62 = 2.06. Hence, the dominant pole
response is 6.9 times as large as the nondominant exponential
response, and we assume that a second-order approximation is
valid.

Using a simulation program, we obtain Figure 8.23, which shows
comparisons of step responses for the problem we have just solved.
Cases 2 and 3 are plotted for both the third-order response and a
second-order response, assuming just the dominant pair of poles
calculated in the design problem. Again, the second-order
approximation was justified for Case 3, where there is a small
difference in percent overshoot. The second-order approximation is
not valid for Case 2. Other than the excess overshoot, Case 3
responses are similar.

39.64(s+1.5)

s(s+1.8)(s+4.6+j3.45)(s+4.6−j3.45)

39.64(s+1.5)

s(s+1.8)(s2+9.2s+33.06)

1
s

0.3
s(s+18)

1.3(s+4.6)+1.6(3.45)

(s+4.6)2+3.452



FIGURE 8.23 Second- and third-order responses for
Example 8.8: a. Case 2; b. Case 3

 Students who are using MATLAB should now run ch8apB2
in Appendix B. You will learn how to use MATLAB to enter a

value of percent overshoot from the keyboard. MATLAB will

then draw the root locus and overlay the percent overshoot

line requested. You will then interact with MATLAB and

select the point of intersection of the root locus with the

requested percent overshoot line. MATLAB will respond with

the value of gain, all closed-loop poles at that gain, and

a closed-loop step response plot corresponding to the

selected point. This exercise solves Example 8.8 using

MATLAB.

 Students who are using MATLAB may want to explore the
Control System Designer described in Appendix E. The Control

System Designer is a convenient and intuitive way to obtain,

view, and interact with a system's root locus. Section E.7

describes the advantages of using the tool, while Section E.8

describes how to use it. For practice, you may want to apply

the Control System Designer to some of the problems at the end

of this chapter.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_8.zip


Skill-Assessment Exercise 8.6
PROBLEM:
Given a unity-feedback system that has the forward-path transfer
function

G (s) =

do the following:

a. Sketch the root locus.

b. Using a second-order approximation, design the value of K to
yield 10% overshoot for a unit-step input.

c. Estimate the settling time, peak time, rise time, and steady-
state error for the value of K designed in (b).

d. Determine the validity of your second-order approximation.

ANSWERS:

a. See solution located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

b. K = 45.55

c. Ts = 1.97 s, Tp = 1.13 s, Tr = 0.53 s, and estep (∞) = 0.51

d. Second-order approximation is not valid.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.8 Generalized Root Locus
Up to this point we have always drawn the root locus as a function of
the forward-path gain, K. The control system designer must often know
how the closed-loop poles change as a function of another parameter.

K

(s + 2) (s + 4) (s + 6)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(8.58)

(8.59)

(8.60)

For example, in Figure 8.24, the parameter of interest is the open-loop
pole at −p1. How can we obtain a root locus for variations of the value of
p1?

FIGURE 8.24 System requiring a root locus calibrated with
p1 as a parameter

If the function KG(s)H(s) is formed as

KG (s)H (s) =

the problem is that p1 is not a multiplying factor of the function, as the
gain, K, was in all of the previous problems. The solution to this
dilemma is to create an equivalent system where p1 appears as the
forward-path gain. Since the closed-loop transfer function's
denominator is 1 + KG(s)H(s), we effectively want to create an
equivalent system whose denominator is 1 + p1G(s)H(s).

For the system of Figure 8.24, the closed-loop transfer function is

T (s) = =

Isolating p1, we have

T (s) =

Converting the denominator to the form [1 + p1G(s)H(s)] by dividing
numerator and denominator by the term not included with p1, s2 + 2s +
10, we obtain

10

(s + 2) (s + p1)

KG (s)

1 + KG (s)H (s)

10

s2 + (p1 + 2) s + 2p1 + 10

10

s2 + 2s + 10 + p1 (s + 2)
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(8.62)

T (s) =

Conceptually, Eq. (8.61) implies that we have a system for which

KG (s)H (s) =

The root locus can now be sketched as a function of p1, assuming the
open-loop system of Eq. (8.62). The final result is shown in Figure 8.25.

10
s2+2s+10

1 +
p1(s+2)

s2+2s+10

p1 (s + 2)

s2 + 2s + 10



FIGURE 8.25 Root locus for the system of Figure 8.24, with
p1 as a parameter
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Skill-Assessment Exercise 8.7
PROBLEM:
Sketch the root locus for variations in the value of p1, for a unity-
feedback system that has the following forward transfer function:

G (s) =

ANSWER:
The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we learned to plot the root locus as a function of any
system parameter. In the next section we will learn how to plot root loci
for positive-feedback systems.

8.9 Root Locus for Positive-Feedback Systems
The properties of the root locus were derived from the system of Figure
8.1. This is a negative-feedback system because of the negative
summing of the feedback signal to the input signal. The properties of
the root locus change dramatically if the feedback signal is added to the
input rather than subtracted. A positive-feedback system can be
thought of as a negative-feedback system with a negative value of H(s).
Using this concept, we find that the transfer function for the positive-
feedback system shown in Figure 8.26 is

T (s) =

100

s (s + p1)

KG(s)

1−KG(s)H(s)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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FIGURE 8.26 Positive-feedback system

We now retrace the development of the root locus for the denominator
of Eq. (8.63). Obviously, a pole, s, exists when

KG (s)H (s) = 1 = 1∠ k360° k = 0, ±1, ±2, ±3, …

Therefore, the root locus for positive-feedback systems consists of all
points on the s-plane where the angle of KG(s)H(s) = k360°. How does
this relationship change the rules for sketching the root locus presented
in Section 8.4?

1. Number of branches. The same arguments as for negative
feedback apply to this rule. There is no change.

2. Symmetry. The same arguments as for negative feedback apply to
this rule. There is no change.

3. Real-axis segments. The development in Section 8.4 for the
real-axis segments led to the fact that the angles of G(s)H(s) along
the real axis added up to either an odd multiple of 180° or a
multiple of 360°. Thus, for positive-feedback systems the root
locus exists on the real axis along sections where the locus for
negative-feedback systems does not exist. The rule follows:

Real-axis segments: On the real axis, the root locus for
positive-feedback systems exists to the left of an even number
of real-axis, finite open-loop poles and/or finite open-loop
zeros.

The change in the rule is the word even; for negative-feedback
systems the locus existed to the left of an odd number of real-axis,
finite open-loop poles and/or zeros.
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4. Starting and ending points. You will find no change in the
development in Section 8.4 if Eq. (8.63) is used instead of Eq.
(8.12). Therefore, we have the following rule.

Starting and ending points: The root locus for positive-
feedback systems begins at the finite and infinite poles of
G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).

5. Behavior at infinity. The changes in the development of the
asymptotes begin at Eq. (M.4) in Appendix M at
www.wiley.com/go/Nise/ControlSystemsEngineering8e since
positive-feedback systems follow the relationship in Eq. (8.64).
That change yields a different slope for the asymptotes. The value
of the real-axis intercept for the asymptotes remains unchanged.
The student is encouraged to go through the development in detail
and show that the behavior at infinity for positive-feedback
systems is given by the following rule:

The root locus approaches straight lines as asymptotes as the
locus approaches infinity. Further, the equations of the
asymptotes for positive-feedback systems are given by the real-
axis intercept, σa, and angle, θa, as follows:

σa =

θa =

where k = 0, ±1, ±2, ±3, … , and the angle is given in radians
with respect to the positive extension of the real axis.

The change we see is that the numerator of Eq. (8.66) is k2π instead of
(2k + 1) π.

What about other calculations? The imaginary-axis crossing can be
found using the root locus program. In a search of the jω-axis, you are
looking for the point where the angles add up to a multiple of 360°
instead of an odd multiple of 180°. The breakaway points are found by
looking for the maximum value of K. The break-in points are found by
looking for the minimum value of K.

∑ finite poles−∑ finite zeros

# finite poles−# finite zeros

k2π
# finite poles−# finite zeros

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


When we were discussing negative-feedback systems, we always made
the root locus plot for positive values of gain. Since positive-feedback
systems can also be thought of as negative-feedback systems with
negative gain, the rules developed in this section apply equally to
negative-feedback systems with negative gain. Let us look at an
example.



Example 8.9 Root Locus for a Positive-Feedback
System
PROBLEM:
Sketch the root locus as a function of negative gain, K, for the
system shown in Figure 8.11.

SOLUTION:
The equivalent positive-feedback system found by pushing −1,
associated with K, to the right past the pickoff point is shown in
Figure 8.27(a). Therefore, as the gain of the equivalent system goes
through positive values of K, the root locus will be equivalent to that
generated by the gain, K, of the original system in Figure 8.11 as it
goes through negative values.



(8.67)

FIGURE 8.27 a. Equivalent positive-feedback system for
Example 8.9; b. root locus

The root locus exists on the real axis to the left of an even number of
real, finite open-loop poles and/or zeros. Therefore, the locus exists
on the entire positive extension of the real axis, between −1 and −2
and between −3 and −4. Using Eq. (8.27), the σa intercept is found
to be

σa = = −

The angles of the lines that intersect at −4/3 are given by

(−1 − 2 − 4) − (−3)

4 − 1

4

3



(8.68a)

(8.68c)

(8.68d)

(8.68b)

θa =

= 0 for k = 0

= 2π/3 for k = 1

= 4π/3 for k = 2

The final root locus sketch is shown in Figure 8.27(b).

Skill-Assessment Exercise 8.8
PROBLEM:
Sketch the root locus for the positive-feedback system whose
forward transfer function is

G (s) =

The system has unity feedback.

ANSWER:
The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

8.10 Pole Sensitivity
The root locus is a plot of the closed-loop poles as a system parameter is
varied. Typically, that system parameter is gain. Any change in the
parameter changes the closed-loop poles and, subsequently, the
performance of the system. Many times the parameter changes against
our wishes, due to heat or other environmental conditions. We would
like to find out the extent to which changes in parameter values affect
the performance of our system.

k2π

# finite poles − # finite zeros

K (s + 4)

(s + 1) (s + 2) (s + 3)
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The root locus exhibits a nonlinear relationship between gain and pole
location. Along some sections of the root locus, (1) very small changes
in gain yield very large changes in pole location and hence
performance; along other sections of the root locus, (2) very large
changes in gain yield very small changes in pole location. In the first
case we say that the system has a high sensitivity to changes in gain. In
the second case, the system has a low sensitivity to changes in gain. We
prefer systems with low sensitivity to changes in gain.

In Section 7.7, we defined sensitivity as the ratio of the fractional
change in a function to the fractional change in a parameter as the
change in the parameter approaches zero. Applying the same definition
to the closed-loop poles of a system that vary with a parameter, we
define root sensitivity as the ratio of the fractional change in a closed-
loop pole to the fractional change in a system parameter, such as gain.
Using Eq. (7.75), we calculate the sensitivity of a closed-loop pole, s, to
gain, K:

Ss:K =

where s is the current pole location, and K is the current gain. Using Eq.
(8.69) and converting the partials to finite increments, the actual
change in the closed-loop poles can be approximated as

Δs = s(Ss:K)

where Δs is the change in pole location, and ΔK/K is the fractional
change in the gain, K. Let us demonstrate with an example. We begin
with the characteristic equation from which δs/δK can be found. Then,
using Eq. (8.69) with the current closed-loop pole, s, and its associated
gain, K, we can find the sensitivity.

K
s

δs

δK

ΔK

K



(8.71)
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Example 8.10 Root Sensitivity of a Closed-Loop
System to Gain Variations
PROBLEM:
Find the root sensitivity of the system in Figure 8.4 at s = − 9.47 and
−5 + j5. Also calculate the change in the pole location for a 10%
change in K.

SOLUTION:
The system's characteristic equation, found from the closed-loop
transfer function denominator, is s2 + 10s + K = 0. Differentiating
with respect to K, we have

2s + 10 + 1 = 0

from which

=

Substituting Eq. (8.72) into Eq. (8.69), the sensitivity is found to be

Ss:K = ×

For s = − 9.47, Table 8.1 shows K = 5. Substituting these values into
Eq. (8.73) yields Ss : K = − 0.059. The change in the pole location for
a 10% change in K can be found using Eq. (8.70), with s = − 9.47, Δ
K/K = 0.1, and Ss : K = − 0.059. Hence, Δs = 0.056, or the pole will
move to the right by 0.056 units for a 10% change in K.

For s = − 5 + j5, Table 8.1 shows K = 50. Substituting these values
into Eq. (8.73) yields Ss:K = 1/ (1 + j1) = (1/√2)∠ − 45°. The

change in the pole location for a 10% change in K can be found
using Eq. (8.70), with s = − 5 + j5, Δ K/K = 0.1, and 

δs

δK

δs

δK

δs

δK

−1

2s + 10

K

s

−1

2s + 10



Ss:K = (1/√2)∠ − 45°. Hence, Δs = − j5, or the pole will move

vertically by 0.5 unit for a 10% change in K.

In summary, then, at K = 5, Ss : K = − 0.059. At 

K = 50, Ss:K = (1/√2)∠ − 45°. Comparing magnitudes, we

conclude that the root locus is less sensitive to changes in gain at the
lower value of K. Notice that root sensitivity is a complex quantity
possessing both the magnitude and direction information from
which the change in poles can be calculated.

Skill-Assessment Exercise 8.9
PROBLEM:
A negative unity-feedback system has the forward transfer function

G (s) =

If K is set to 20, find the changes in closed-loop pole location for a
5% change in K.

ANSWER:
For the closed-loop pole at −21.05, Δs = − 0.9975; for the closed-
loop pole at −0.95, Δs = − 0.0025.

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

K (s + 1)

s (s + 2)
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Case Studies Antenna Control: Transient Design
via Gain

 The main thrust of this chapter is to demonstrate design of
higher-order systems (higher than two) through gain adjustment.
Specifically, we are interested in determining the value of gain
required to meet transient response requirements, such as percent
overshoot, settling time, and peak time. The following case study
emphasizes this design procedure, using the root locus.

PROBLEM:
Given the antenna azimuth position control system shown in
Appendix A2, Configuration 1, find the preamplifier gain required
for 25% overshoot.

SOLUTION:
The block diagram for the system was derived in the Case Studies
section in Chapter 5 and is shown in Figure 5.34(c), where G(s) =
6.63K/[s (s + 1.71) (s + 100)].

First a sketch of the root locus is made to orient the designer. The
real-axis segments are between the origin and −1.71 and from −100
to infinity. The locus begins at the open-loop poles, which are all on
the real axis at the origin, −1.71, and −100. The locus then moves
toward the zeros at infinity by following asymptotes that, from Eqs.
(8.27) and (8.28), intersect the real axis at −33.9 at angles of 60°,
180°, and −60°. A portion of the root locus is shown in Figure 8.28.



FIGURE 8.28 Portion of the root locus for the antenna
control system

From Eq. (4.39), 25% overshoot corresponds to a damping ratio of
0.404. Now draw a radial line from the origin at an angle of cos−1ζ =
113.8. The intersection of this line with the root locus locates the
system's dominant, second-order closed-loop poles. Using the root
locus program discussed in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e to search
the radial line for 180° yields the closed-loop dominant poles as
2.063∠113.8° = − 0.833 ±j1.888. The gain value yields 6.63K =
425.7, from which K = 64.21.

Checking our second-order assumption, the third pole must be to
the left of the open-loop pole at −100 and is thus greater than five

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


times the real part of the dominant pole pair, which is −0.833. The
second-order approximation is thus valid.

The computer simulation of the closed-loop system's step response
in Figure 8.29 shows that the design requirement of 25% overshoot
is met.

FIGURE 8.29 Step response of the gain-adjusted
antenna control system

CHALLENGE:
You are now given a problem to test your knowledge of this
chapter's objectives. Referring to the antenna azimuth position
control system shown in Appendix A2, Configuration 2, do the
following:

a. Find the preamplifier gain, K, required for an 8-second settling
time.

b.  Repeat, using MATLAB.
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UFSS Vehicle: Transient Design via Gain
 In this case study, we apply the root locus to the UFSS

vehicle pitch control loop. The pitch control loop is shown with both
rate and position feedback in Appendix A3. In the example that
follows, we plot the root locus without the rate feedback and then
with the rate feedback. We will see the stabilizing effect that rate
feedback has upon the system.

PROBLEM:
Consider the block diagram of the pitch control loop for the UFSS
vehicle shown in Appendix A3 (Johnson, 1980).

a. If K2 = 0 (no rate feedback), plot the root locus for the system
as a function of pitch gain, K1, and estimate the settling time
and peak time of the closed-loop response with 20% overshoot.

b. Let K2 = K1 (add rate feedback) and repeat a.

SOLUTION:

a. Letting K2 = 0, the open-loop transfer function is

G (s)H (s) =

from which the root locus is plotted in Figure 8.30. Searching
along the 20% overshoot line evaluated from Eq. (4.39), we
find the dominant second-order poles to be −0.202 ±j 0.394
with a gain of K = 0.25K1 = 0.706, or K1 = 2.824.

From the real part of the dominant pole, the settling time is
estimated to be Ts = 4/0.202 = 19.8 seconds. From the
imaginary part of the dominant pole, the peak time is
estimated to be Tp = π/0.394 = 7.97 seconds. Since our
estimates are based upon a second-order assumption, we now
test our assumption by finding the third closed-loop pole
location between −0.435 and −1.23 and the fourth closed-loop

0.25K1 (s + 0.435)

(s + 1.23) (s + 2) (s2 + 0.226s + 0.0169)
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pole location between −2 and infinity. Searching each of these
regions for a gain of K = 0.706, we find the third and fourth
poles at −0.784 and −2.27, respectively. The third pole, at
−0.784, may not be close enough to the zero at −0.435, and
thus the system should be simulated. The fourth pole, at
−2.27, is 11 times as far from the imaginary axis as the
dominant poles and thus meets the requirement of at least five
times the real part of the dominant poles.

A computer simulation of the step response for the system,
which is shown in Figure 8.31, shows a 29% overshoot above a
final value of 0.88, approximately 20-second settling time, and
a peak time of approximately 7.5 seconds.

b. Adding rate feedback by letting K2 = K1 in the pitch control
system shown in Appendix A3, we proceed to find the new
open-loop transfer function. Pushing −K1 to the right past the
summing junction, dividing the pitch rate sensor by −K1, and
combining the two resulting feedback paths obtaining (s + 1)
give us the following open-loop transfer function:

G (s)H (s) =

Notice that the addition of rate feedback adds a zero to the
open-loop transfer function. The resulting root locus is shown
in Figure 8.32. Notice that this root locus, unlike the root locus
in a, is stable for all values of gain, since the locus does not
enter the right half of the s-plane for any value of positive gain,
K = 0.25K1. Also notice that the intersection with the 20%
overshoot line is much farther from the imaginary axis than is
the case without rate feedback, resulting in a faster response
time for the system.

0.25K1 (s + 0.435) (s + 1)

(s + 1.23) (s + 2) (s2 + 0.226s + 0.0169)



FIGURE 8.30 Root locus of pitch control loop without
rate feedback, UFSS vehicle



FIGURE 8.31 Computer simulation of step response of
pitch control loop without rate feedback, UFSS vehicle



FIGURE 8.32 Root locus of pitch control loop with rate
feedback, UFSS vehicle

The root locus intersects the 20% overshoot line at −1.024 ±j1.998
with a gain of K = 0.25K1 = 5.17, or K1 = 20.68. Using the real and
imaginary parts of the dominant pole location, the settling time is
predicted to zzbe Ts = 4/1.024 = 3.9 seconds, and the peak time is
estimated to be Tp = π/1.998 = 1.57 seconds. The new estimates
show considerable improvement in the transient response as
compared to the system without the rate feedback.

Now we test our second-order approximation by finding the
location of the third and fourth poles between −0.435 and −1.
Searching this region for a gain of K = 5.17, we locate the third and



fourth poles at approximately −0.5 and −0.91. Since the zero at −1 is
a zero of H(s), the student can verify that this zero is not a zero of
the closed-loop transfer function. Thus, although there may be pole-
zero cancellation between the closed-loop pole at −0.5 and the
closed-loop zero at −0.435, there is no closed-loop zero to cancel the
closed-loop pole at −0.91.2 Our second-order approximation is not
valid.

A computer simulation of the system with rate feedback is shown in
Figure 8.33. Although the response shows that our second-order
approximation is invalid, it still represents a considerable
improvement in performance over the system without rate
feedback; the percent overshoot is small, and the settling time is
about 6 seconds instead of about 20 seconds.

FIGURE 8.33 Computer simulation of step response of
pitch control loop with rate feedback, UFSS vehicle

CHALLENGE:
You are now given a problem to test your knowledge of this
chapter's objectives. For the UFSS vehicle (Johnson, 1980) heading



control system shown in Appendix A3, and introduced in the case
study challenge in Chapter 5, do the following:

a. Let K2 = K1 and find the value of K1 that yields 10% overshoot.

b.  Repeat, using MATLAB.

We have concluded the chapter with two case studies showing the use
and application of the root locus. We have seen how to plot a root locus
and estimate the transient response by making a second-order
approximation. We saw that the second-order approximation held
when rate feedback was not used for the UFSS. When rate feedback was
used, an open-loop zero from H(s) was introduced. Since it was not a
closed-loop zero, there was no pole-zero cancellation, and a second-
order approximation could not be justified. In this case, however, the
transient response with rate feedback did represent an improvement in
transient response over the system without rate feedback. In
subsequent chapters we will see why rate feedback yields an
improvement. We will also see other methods of improving the
transient response.

Summary
In this chapter, we examined the root locus, a powerful tool for the
analysis and design of control systems. The root locus empowers us
with qualitative and quantitative information about the stability and
transient response of feedback control systems. The root locus allows us
to find the poles of the closed-loop system by starting from the open-
loop system's poles and zeros. It is basically a graphical root-solving
technique.

We looked at ways to sketch the root locus rapidly, even for higher-
order systems. The sketch gave us qualitative information about
changes in the transient response as parameters were varied. From the
locus we were able to determine whether a system was unstable for any
range of gain.

Next we developed the criterion for determining whether a point in the
s-plane was on the root locus: The angles from the open-loop zeros,



minus the angles from the open-loop poles drawn to the point in the s-
plane, add up to an odd multiple of 180°.

The computer program discussed in Appendix G.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e helps us to
search rapidly for points on the root locus. This program allows us to
find points and gains to meet certain transient response specifications
as long as we are able to justify a second-order assumption for higher-
order systems. Other computer programs, such as MATLAB, plot the
root locus and allow the user to interact with the display to determine
transient response specifications and system parameters.

Our method of design in this chapter is gain adjustment. We are limited
to transient responses governed by the poles on the root locus.
Transient responses represented by pole locations outside of the root
locus cannot be obtained by a simple gain adjustment. Further, once
the transient response has been established, the gain is set, and so is
the steady-state error performance. In other words, by a simple gain
adjustment, we have to trade off between a specified transient response
and a specified steady-state error. Transient response and steady-state
error cannot be designed independently with a simple gain adjustment.

We also learned how to plot the root locus against system parameters
other than gain. In order to make this root locus plot, we must first
convert the closed-loop transfer function into an equivalent transfer
function that has the desired system parameter in the same position as
the gain. The chapter discussion concluded with positive-feedback
systems and how to plot the root loci for these systems.

The next chapter extends the concept of the root locus to the design of
compensation networks. These networks have as an advantage the
separate design of transient performance and steady-state error
performance.

Review Questions
1. What is a root locus?

2. Describe two ways of obtaining the root locus.

3. If KG(s)H(s) = 5∠180°, for what value of gain is s a point on the
root locus?

4. Do the zeros of a system change with a change in gain?

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


5. Where are the zeros of the closed-loop transfer function?

6. What are two ways to find where the root locus crosses the
imaginary axis?

7. How can you tell from the root locus if a system is unstable?

8. How can you tell from the root locus if the settling time does not
change over a region of gain?

9. How can you tell from the root locus that the natural frequency
does not change over a region of gain?

10. How would you determine whether or not a root locus plot crossed
the real axis?

11. Describe the conditions that must exist for all closed-loop poles
and zeros in order to make a second-order approximation.

12. What rules for plotting the root locus are the same whether the
system is a positive- or a negative-feedback system?

13. Briefly describe how the zeros of the open-loop system affect the
root locus and the transient response.

Cyber Exploration Laboratory

EXPERIMENT 8.1
Objectives
To verify the effect of open-loop poles and zeros upon the shape of the
root locus. To verify the root locus as a tool for estimating the effect of
open-loop gain upon the transient response of closed-loop systems.

Minimum Required Software Packages
MATLAB and the Control System Toolbox

Prelab

1. Sketch two possibilities for the root locus of a unity negative-
feedback system with the open-loop pole-zero configuration shown
in Figure P8.34.



FIGURE P8.34

2. If the open-loop system of Prelab 1 is G (s) = ,

estimate the percent overshoot at the following values of gain, K:
20, 50, 85, 200, and 700.

Lab

1. Using MATLAB's Control System Designer, set up a negative unity-
feedback system with

G (s) =

to produce a root locus. For convenience, set up the zero at −6
using Control System Designer's compensator function by simply
dragging a zero to −6 on the resulting root locus. Print the root
locus for the zero at −6. Move the zero to the following locations
and print out a root locus at each location: −2, −1.5, −1.37, and
−1.2.

2. Using MATLAB's Control System Designer, set up a negative unity-
feedback system with

K(s+1.5)

s(s+0.5)(s+10)

K(s+6)

s(s+0.5)(s+10)



G (s) =

to produce a root locus. Open the Linear System Analyzer to show
step responses. Using the values of K specified in Prelab 2, record
the percent overshoot and settling time and print the root loci and
step response for each value of K.

Postlab

1. Discuss your findings from Prelab 1 and Lab 1. What conclusions
can you draw?

2. Make a table comparing percent overshoot and settling time from
your calculations in Prelab 2 and your experimental values found
in Lab 2. Discuss the reasons for any discrepancies. What
conclusions can you draw?

EXPERIMENT 8.2
Objective
To use MATLAB to design the gain of a controller via root locus.

Minimum Required Software Package
MATLAB with the Control Systems Toolbox.

Prelab
The open-loop system dynamics model for the NASA eight-axis
Advanced Research Manipulator II (ARM II) electromechanical
shoulder joint/link, actuated by an armature-controlled dc servomotor
is shown in Figure P8.35.

The ARM II shoulder joint constant parameters are Ka = 12, L = 0.006
H, R = 1.4 Ω, Kb = 0.00867, n = 200, Km = 4.375, J = Jm + JL/n2, D = 

K (s + 1.5)

s (s + 0.5) (s + 10)



Dm + DL/n2, JL = 1, DL = 0.5, Jm = 0.00844, and Dm = 0.00013 (Craig,
2005), (Nyzen, 1999), and (Williams, 1994).

a. Obtain the equivalent open-loop transfer function, G(s) = .

b. The loop is to be closed by cascading a controller, Gc(s) = KDs +
KP, with G(s) in the forward path forming an equivalent forward-
transfer function, Ge(s) = Gc(s)G(s). Parameters of Gc(s) will be
used to design a desired transient performance. The input to the
closed-loop system is a voltage, VI (s), representing the desired
angular displacement of the robotic joint with a ratio of 1 volt
equals 1 radian. The output of the closed-loop system is the actual
angular displacement of the joint, θL(s). An encoder in the
feedback path, Ke, converts the actual joint displacement to a
voltage with a ratio of 1 radian equals 1 volt. Draw the closed-loop
system showing all transfer functions.

c. Find the closed-loop transfer function.

FIGURE P8.35 Open-loop model for ARM ll

Lab

Let = 4 and use MATLAB to design the value of KD to yield a
step response with a maximum percent overshoot of 0.2%.

Postlab

θL(s)

Vref(s)

KP

KD



1. Discuss the success of your design.

2. Is the steady-state error what you would expect? Give reasons for
your answer.

EXPERIMENT 8.3
Objective
To use LabVIEW to design the gain of a controller via root locus.

Minimum Required Software Package
LabVIEW with the Control Design and Simulation Module, and the
MathScript RT Module.

Prelab

Complete the Prelab to Experiment 8.2 if you have not already
done so.

Lab

Let = 4. Use LabVIEW to open and customize the Interactive
Root Locus VI from the Examples in order to implement a design
of KD to yield a step response with a maximum percent overshoot
of 0.2%. Use a hybrid graphical/MathScript approach.

Postlab

1. Discuss the success of your design.

2. Is the steady-state error what you would expect? Give reasons for
your answer.

Hardware Interface Laboratory
EXPERIMENT 8.4 Speed Control Using Gain
Adjustment
Objective

KP

KD

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Hardware_Interface_Laboratory_Files_for_Chapter_8.zip


To control the speed of a motor in closed-loop using gain
compensation. To make observations about tradeoffs between the
compensated transient response and the steady-state error.

Material Required
Computer with LabVIEW Installed; myDAQ; dc brushed gearmotor
with Hall Sensor quadrature encoder (−10 V to +10 V normal operation
range); and motor control chip BA6956AN or a transistor circuit
substitute

Files Provided at
www.wiley.com/go/Nise/ControlSystemsEngineering8e
Speed P Control Incomplete.vi

Signal Conditioning (subVI).vi

Prelab
Answer the following questions:

1. Find the closed-loop transfer function from R(s) to C(s) for the
system in Figure P8.36.

2. Draw the root locus for the system.

3. Draw the unit-step response for the system marking the settling
time, peak time, and maximum output.

4. Find an expression for the steady-state error to a unit-step input
for the system.

FIGURE P8.36

Lab

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Software: The Speed P Control Incomplete.vi is provided and
illustrated in Figure P8.37. You need to modify it as follows before it
becomes operational.



FIGURE P8.37 Speed P Control Incomplete. vi: a. Front
Panel; b. Block Diagram

1. You need to change the constant on the left to fit your motor's gear
ratio and encoder CPR (counts per revolution) as shown in Figure



P8.37(b).

2. You need to write a SubVI for a P controller and place it where the
arrow indicates it in Figure P8.37(b). The function of a P controller
is u = KPe. Your SubVI has two inputs, the system's error e and
the proportional constant KP . It will have one output u.

3. Double-clicking on the Signal Conditioning (SubVI), Figure
P8.37(b), you get Figure P8.38. Modify the indicated constant to
reflect the dead zone parameter of your motor. This SubVI limits
the input voltage to the motor controller and eliminates the dead
zone by offsetting the input to the motor controller.

FIGURE P8.38 Signal Conditioning (SubVI).vi Block
Diagram

Hardware: Figure P8.39 is the hardware diagram for speed control.
The diagram is identical to the one in Experiment 4.6, except that Pins
2 and 10 in the motor controller chip connect to digital lines D2 and D3
in the myDAQ to allow changes in motor direction.



FIGURE P8.39 Wiring diagram3

Procedure:

1. Verify the operation of your closed-loop system.

2. Draw a functional block diagram (similar to the ones shown in
control systems textbooks) of the system. Do not include the signal
conditioning functions, nor the change-of-direction signals.

3. Using the transfer function you found in Experiment 4.6, draw the
system's root locus.



4. Find the theoretical range of KP  in which the system is closed-loop
stable.

5. Run your program and system to find experimentally the range of 
KP  in which the system is closed-loop stable.

6. Make a judicious choice of three different values of KP  for
experimentation.

7. Using the transfer function you found previously and the three
judicious choices of proportional gain, complete the following table
using hand calculations only (calculators OK, no computer
simulations allowed). Show all your work.

KP    

TP—Peak time    

%OS—Percent overshoot    
Ts—Settling time    

ess—Steady state error (step input)    

Theoretical
8. For each one of the three values of KP , perform step-input

experiments; use one single value of step-input amplitude for the
three values. Make sure that your oscilloscope captures contain the
system's transient response in its entirety. Show measurements of
all the parameters in the table above and fill in the following table.
Please note that Ts, the settling time, is hard to measure in the
current setting because of the limited number of analog channels
present. Instead of measuring Ts, mark in your oscilloscope its
theoretical value using the scope cursors.

KP    

TP—Peak time    

%OS—Percent overshoot    
ess—Steady-state error (step input)    

Experimental

Postlab



Make a detailed comparison of your theoretical and experimental
results. Discuss similarities and discrepancies between experimental
and theoretical values and give possible reasons.

EXPERIMENT 8.5 Position Control Using Gain
Adjustment
Objectives
To control the angular position of the shaft of a permanent-magnet dc
motor in closed-loop using gain compensation. To make observations
about tradeoffs between the compensated transient response and the
steady-state error.

Material Required
Computer with LabVIEW Installed; myDAQ; dc brushed gearmotor
with Hall Sensor quadrature encoder (−10 V to +10 V normal operation
range); and motor control chip BA6956AN or a transistor circuit
substitute.

Files Provided at
www.wiley.com/go/Nise/ControlSystemsEngineering8e
Position control.vi

Signal Conditioning (SubVI).vi

P Controller (SubVI).vi

Prelab
Answer the following questions:

1. For a given permanent-magnet dc motor it has been found that the
transfer function from armature voltage Ea(s) to angular velocity 

Ω(s) is = . Find the transfer function of the motor from

armature voltage to angular position .

2. Draw the root locus for the system in Figure P8.40.

Ω(s)

Ea(s)
K

τs+1
Θ(s)

Ea(s)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


3. Draw the unit-step response for the system marking the settling
time, peak time, and maximum output. Find all the possibilities:
overdamped, critically damped, and underdamped.

4. Find an expression for the steady-state error to a unit-step input
for the system.

FIGURE P8.40

Lab

Software: The front panel and block diagram of the Position
control.vi are shown in Figure P8.41. Change the constants inside the
Signal Conditioning SubVI to match your dead zone parameters.
The constant on the right of the diagram must be modified to match
your motor's gear ratio.





FIGURE P8.41 Position control.vi: a. Front Panel; b. Block
Diagram

Hardware: Make the following changes to the wiring diagram shown
in Figure P8.39: Move the connections from D1, D2, and D3 to D2, D3,
and D4, respectively. All the other connections remain the same.

Procedure:

1. Choose a small P gain. Verify the operation of your closed-loop
system. The motor should be able to move in both directions and
through the full-scale range.

2. Using the transfer function found in Experiment 4.6, calculate the
motor's transfer function from armature voltage to angular
position .

3. Draw a functional block diagram of the system. Do not include the
signal conditioning functions, nor the change-of-direction signals.
Label all the pertinent signals.

4. Using the transfer function  you just calculated, draw the

system's root locus.

Θ(s)

Ea(s)

Θ(s)

Ea(s)



5. Find the theoretical range of KP  for which the system is closed-
loop stable.

6. Run your program and system to find experimentally the range of 
KP  for which the system is closed-loop stable.

7. Make a judicious choice of three different values of KP  for
experimentation.

8. Using the transfer function you calculated above and the three
judicious choices of proportional gain, complete the following table
using hand calculations only (calculators OK, no computer
simulations allowed). Show all your work.

KP    

TP—Peak time    

%OS—Percent overshoot    
Ts—Settling time    

ess—Steady-state error (step input)    

Theoretical
9. For each one of the three values of KP , perform step-input

experiments using one value of step input for the three values.
Make sure that your oscilloscope captures contain the system's
transient response in its entirety. Show measurements of all the
parameters in the table above and fill in the following table. Please
note that Ts, the settling time, is hard to measure in the current
setting because of the limited number of analog channels available.
Instead of measuring Ts, mark in your oscilloscope its theoretical
value using the scope cursors.

KP    

TP—Peak time    

%OS—Percent overshoot    
ess—Steady-state error (step input)    

Experimental

Postlab



Make a detailed comparison of your theoretical and experimental
tables. Discuss similarities and discrepancies between experimental
and theoretical results and give possible reasons.
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since the implied differentiation yields infinite output for
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loop zero since it comes from the numerator of H(s).

3 MyDAQ right slot shown on left is taken from Multisim program
module NI myDAQ design and also reproduced in White-Paper
11423, Figure 2. Both Multisim and the White Paper are from
National Instruments.



Chapter 9
Design via Root Locus



Chapter 9 Problems
1. In the system of Figure P9.1, it is desired to have a step response
with zero steady-state error, and a closed-loop damping ratio if 0.5.
The open loop transfer function is

G (s) =

Design a PI controller for the given specifications. Compare the
performance of the uncompensated and compensated systems.
[Section: 9.2]

FIGURE P9.1

 2. Consider the unity-feedback system shown in Figure P9.1,
where

G (s) =

a. Design a PI controller to drive the ramp response error to zero
for any K that yields stability. [Section: 9.2]

b.  Use MATLAB to simulate your design for K = 1. Show
both the input ramp and the output response on the same

plot.

Check Answer!

3. Assume that for step inputs the system of Figure P9.1 exhibits 15%
overshoot when

K

(s + 2)
2
(s + 20)

K

s (s + 3) (s + 6)



G (s) =

[Section: 9.2]

a. What static error constant applies to this system, and what is
its value?

b. Design a lag network so that the applicable static error constant
has a value of 1 without significantly changing the position of the
dominant poles of the system.

c.  Simulate the system to verify the effects of your
compensator using MATLAB or any other computer program.

4. For the unity-feedback system of Figure P9.1, let

G (s) =

a. Design a compensator that will not significantly change the
position of the uncompensated dominant poles that result in 10%
overshoot but yields Kp = 20. [Section: 9.2]

b.  Simulate the uncompensated and compensated systems
using MATLAB or any other computer program.

c.  Find out how long will it take for the slow
response of the lag compensator to reach 2% of the final

value of the output. Use MATLAB or any other computer

program.

 5. The unity-feedback system shown in Figure P9.1 with

G (s) =

is operating with a dominant-pole damping ratio of 0.707. Design a
PD controller so that the settling time is reduced by a factor of 2.
Compare the transient and steady-state performance of the
uncompensated and compensated systems. Describe any problems
with your design. [Section: 9.3]

K

(s + 1) (s + 2) (s + 5)

K

(s + 2) (s + 4) (s + 6)

K (s + 6)

(s + 2) (s + 3) (s + 5)



Check Answer!

6. Let G(s) in the unity-feedback system shown in Figure P9.1 be
[Section: 9.3]

G (s) =

a. Find the dominant poles' location to yield a 1.2 second settling
time and an overshoot of 15%.

b. Assuming that a compensator is designed with a zero at −1 to
achieve the conditions of Part a, find the angular contribution of
the compensator pole.

c. Where is the compensator pole located?

d. Find the gain required to meet the requirements of Part a.

e. Find the location of other closed-loop poles for the
compensated system.

f. Make an argument for the validity of your second-order
approximation.

g.  Check your design by simulating your system using
MATLAB or any other computer program.

7. The unity-feedback system shown in Figure P9.1 with

G (s) =

is to be designed for a settling time of 1.667 seconds and a 16.3%
overshoot. If the compensator zero is placed at −1, do the following:
[Section: 9.3]

a. Find the coordinates of the dominant poles.

b. Find the compensator pole.

c. Find the system gain.

d. Find the location of all nondominant poles.

e. Estimate the accuracy of your second-order approximation.

K

(s + 4)
3

K

s2



f. Evaluate the steady-state error characteristics.

g.  Use MATLAB or any other computer program to
simulate the system and evaluate the actual transient

response characteristics for a step input.

8. Consider the unity-feedback system of Figure P9.1, with

G (s) =

do the following: [Section: 9.3]

a. Draw the root locus.

b. Find the location of the dominant poles when ζ = 0.8.

c. Find the gain at which ζ = 0.8.

d. If the system is to be cascade-compensated to attain Ts = 1
second and ζ = 0.8, find the compensator pole if the compensator
zero is at −4.

e. Make an argument for the validity of your second-order
approximation.

f.  Verify the validity of your design by simulating
your system using MATLAB or any other computer program.

9.  Redo Problem 8 using MATLAB in the following way:

a. MATLAB will generate the root locus for the uncompensated
system along with the 0.8 damping ratio line. You will

interactively select the operating point. MATLAB will then

inform you of the coordinates of the operating point, the

gain at the operating point, as well as the estimated

%OS,Ts,Tp,ζ,ωn, and Kp represented by a second-order

approximation at the operating point.

b. MATLAB will display the step response of the uncompensated
system.

c. Without further input, MATLAB will calculate the
compensated design point and will then ask you to input a

value for the lead compensator pole from the keyboard.

K (s + 5)

(s + 2) (s + 3) (s + 7) (s + 10)



MATLAB will respond with a plot of the root locus showing

the compensated design point. MATLAB will then allow you to

keep changing the lead compensator pole value from the

keyboard until a root locus is plotted that goes through the

design point.

d. For the compensated system, MATLAB will inform you of the
coordinates of the operating point, the gain at the

operating point, as well as the estimated %OS, Ts, Tp, ζ, ωn,

and Kp represented by a second-order approximation at the

operating point.

e. MATLAB will then display the step response of the
compensated system.

f. Change the compensator's zero location a few times and
collect data on the compensated system to see if any other

choices of compensator zero yield advantages over the

original design.

 10. Consider the unity-feedback system of Figure P9.1 with

G (s) =

The system is operating at 20% overshoot. Design a compensator to
decrease the settling time by a factor of 2 without affecting the
percent overshoot and do the following: [Section: 9.3]

a. Evaluate the uncompensated system's dominant poles, gain,
and settling time.

b. Evaluate the compensated system's dominant poles and
settling time.

c. Evaluate the compensator's pole and zero. Find the required
gain.

d.  Use MATLAB or any other computer program to
simulate the compensated and uncompensatedsystems' step

response.

Check Answer!

K
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 11. The unity-feedback system shown in Figure P9.1 with

G (s) =

is operating with 30% overshoot. [Section: 9.3]

a. Find the transfer function of a cascade compensator, the
system gain, and the dominant pole location that will cut the
settling time in half if the compensator zero is at −7.

b. Find other poles and zeros and discuss your second-order
approximation.

c.  Use MATLAB or any other computer program to
simulate both the uncompensated and compensated systems to

see the effect of your compensator.

Check Answer!

12. A unity-feedback control system has the following forward transfer
function: [Section: 9.3]

G (s) =

a. Design a lead compensator to yield a closed-loop step response
with 20.5% overshoot and a settling time of 3 seconds. Be sure to
specify the value of K.

b. Is your second-order approximation valid?

c.  Use MATLAB or any other computer program to
simulate and compare the transient response of the

compensated system to the predicted transient response.

13. For the unity-feedback system of Figure P9.1, with

G (s) =

K

(s + 15) (s2 + 6s + 13)

K

s2 (s + 4) (s + 12)
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the damping ratio for the dominant poles is to be 0.4, and the settling
time is to be 0.5 second. [Section: 9.3]

a. Find the coordinates of the dominant poles.

b. Find the location of the compensator zero if the compensator
pole is at −15.

c. Find the required system gain.

d. Compare the performance of the uncompensated and
compensated systems.

e.  Use MATLAB or any other computer program to
simulate the system to check your design. Redesign if

necessary.

14. Consider the unity-feedback system of Figure P9.1, with

G (s) =

a. Show that the system cannot operate with a settling time of 2/3
second and a percent overshoot of 1.5% with a simple gain
adjustment.

b. Design a lead compensator so that the system meets the
transient response characteristics of Part a. Specify the
compensator's pole, zero, and the required gain.

 15. Given the unity-feedback system of Figure P9.1, with

G (s) =

Find the transfer function of a lag–lead compensator that will yield a
settling time 0.5 second shorter than that of the uncompensated
system. The compensated system also will have a damping ratio of
0.5, and improve the steady-state error by a factor of 30. The
compensator zero is at −5. Also, find the compensated system's gain.
Justify any second-order approximations or verify the design through
simulation. [Section: 9.4]

Check Answer!
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 16. Given the uncompensated unity-feedback system of Figure
P9.1, with

G (s) =

do the following: [Section: 9.4]

a. Design a compensator to yield the following specifications:
settling time = 2.86 seconds; percent overshoot = 4.32 %; the
steady-state error is to be improved by a factor of 2 over the
uncompensated system.

b. Compare the transient and steady-state error specifications of
the uncompensated and compensated systems.

c. Compare the gains of the uncompensated and compensated
systems.

d. Discuss the validity of your second-order approximation.

e.  Use MATLAB or any other computer program to
simulate the uncompensated and compensated systems and

verify the specifications.

Check Answer!

17. For the unity-feedback system given in Figure P9.1 with

G (s) =

do the following: [Section: 9.4]

a. Find the gain, K, for the uncompensated system to operate with
30% overshoot.

b. Find the peak time and Kv for the uncompensated system.

c. Design a lag–lead compensator to decrease the peak time by a
factor of 2, decrease the percent overshoot by a factor of 2, and
improve the steady-state error by a factor of 30. Specify all poles,
zeros, and gains.

18. Consider the unity-feedback system in Figure P9.1, with

K

s (s + 1) (s + 3)
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G (s) =

The system is operated with 4.32% overshoot. In order to improve the
steady-state error, Kp is to be increased by at least a factor of 5. A lag
compensator of the form

Gc (s) =

is to be used. [Section: 9.4]

a. Find the gain required for both the compensated and the
uncompensated systems.

b. Find the value of Kp for both the compensated and the
uncompensated systems.

c. Estimate the percent overshoot and settling time for both the
compensated and the uncompensated systems.

d. Discuss the validity of the second-order approximation used
for your results in Part c.

e.  Use MATLAB or any other computer program to
simulate the step response for the uncompensated and

compensated systems. What do you notice about the

compensated system's response?

f. Design a lead compensator that will correct the objection you
notice in Part e.

19. For the unity-feedback system in Figure P9.1, with

G (s) =

design a PID controller that will yield a peak time of 1.122 seconds
and a damping ratio of 0.707, with zero error for a step input.
[Section: 9.4]

 20. For the unity-feedback system in Figure P9.1, with

K

(s + 2) (s + 4)

(s + 0.5)

(s + 0.1)

K
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G (s) =

do the following:

a. Design a controller that will yield no more than 25% overshoot
and no more than a 2-second settling time for a step input and
zero steady-state error for step and ramp inputs.

b.  Use MATLAB and verify your design.

Check Answer!

 21.  Redo Problem 20 using MATLAB in the following way:

a. MATLAB will ask for the desired percent overshoot,
settling time, and PI compensator zero.

b. MATLAB will design the PD controller's zero.

c. MATLAB will display the root locus of the PID-compensated
system with the desired percent overshoot line.

d. The user will interactively select the intersection of the
root locus and the desired percent overshoot line.

e. MATLAB will display the gain and transient response
characteristics of the PID-compensated system.

f. MATLAB will display the step response of the PID-
compensated system.

g. MATLAB will display the ramp response of the PID-
compensated system.

Check Answer!

22. If the system of Figure P9.2 operates with a damping ratio of
0.456 for the dominant second-order poles, find the location of all
closed-loop poles and zeros.

K
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FIGURE P9.2

 23. For the unity-feedback system in Figure P9.1, with

G (s) =

do the following: [Section: 9.5]

a. Design rate feedback to yield a step response with no more
than 15% overshoot and no more than 3 seconds settling time.
Use Approach 1.

b.  Use MATLAB and simulate your compensated system.

Check Answer!

24. Given the system of Figure P9.3: [Section: 9.5]

FIGURE P9.3

a. Design the value of K1, as well as a in the feedback path of the
minor loop, to yield a settling time of 4 seconds with 5% overshoot
for the step response.

b. Design the value of K to yield a major-loop response with 10%
overshoot for a step input.

K

s (s + 2) (s + 4) (s + 6)



c.  Use MATLAB or any other computer program to
simulate the step response to the entire closed-loop system.

d.  Add a PI compensator to reduce the major-loop
steady-state error to zero and simulate the step response

using MATLAB or any other computer program.

 25. Design a PI controller to drive the step-response error to zero
for the unity-feedback system shown in Figure P9.1, where

G(s)=

The system operates with a damping factor of 0.4. Design for each of
the following two cases: (1) compensator zero at −0.1 and (2)
compensator zero at −0.7.

Compare the specifications of the uncompensated and each one of the
compensated systems. Simulate each one of the systems using any
software program.

Check Answer!

26. An inverted pendulum mounted on a motor-driven cart was
introduced in Problem 25 in Chapter 3. Its state-space model was
linearized around a stationary point, x0 = 0 (Prasad, 2012). At the
stationary point, the pendulum point-mass, m, is in the upright
position at t = 0, and the force applied to the cart, u0, is 0. Its model
was then modified in Problem 37 in Chapter 6 to have two output
variables: the pendulum angle relative to the y-axis, θ(t), and the
horizontal position of the cart, x(t). MATLAB was then used to find its
eigenvalues. Noting that only one pole (out of four) is located in the
left half of the s-plane, we concluded that this unit requires
stabilization.

To accomplish stability and design an appropriate control system, do
the following:

a.  Draw a signal-flow diagram for that unit and use it
to develop Simulink models for two feedback systems: one to

control the cart position, x(t), and the other to control

the pendulum angle, θ(t). Set the upper and lower saturation

K
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limits of the second integrator in the angle loop to 100 and

−100, respectively, and those limits in the position loop to

10 and −10.

b. Use rate feedback with a gain of 12.5 to stabilize the
pendulum angle control system. The forward path of each of

these systems should include a PD (proportional-plus-

derivative) controller that adjusts the force applied to the

cart, u(t). These controllers1 may be configured with the

following settings:2

P = 5, I = 0, and D = 5 for the cart position controller

P = 2, I = 0, and D = 10 for the pendulum angle controller

c. Utilizing scopes to capture the two output responses, use
a unit-impulse3 as the reference input in the angle control

loop and a unit-step source (configured to start at t = 0

with a final value of 1) as the input for the cart position

control loop.

d. If either of the responses has a steady-state error, e(∞) 
> 2%, a peak time, TP > 1.2 seconds, or a percent overshoot,

%OS > 20.5%, suggest appropriate changes to its controller

settings.

27. Identify and realize the following controllers with operational
amplifiers. [Section: 9.6]

a. 

b. s + 2

28. Identify and realize the following compensators with passive
networks. [Section: 9.6]

a. 

b. 

c. ( )( )

29. Repeat Problem 28 using operational amplifiers. [Section: 9.6]

DESIGN PROBLEMS

s+0.01
s

s+0.1
s+0.01

s+2
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 30. Figure P9.4(a) shows a heat-exchanger process whose
purpose is to maintain the temperature of a liquid at a prescribed
temperature.

The temperature is measured using a sensor and a transmitter, TT 22,
that sends the measurement to a corresponding controller, TC 22,
that compares the actual temperature with a desired temperature set
point, SP. The controller automatically opens or closes a valve to
allow or prevent the flow of steam to change the temperature in the
tank. The corresponding block diagram for this system is shown in
Figure P9.4(b) (Smith, 2002). Assume the following transfer
functions:

Gv (s) = ; G1 (s) = ; H (s) =

a. Assuming Gc (s) = K, find the value of K that will result in a
dominant pole with ζ = 0.7. Obtain the corresponding Ts.

b. Design a PD controller to obtain the same damping factor as
Part a but with a settling time 20% smaller.

c.  Verify your results through MATLAB simulation.

0.02
4s+1

70
50s+1

1
12s+1



FIGURE P9.4 a. Heat-exchanger process;4 b. block
diagram

Check Answer!

31. Repeat Problem 30, Parts b and c, using a lead compensator.

32.
a. Find the transfer function of a motor whose torque–speed
curve and load are given in Figure P9.5.

b. Design a tachometer compensator to yield a damping ratio of
0.5 for a position control employing a power amplifier of gain 1



and a preamplifier of gain 5000.

c. Compare the transient and steady-state characteristics of the
uncompensated system and the compensated system.

FIGURE P9.5

33. A position control is to be designed with a 20% overshoot and a
settling time of 2 seconds. You have on hand an amplifier and a power
amplifier whose cascaded transfer function is K1/(s + 20) with which
to drive the motor. Two 10-turn pots are available to convert shaft
position into voltage. A voltage of ±5π volts is placed across the pots. A
dc motor whose transfer function is of the form

=

is also available. The transfer function of the motor is found
experimentally as follows: The motor and geared load are driven
open-loop by applying a large, short, rectangular pulse to the
armature. An oscillogram of the response shows that the motor

θo (s)

Ea (s)

K

s (s + a)



reached 63% of its final output value at 1/2 second after the
application of the pulse. Further, with a constant 10 volts dc applied
to the armature, the constant output speed was 100 rad/s.

a. Draw a complete block diagram of the system, specifying the
transfer function of each component when the system is operating
with 20% overshoot.

b. What will the steady-state error be for a unit ramp input?

c. Determine the transient response characteristics.

d. If tachometer feedback is used around the motor, as shown in
Figure P9.6, find the tachometer and the amplifier gain to meet
the original specifications. Summarize the transient and steady-
state characteristics.

34. A position control is to be designed with a 10% overshoot, a
settling time of 1 second, and Kv =1000. You have on hand an
amplifier and a power amplifier whose cascaded transfer function is
K1/(s + 40) with which to drive the motor. Two 10-turn pots are
available to convert shaft position into voltage. A voltage of ±20π volts
is placed across the pots. A dc motor whose transfer function is of the
form

=

is also available. The following data are observed from a
dynamometer test at 50 V. At 25 N-m of torque, the motor turns at
1433 rpm. At 75 N-m of torque, the motor turns at 478 rpm. The
speed measured at the load is 0.1 that of the motor. The equivalent
inertia, including the load, at the motor armature is 100 kg-m2, and
the equivalent viscous damping, including the load, at the motor
armature is 50 N-m-s/rad.

a. Draw a complete block diagram of the system, specifying the
transfer function of each component.

b. Design a passive compensator to meet the requirements in the
problem statement.

c. Draw the schematic of the compensator showing all component
values. Use an operational amplifier for isolation where necessary.

θo (s)

Ea (s)

K
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d.  Use MATLAB or any other computer program to
simulate your system and show that all requirements have

been met.

FIGURE P9.6

35. Given the system shown in Figure P9.7, find the values of K and Kf
so that the closed-loop dominant poles will have a damping ratio of 0.5
and the under-damped poles of the minor loop will have a damping
ratio of 0.8.

FIGURE P9.7

36. Steam-driven power generators rotate at a constant speed via a
governor that maintains constant steam pressure in the turbine. In
addition, automatic generation control (AGC) or load frequency
control (LFC) is added to ensure reliability and consistency despite
load variations or other disturbances that can affect the distribution
line frequency output. A specific turbine-governor system can be



described only using the block diagram of Figure P9.1 in which G(s) =
Gc (s) Gg (s) Gt (s) Gm (s), where (Khodabakhshian, 2005)

Gg (s) =  is the governor's transfer function

Gt (s) =  is the turbine transfer function

Gm (s) =  represents the machine and load transfer
functions

Gc(s) is the LFC compensation to be designed

a. Assuming Gc (s) = K, find the value of K that will result in a
dominant pole with ζ = 0.7. Obtain the corresponding Ts .

b. Design a PID controller to obtain the same damping factor as
in Part a, but with a settling time of 2 seconds and zero steady-
state error to step input commands.

c.  Verify your results using a MATLAB simuation.

37. Repeat Problem 36 using a lag–lead compensator instead of a PID
controller. Design for a steady-state error of 1% for a step input
command.

38. Digital versatile disc (DVD) players incorporate several control
systems for their operations. The control tasks include (1) keeping the
laser beam focused on the disc surface, (2) fast track selection, (3) disc
rotation speed control, and (4) following a track accurately. In order to
follow a track, the pickup-head radial position is controlled via a
voltage that operates a voice coil embedded in a magnet configuration.
For a specific DVD player, the transfer function is given by

P (s)=

=

where x (t) = radial pickup position and v (t) = the coil input voltage
(Bittanti, 2002).

a. Assume that the system will be controlled in a closed-loop
configuration, such as the one shown in Figure P9.1. Assuming

1
0.2s+1

1
0.5s+1

1
10s+0.8

X(s)

V (s)

0.63

(1+ s+ )(1+ s+ )0.36
305.4

s2

305.42
0.04

248.2
s2

248.22



that the plant, P(s), is cascaded with a proportional compensator,
Gc (s) = K, plot the root locus of the system.

b.  Repeat Part a using MATLAB if your root locus plot
was created by any other tool.

c. Find the range of K for closed-loop stability, the resulting
damping factor range, and the smallest settling time.

d. Design a notch filter compensator so that the system's
dominant poles have a damping factor of ζ = 0.7 with a closed-
loop settling time of 0.1 second.

e.  Simulate the system's step response for Part c
using MATLAB.

f. Add a PI compensator to the system to achieve zero steady-state
error for a step input without appreciably affecting the transient
response achieved in Part b.

g.  Simulate the system's step response for Part e
using MATLAB.

39. Problem 8.40 described an ac/dc conversion and power
distribution system for which droop control is implemented through
the use of a proportional controller to stabilize the dc-bus voltage. For
simplification, a system with only one source converter and one load
converter was considered. The parameters and design considerations
presented in that problem, along with some solution results, allow us
to represent the block-diagram of that system as shown in the Figure
P9.8.

FIGURE P9.8



Here Gc(s) is the transfer function of the controller, Gp(s) represents
the forward path of the controlled plant (a conversion and power
distribution unit), and H(s) is the transfer function of the feedback
low-pass filter (Karlsson, 2003).

Prepare a table, such as Table 9.5, where the first column, headed
Uncompensated, is filled in with your results from the proportional
design of Problem 8.40, assuming an input step, vdc-ref(t) = 750 u(t).

Follow Steps 2–8 as described in Section 9.4 (Example 9.5), to design
a proportional-plus-integral-plus-derivative (PID) controller so that
the system can operate with a percent overshoot ≤4.4 %, a peak time
20% smaller than that of the uncompensated system, and zero
steady-state error, eVstep(∞) = 0. Fill in the remaining two columns of
your table, PD-compensated and PID-compensated.

40. Testing of hypersonic flight is performed in wind tunnels where
maintaining a constant air pressure is important. Air pressure control
is accomplished in several stages. For a specific setup, a simplified
transfer function has been found to be (Varghese, 2009)

=

where M(s) is the stem movement of a valve feeding compressed air
into the storage tank, and P(s) is the settling chamber pressure.

In order to achieve steady-state error, design a PI controller that
operates with a damping factor of 0.4. Compare the characteristics of
the uncompensated and compensated systems, and use a computer
program to simulate the step response to the compensated system.

41. A linear model of the α-subsystem of a grid-connected converter
(Mahmood, 2012) with a Y–Y transformer was presented as the plant
in Problem 52 in Chapter 8. You were asked to find the transfer
function of that plant, GP (s)=  (see Figure P8.18(b)).

a. Use the results of your solution to Problem 52, Chapter 8, to
write the open-loop transfer function in pole-zero form with a
unity gain. Then design a PID controller to yield a zero steady-
state error for a step input with an overshoot of less than 10% and
a natural frequency of 135.3.

P(s)

M(s)

−2.369 × 106 s2 + 7.897 × 107 s + 4.21 × 105

0.015s5 + 0.7802s4 + 9.89s3 + 18.46s2 + 3.377s + 0.01937

Vα ( s )

Mα ( s )



b. Plot the time response, c(t), marking on it all relevant
characteristics, such as the percent overshoot (if any), rise time,
settling time, and final steady-state value. Also find all closed-loop
poles of this system and the velocity error constant, Kv. Do you
have any observations about the time response and/or the poles?

42. Design a PID controller for the drive system of Problem 42,
Chapter 8, and shown in Figure P8.13 (Thomsen, 2011). Obtain an
output response, ωL(t), with an overshoot ≤15%, a settling time of
preferably 0.2 second, but not more than 5 seconds, a zero steady-
state position error, and a velocity error of < 2%, for a step input, ωr(t)
= 260 u(t) rad/s, applied at t = 0.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
43. Control of HIV/AIDS. It was shown in Chapter 6, Problem 50,
that when the virus levels in an HIV/AIDS patient are controlled using
RTIs the linearized plant model is

P (s) = =

Assume that the system is embedded in a configuration, such as the
one shown in Figure P9.1, where G(s) = Gc (s) P(s). Here, Gc(s) is a
cascade compensator. For simplicity in this problem, choose the dc
gain of Gc(s) less than zero to obtain a negative-feedback system (the
negative signs of Gc(s) and P(s) cancel out) (Craig, I. K., 2004).

a. Consider the uncompensated system with Gc (s) = − K. Find
the value of K that will place all closed-loop poles on the real axis.

b.  Use MATLAB to simulate the unit-step response of
the gain-compensated system. Note the %OS and the Ts from the

simulation.

c. Design a PI compensator so that the steady-state error for step
inputs is zero. Choose a gain value to make all poles real.

d.  Use MATLAB to simulate the design in Part c for a
unit-step input. Compare the simulation to Part b.

Y (s)

U1 (s)

−520s − 10.3844

s3 + 2.6817s2 + 0.11s + 0.0126



44. Hybrid vehicle. In the previous chapter, we used the root locus
to design a proportional controller for the speed control of an HEV.
We rearranged the block diagram to be a unity-feedback system, as
shown in the block diagram of Figure P7.25 (Preitl, 2007). The plant
and compensator resulted in

G(s) =

and we found that K = 0.78 resulted in a critically damped system.

a. Use this design to itemize the performance specifications by
filling in a table, similar to Table 9.5, under the column
Uncompensated. Take advantage of the results from Chapter 8 or
use MATLAB to find the entries. Plot c(t) for r(t) = 4 u(t) volts.

b.  Now assume that the system specifications require
zero steady-state error for step inputs, a steady-state

error for ramp inputs ≤ 2%, a %OS ≤ 4.32%, and a settling

time ≤4 seconds. It should be evident that this is not

accomplished with a proportional controller. Thus, start by

designing a PI controller to meet the requirements. If

necessary, add a PD mode to get a PID controller. Simulate

your final design using MATLAB. Fill in the results of this

design in the second column of your table with the heading

Compensated.

c. Now note the following limitations of linear control system
modeling:

1. No limit is set on system variables. For example, vehicle
acceleration as well as motor and power amplifier current,
torque or power do not have upper limits.

2. It is assumed that to improve the speed of response in Part
b, we could place the PI controller's zero on top of the pole
closest to the origin. Realistically, such pole-zero cancellation
is not always possible to maintain.

 If you do not expand your model beyond the described
limitations if required for accuracy, unrealistic response

characteristics, such as rise and settling times could

result. Look at your design results including response

K(s + 0.60)

(s + 0.5858)(s + 0.0163)



curves. Are they realistic? If not, revise your Simulink

model, which you developed for Problem 5.57, according to

the following 4 steps:

i. Represent the motor armature as a first-order system
with a unity steady-state gain and a time constant of 50

ms, which avoids the creation of internal algebraic

closed-loops and should have negligible effect on system

response;

ii. Add a saturation element at the output of the motor
armature and set it to an upper limit of 250 A;

iii. Use the following PI settings. The PI settings of the
speed controller are P = 61 and I = 0.795. The PI

settings of the torque controller are P = 10 and I = 6;

iv. Run the modified model and comment on the graphs
obtained for motor current, car acceleration, and speed.

45. Parabolic trough collector. The parabolic trough collector
(Camacho, 2012) is a Type 0 system as can be seen from its transfer
function,

G(s)= e−39s

We want the system operating in the critically damped mode, but
with reduced steady-state error. Using the root locus and a Padé

approximation, e−sT ≈ , do the following:

a. Substitute the Padé approximation for the delay and find the
gain necessary to have the system operating with a damping
factor, ζ = 0.5. Also, find the corresponding steady-state error.

b. Design a PI compensator to obtain a zero steady-state error
while maintaining ζ = 0.5.

c.  Simulate the resulting design using MATLAB to
verify your design.

Notes

137.2 × 10−6 K

s2 + 0.0224s + 196 × 10−6

1− sT
2

1+ s
T

2



1 These are PID controllers, in which the integral actions are set to zero to
avoid any negative effect on stability.

2 Note that a high value for the derivative action of the angle controller and
a low value for its proportional gain have been selected to further
stabilize the pendulum.

3 To create a unit-impulse, use a unit-step source followed by a derivative
block.

4 Smith, C.A. Automated Continuous Process Control. John Wiley & Sons,
New York, NY, 2002. p. 128, Figure 6-1.1.



Chapter 9 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Use the root locus to design cascade compensators to improve the steady-state error
(Sections 9.1–9.2)

Use the root locus to design cascade compensators to improve the transient response
(Section 9.3)

Use the root locus to design cascade compensators to improve both the steady-state
error and the transient response (Section 9.4)

Use the root locus to design feedback compensators to improve the transient response
(Section 9.5)

Realize the designed compensators physically (Section 9.6)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case studies
as follows:

Given the antenna azimuth position control system shown in Appendix A2, you will be
able to design a cascade compensator to meet transient response and steady-state error
specifications.

Given the pitch or heading control system for th UFSS vehicle shown in Appendix A3,
you will be able to design a cascade or feedback compensator to meet transient response
specifications.

9.1 Introduction
In Chapter 8, we saw that the root locus graphically displayed both transient response and
stability information. The locus can be sketched quickly to get a general idea of the changes
in transient response generated by changes in gain. Specific points on the locus also can be
found accurately to give quantitative design information.

The root locus typically allows us to choose the proper loop gain to meet a transient response
specification. As the gain is varied, we move through different regions of response. Setting
the gain at a particular value yields the transient response dictated by the poles at that point
on the root locus. Thus, we are limited to those responses that exist along the root locus.

Improving Transient Response
Flexibility in the design of a desired transient response can be increased if we can design for
transient responses that are not on the root locus. Figure 9.1(a) illustrates the concept.
Assume that the desired transient response, defined by percent overshoot and settling time,
is represented by point B. Unfortunately, on the current root locus at the specified percent
overshoot, we only can obtain the settling time represented by point A after a simple gain
adjustment. Thus, our goal is to speed up the response at A to that of B, without affecting the
percent overshoot. This increase in speed cannot be accomplished by a simple gain
adjustment, since point B does not lie on the root locus. Figure 9.1(b) illustrates the
improvement in the transient response we seek: The faster response has the same percent
overshoot as the slower response.



FIGURE 9.1 a. Sample root locus, showing possible design point via gain
adjustment (A) and desired design point that cannot be met via simple gain
adjustment (B); b. responses from poles at A and B

One way to solve our problem is to replace the existing system with a system whose root
locus intersects the desired design point, B. Unfortunately, this replacement is expensive
and counterproductive. Most systems are chosen for characteristics other than transient
response. For example, an elevator cage and motor are chosen for speed and power.
Components chosen for their transient response may not necessarily meet, for example,
power requirements.

Rather than change the existing system, we augment, or compensate, the system with
additional poles and zeros, so that the compensated system has a root locus that goes
through the desired pole location for some value of gain. One of the advantages of
compensating a system in this way is that additional poles and zeros can be added at the
low-power end of the system before the plant. Addition of compensating poles and zeros
need not interfere with the power output requirements of the system or present additional
load or design problems. The compensating poles and zeros can be generated with a passive
or an active network.



A possible disadvantage of compensating a system with additional open-loop poles and zeros
is that the system order can increase, with a subsequent effect on the desired response. In
Chapters 4 and 8, we discussed the effect of additional closed-loop poles and zeros on the
transient response. At the beginning of the design process discussed in this chapter, we
determine the proper location of additional open-loop poles and zeros to yield the desired
second-order closed-loop poles. However, we do not know the location of the higher-order
closed-loop poles until the end of the design. Thus, we should evaluate the transient
response through simulation after the design is complete to be sure the requirements have
been met.

In Chapter 12, when we discuss state-space design, the disadvantage of finding the location
of higher-order closed-loop poles after the design will be eliminated. Techniques that allow
the designer to specify and design the location of all the closed-loop poles at the beginning of
the design process.

One method of compensating for transient response, that will be discussed later, is to insert
a differentiator in the forward path in parallel with the gain. We can visualize the operation
of the differentiator with the following example. Assuming a position control with a step
input, we note that the error undergoes an initial large change. Differentiating this rapid
change yields a large signal that drives the plant. The output from the differentiator is much
larger than the output from the pure gain. This large, initial input to the plant produces a
faster response. As the error approaches its final value, its derivative approaches zero, and
the output from the differentiator becomes negligible compared to the output from the gain.

Improving Steady-State Error
Compensators are not only used to improve the transient response of a system; they are also
used independently to improve the steady-state error characteristics. Previously, when the
system gain was adjusted to meet the transient response specification, steady-state error
performance deteriorated, since both the transient response and the static error constant
were related to the gain. The higher the gain, the smaller the steady-state error, but the
larger the percent overshoot. On the other hand, reducing gain to reduce overshoot
increased the steady-state error. If we use dynamic compensators, compensating networks
can be designed that will allow us to meet transient and steady-state error specifications
simultaneously.1 We no longer need to compromise between transient response and steady-
state error, as long as the system operates in its linear range.

In Chapter 7, we learned that steady-state error can be improved by adding an open-loop
pole at the origin in the forward path, thus increasing the system type and driving the
associated steady-state error to zero. This additional pole at the origin requires an integrator
for its realization.

In summary, then, transient response is improved with the addition of differentiation, and
steady-state error is improved with the addition of integration in the forward path.

Configurations
Two configurations of compensation are covered in this chapter: cascade compensation and
feedback compensation. These methods are modeled in Figure 9.2. With cascade
compensation, the compensating network, G1(s), is placed at the low-power end of the
forward path in cascade with the plant. If feedback compensation is used, the compensator,
H1(s), is placed in the feedback path. Both methods change the open-loop poles and zeros,
thereby creating a new root locus that goes through the desired closed-loop pole location.



FIGURE 9.2 Compensation techniques: a. cascade; b. feedback

Compensators
Compensators that use pure integration for improving steady-state error or pure
differentiation for improving transient response are defined as ideal compensators. Ideal
compensators must be implemented with active networks, which, in the case of electric
networks, require the use of active amplifiers and possible additional power sources. An
advantage of ideal integral compensators is that steady-state error is reduced to zero.
Electromechanical ideal compensators, such as tachometers, are often used to improve
transient response, since they can be conveniently interfaced with the plant.

Other design techniques that preclude the use of active devices for compensation can be
adopted. These compensators, which can be implemented with passive elements such as
resistors and capacitors, do not use pure integration and differentiation and are not ideal
compensators. Advantages of passive networks are that they are less expensive and do not
require additional power sources for their operation. Their disadvantage is that the steady-
state error is not driven to zero in cases where ideal compensators yield zero error.

Thus, the choice between an active or a passive compensator revolves around cost, weight,
desired performance, transfer function, and the interface between the compensator and
other hardware. In Sections 9.2, 9.3, and 9.4, we first discuss cascade compensator design
using ideal compensation and follow with cascade compensation using compensators that
are not implemented with pure integration and differentiation.

9.2 Improving Steady-State Error via Cascade Compensation
In this section, we discuss two ways to improve the steady-state error of a feedback control
system using cascade compensation. One objective of this design is to improve the steady-



state error without appreciably affecting the transient response.

The first technique is ideal integral compensation, which uses a pure integrator to place an
open-loop, forward-path pole at the origin, thus increasing the system type and reducing the
error to zero. The second technique does not use pure integration. This compensation
technique places the pole near the origin, and although it does not drive the steady-state
error to zero, it does yield a measurable reduction in steady-state error.

While the first technique reduces the steady-state error to zero, the compensator must be
implemented with active networks, such as amplifiers. The second technique, although it
does not reduce the error to zero, does have the advantage that it can be implemented with a
less expensive passive network that does not require additional power sources.

The names associated with the compensators come either from the method of implementing
the compensator or from the compensator's characteristics. Systems that feed the error
forward to the plant are called proportional control systems. Systems that feed the integral
of the error to the plant are called integral control systems. Finally, systems that feed the
derivative of the error to the plant are called derivative control systems. Thus, in this section
we call the ideal integral compensator a proportional-plus-integral (PI) controller,
since the implementation, as we will see, consists of feeding the error (proportional) plus the
integral of the error forward to the plant. The second technique uses what we call a lag
compensator. The name of this compensator comes from its frequency response
characteristics, which will be discussed in Chapter 11. Thus, we use the name PI controller
interchangeably with ideal integral compensator, and we use the name lag
compensator when the cascade compensator does not employ pure integration.

Ideal Integral Compensation (PI)
Steady-state error can be improved by placing an open-loop pole at the origin, because this
increases the system type by one. For example, a Type 0 system responding to a step input
with a finite error responds with zero error if the system type is increased by one. Active
circuits can be used to place poles at the origin. Later in this chapter, we show how to build
an integrator with active electronic circuits.

To see how to improve the steady-state error without affecting the transient response, look
at Figure 9.3(a). Here we have a system operating with a desirable transient response
generated by the closed-loop poles at A. If we add a pole at the origin to increase the system
type, the angular contribution of the open-loop poles at point A is no longer 180°, and the
root locus no longer goes through point A, as shown in Figure 9.3(b).





FIGURE 9.3 Pole at A is a. on the root locus without compensator; b. not on
the root locus with compensator pole added; c. approximately on the root
locus with compensator pole and zero added

To solve the problem, we also add a zero close to the pole at the origin, as shown in Figure
9.3(c). Now the angular contribution of the compensator zero and compensator pole cancel
out, point A is still on the root locus, and the system type has been increased. Furthermore,
the required gain at the dominant pole is about the same as before compensation, since the
ratio of lengths from the compensator pole and the compensator zero is approximately
unity. Thus, we have improved the steady-state error without appreciably affecting the
transient response. A compensator with a pole at the origin and a zero close to the pole is
called an ideal integral compensator.

In the example that follows, we demonstrate the effect of ideal integral compensation. An
open-loop pole will be placed at the origin to increase the system type and drive the steady-
state error to zero. An open-loop zero will be placed very close to the open-loop pole at the
origin so that the original closed-loop poles on the original root locus still remain at
approximately the same points on the compensated root locus.



Example 9.1 Effect of an Ideal Integral Compensator
PROBLEM:
Given the system of Figure 9.4(a), operating with a damping ratio of 0.174, show that
the addition of the ideal integral compensator shown in Figure 9.4(b) reduces the
steady-state error to zero for a step input without appreciably affecting transient
response. The compensating network is chosen with a pole at the origin to increase the
system type and a zero at −0.1, close to the compensator pole, so that the angular
contribution of the compensator evaluated at the original, dominant, second-order
poles is approximately zero. Thus, the original, dominant, second-order closed-loop
poles are still approximately on the new root locus.

FIGURE 9.4 Closed-loop system for Example 9.1: a. before compensation;
b. after ideal integral compensation

SOLUTION:
We first analyze the uncompensated system and determine the location of the
dominant, second-order poles. Next we evaluate the uncompensated steady-state error
for a unit-step input. The root locus for the uncompensated system is shown in Figure
9.5.



(9.1)

FIGURE 9.5 Root locus for uncompensated system of Figure 9.4(a)

A damping ratio of 0.174 is represented by a radial line drawn on the s-plane at 100.02°.
Searching along this line with the root locus program discussed in Appendix H at
www.wiley.com/go/Nise/ControlSystemsEngineering8e, we find that the dominant
poles are 0.694 ±j3.926 for a gain, K, of 164.6. Now look for the third pole on the root
locus beyond −10 on the real axis. Using the root locus program and searching for the
same gain as that of the dominant pair, K = 164.6, we find that the third pole is
approximately at −11.61. This gain yields Kp = 8.23. Hence, the steady-state error is

e (∞) = = = 0.108

Adding an ideal integral compensator with a zero at −0.1, as shown in Figure 9.4(b), we
obtain the root locus shown in Figure 9.6. The dominant second-order poles, the third
pole beyond −10, and the gain are approximately the same as for the uncompensated
system. Another section of the compensated root locus is between the origin and −0.1.
Searching this region for the same gain at the dominant pair, K = 158.2, the fourth
closed-loop pole is found at −0.0902, close enough to the zero to cause pole-zero
cancellation. Thus, the compensated system's closed-loop poles and gain are
approximately the same as the uncompensated system's closed-loop poles and gain,
which indicates that the transient response of the compensated system is about the
same as the uncompensated system. However, the compensated system, with its pole at
the origin, is a Type 1 system; unlike the uncompensated system, it will respond to a
step input with zero error.

1

1 + Kp

1

1 + 8.23

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 9.6 Root locus for compensated system of Figure 9.4(b)

Figure 9.7 compares the uncompensated response with the ideal integral compensated
response. The step response of the ideal integral compensated system approaches unity
in the steady state, while the uncompensated system approaches 0.892. Thus, the ideal
integral compensated system responds with zero steady-state error. The transient
response of both the uncompensated and the ideal integral compensated systems is the
same up to approximately 3 seconds. After that time, the integrator in the compensator,
shown in Figure 9.4(b), slowly compensates for the error until zero error is finally
reached. The simulation shows that it takes 18 seconds for the compensated system to
reach to within ±2 % of the final value of unity, while the uncompensated system takes
about 6 seconds to settle to within ±2 % of its final value of 0.892. The compensation at
first may appear to yield deterioration in the settling time. However, notice that the
compensated system reaches the uncompensated system's final value in about the same
time. The remaining time is used to improve the steady-state error over that of the
uncompensated system.



(9.2)

FIGURE 9.7 Ideal integral compensated system response and the
uncompensated system response of Example 9.1

A method of implementing an ideal integral compensator is shown in Figure 9.8. The
compensating network precedes G(s) and is an ideal integral compensator since

Gc (s) = K1 + =

The value of the zero can be adjusted by varying K2/K1. In this implementation, the error
and the integral of the error are fed forward to the plant, G(s). Since Figure 9.8 has both
proportional and integral control, the ideal integral controller, or compensator, is given the
alternate name PI controller. Later in the chapter we will see how to implement each block,
K1 and K2/s.

FIGURE 9.8 PI controller

Lag Compensation
Ideal integral compensation, with its pole on the origin, requires an active integrator. If we
use passive networks, the pole and zero are moved to the left, close to the origin, as shown in

K2

s

K1 (s + )K2

K1

s



(9.3)

(9.4)

Figure 9.9(c). One may guess that this placement of the pole, although it does not increase
the system type, does yield an improvement in the static error constant over an
uncompensated system. Without loss of generality, we demonstrate that this improvement is
indeed realized for a Type 1 system.

FIGURE 9.9 a. Type 1 uncompensated system; b. Type 1 compensated system;
c. compensator pole-zero plot

Assume the uncompensated system shown in Figure 9.9(a). The static error constant, KvO ,
for the system is

KvO =

Assuming the lag compensator shown in Figure 9.9(b) and (c), the new static error constant
is

KvN =

What is the effect on the transient response? Figure 9.10 shows the effect on the root locus of
adding the lag compensator. The uncompensated system's root locus is shown in Figure
9.10(a), where point P is assumed to be the dominant pole. If the lag compensator pole and
zero are close together, the angular contribution of the compensator to point P is

K z1 z2 ⋯

p1p2 ⋯

(K z1 z2 ⋯) (zc)

(p1p2 ⋯) (pc)



(9.5)

approximately zero degrees. Thus, in Figure 9.10(b), where the compensator has been
added, point P is still at approximately the same location on the compensated root locus.

FIGURE 9.10 Root locus: a. before lag compensation; b. after lag
compensation

What is the effect on the required gain, K? After inserting the compensator, we find that K is
virtually the same for the uncompensated and compensated systems, since the lengths of the
vectors drawn from the lag compensator are approximately equal and all other vectors have
not changed appreciably.

Now, what improvement can we expect in the steady-state error? Since we established that
the gain, K, is about the same for the uncompensated and compensated systems, we can
substitute Eq. (9.3) into (9.4) and obtain

KvN = KvO > KvO

Equation (9.5) shows that the improvement in the compensated system's Kv over the
uncompensated system's Kv is equal to the ratio of the magnitude of the compensator zero to
the compensator pole. In order to keep the transient response unchanged, we know the
compensator pole and zero must be close to each other. The only way the ratio of zc to pc can
be large in order to yield an appreciable improvement in steady-state error and,
simultaneously, have the compensator's pole and zero close to each other to minimize the
angular contribution, is to place the compensator's pole-zero pair close to the origin. For
example, the ratio of zc to pc can be equal to 10 if the pole is at −0.001 and the zero is at
−0.01. Thus, the ratio is 10, yet the pole and zero are very close, and the angular contribution
of the compensator is small.

In conclusion, although the ideal compensator drives the steady-state error to zero, a lag
compensator with a pole that is not at the origin will improve the static error constant by a
factor equal to zc/pc. There also will be a minimal effect upon the transient response if the
pole-zero pair of the compensator is placed close to the origin. Later in the chapter we show
circuit configurations for the lag compensator. These circuit configurations can be obtained

zc

pc



with passive networks and thus do not require the active amplifiers and possible additional
power supplies that are required by the ideal integral (PI) compensator. In the following
example we design a lag compensator to yield a specified improvement in steady-state error.



(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

Example 9.2 Lag Compensator Design
PROBLEM:
Compensate the system of Figure 9.4(a), whose root locus is shown in Figure 9.5, to
improve the steady-state error by a factor of 10 if the system is operating with a
damping ratio of 0.174.

SOLUTION:
The uncompensated system error from Example 9.1 was 0.108 with Kp = 8.23. A tenfold
improvement means a steady-state error of

e (∞) = = 0.0108

Since

e (∞) = = 0.0108

rearranging and solving for the required Kp yields

Kp = = = 91.59

The improvement in Kp from the uncompensated system to the compensated system is
the required ratio of the compensator zero to the compensator pole, or

= = = 11.13

Arbitrarily selecting

pc = 0.01

we use Eq. (9.9) and find

zc = 11.13pc ≈ 0.111

Let us now compare the compensated system, shown in Figure 9.11, with the
uncompensated system. First sketch the root locus of the compensated system, as
shown in Figure 9.12. Next search along the ζ = 0.174 line for a multiple of 180° and find
that the second-order dominant poles are at −0.678 ±j3.836 with a gain, K, of 158.1.
The third and fourth closed-loop poles are at −11.55 and −0.101, respectively, and are
found by searching the real axis for a gain equal to that of the dominant poles. All
transient and steady-state results for both the uncompensated and the compensated
systems are shown in Table 9.1.

0.108

10

1

1 + Kp

1 − e (∞)

e (∞)

1 − 0.0108

0.0108

zc

pc

KpN

KpO

91.59

8.23



FIGURE 9.11 Compensated system for Example 9.2

FIGURE 9.12 Root locus for compensated system of Figure 9.11



TABLE 9.1

Predicted characteristics of uncompensated and lag-compensated
systems for Example 9.2

Parameter Uncompensated Lag-compensated

Plant and compensator

K 164.6 158.1
Kp 8.23 87.75

e (∞) 0.108 0.011
Dominant second-order poles − 0.694 ±j3.926 − 0.678 ±j3.836
Third pole − 11.61 − 11.55
Fourth pole None − 0.101
Zero None − 0.111

The fourth pole of the compensated system cancels its zero. This leaves the remaining
three closed-loop poles of the compensated system very close in value to the three
closed-loop poles of the uncompensated system. Hence, the transient response of both
systems is approximately the same, as is the system gain. But notice that the steady-
state error of the compensated system is 1/9.818 that of the uncompensated system and
is close to the design specification of a tenfold improvement.

K

(s+1)(s+2)(s+10)

K(s+0.111)

(s+1)(s+2)(s+10)(s+0.01)



TryIt 9.1
Use the following MATLAB and Control System Toolbox statements to reproduce
Figure 9.13.

Gu=zpk([ ],...
 [−1 −2 −10],164.6);
Gc=zpk([−0.111],...
 [−0.01],1);
Gce=Gu*Gc;
Tu=feedback(Gu,1);
Tc=feedback(Gce,1);
step(Tu)
hold
step(Tc)

FIGURE 9.13 Step responses of uncompensated and lag-compensated
systems for Example 9.2

Figure 9.13 shows the effect of the lag compensator in the time domain. Even though
the transient responses of the uncompensated and lag-compensated systems are the
same, the lag-compensated system exhibits less steady-state error by approaching unity
more closely than the uncompensated system.

We now examine another design possibility for the lag compensator and compare the
response to Figure 9.13. Let us assume a lag compensator whose pole and zero are 10
times as close to the origin as in the previous design. The results are compared in Figure
9.14. Even though both responses will eventually reach approximately the same steady-
state value, the lag compensator previously designed, Gc (s) = (s + 0.111)/(s + 0.01),
approaches the final value faster than the proposed lag compensator, Gc (s) = (s +
0.0111)/(s + 0.001). We can explain this phenomenon as follows. From Table 9.1, the
previously designed lag compensator has a fourth closed-loop pole at −0.101. Using the
same analysis for the new lag compensator with its open-loop pole 10 times as close to
the imaginary axis, we find its fourth closed-loop pole at −0.01. Thus, the new lag
compensator has a closed-loop pole closer to the imaginary axis than the original lag

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_9.zip


compensator. This pole at −0.01 will produce a longer transient response than the
original pole at −0.101, and the steady-state value will not be reached as quickly.

FIGURE 9.14 Step responses of the system for Example 9.2 using
different lag compensators



Skill-Assessment Exercise 9.1
PROBLEM:
A unity-feedback system with the forward transfer function

G (s) =

is operating with a closed-loop step response that has 15% overshoot. Do the following:

a. Evaluate the steady-state error for a unit ramp input.

b. Design a lag compensator to improve the steady-state error by a factor of 20.

c. Evaluate the steady-state error for a unit ramp input to your compensated system.

d. Evaluate how much improvement in steady-state error was realized.

ANSWERS:

a. eramp (∞) = 0.1527

b. Glag (s) =

c. eramp (∞) = 0.0078

d. 19.58 times improvement

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

9.3 Improving Transient Response via Cascade Compensation
Since we have solved the problem of improving the steady-state error without affecting the
transient response, let us now improve the transient response itself. In this section, we
discuss two ways to improve the transient response of a feedback control system by using
cascade compensation. Typically, the objective is to design a response that has a desirable
percent overshoot and a shorter settling time than the uncompensated system.

The first technique we will discuss is ideal derivative compensation. With ideal derivative
compensation, a pure differentiator is added to the forward path of the feedback control
system. We will see that the result of adding differentiation is the addition of a zero to the
forward-path transfer function. This type of compensation requires an active network for its
realization. Further, differentiation is a noisy process; although the level of the noise is low,
the frequency of the noise is high compared to the signal. Thus, differentiating high-
frequency noise yields a large, unwanted signal.

The second technique does not use pure differentiation. Instead, it approximates
differentiation with a passive network by adding a zero and a more distant pole to the
forward-path transfer function. The zero approximates pure differentiation as described
previously.

As with compensation to improve steady-state error, we introduce names associated with the
implementation of the compensators. We call an ideal derivative compensator a

K

s (s + 7)

s+0.2
s+0.01
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proportional-plus-derivative (PD) controller, since the implementation, as we will
see, consists of feeding the error (proportional) plus the derivative of the error forward to
the plant. The second technique uses a passive network called a lead compensator. As
with the lag compensator, the name comes from its frequency response, which is discussed
in Chapter 11. Thus, we use the name PD controller interchangeably with ideal derivative
compensator, and we use the name lead compensator when the cascade compensator
does not employ pure differentiation.

Ideal Derivative Compensation (PD)
The transient response of a system can be selected by choosing an appropriate closed-loop
pole location on the s-plane. If this point is on the root locus, then a simple gain adjustment
is all that is required in order to meet the transient response specification. If the closed-loop
pole location is not on the root locus, then the root locus must be reshaped so that the
compensated (new) root locus goes through the selected closed-loop pole location. In order
to accomplish the latter task, poles and zeros can be added in the forward path to produce a
new open-loop function whose root locus goes through the design point on the s-plane. One
way to speed up the original system that generally works is to add a single zero to the
forward path.

This zero can be represented by a compensator whose transfer function is

Gc (s) = s + zc

This function, the sum of a differentiator and a pure gain, is called an ideal derivative, or PD
controller. Judicious choice of the position of the compensator zero can quicken the
response over the uncompensated system. In summary, transient responses unattainable by
a simple gain adjustment can be obtained by augmenting the system's poles and zeros with
an ideal derivative compensator.

We now show that ideal derivative compensation speeds up the response of a system.
Several simple examples are shown in Figure 9.15, where the uncompensated system of
Figure 9.15(a), operating with a damping ratio of 0.4, becomes a compensated system by the
addition of a compensating zero at −2, −3, and −4 in Figures 9.15(b), (c), and (d),
respectively. In each design, the zero is moved to a different position, and the root locus is
shown. For each compensated case, the dominant, second-order poles are farther out along
the 0.4 damping ratio line than the uncompensated system.









FIGURE 9.15 Using ideal derivative compensation: a. uncompensated; b.
compensator zero at −2; c. compensator zero at −3; d. compensator zero at
−4

Each of the compensated cases has dominant poles with the same damping ratio as the
uncompensated case. Thus, we predict that the percent overshoot will be the same for each
case.

Also, the compensated, dominant, closed-loop poles have more negative real parts than the
uncompensated, dominant, closed-loop poles. Hence, we predict that the settling times for
the compensated cases will be shorter than for the uncompensated case. The compensated,
dominant, closed-loop poles with the more negative real parts will have the shorter settling
times. The system in Figure 9.15(b) will have the shortest settling time.

All of the compensated systems will have smaller peak times than the uncompensated
system, since the imaginary parts of the compensated systems are larger. The system of
Figure 9.15(b) will have the smallest peak time.

Also notice that as the zero is placed farther from the dominant poles, the closed-loop,
compensated dominant poles move closer to the origin and to the uncompensated,
dominant closed-loop poles. Table 9.2 summarizes the results obtained from the root locus
of each of the design cases shown in Figure 9.15.

TABLE 9.2

Predicted characteristics for the systems of Figure 9.15
Uncompensated Compensation

b
Compensation
c

Compensation
d

Plant and
compensator
Dom, poles − 0.939 ±j2.151 − 3 ±j6.874 − 2.437 ±j5.583 − 1.869 ±j4.282
K 23.72 51.25 35.34 20.76
ζ 0.4 0.4 0.4 0.4
ωn 2.347 7.5 6.091 4.673

%OS 25.38 25.38 25.38 25.38
Ts 4.26 1.33 1.64 2.14

Tp 1.46 0.46 0.56 0.733

Kp 2.372 10.25 10.6 8.304

e (∞) 0.297 0.089 0.086 0.107
Third pole − 6.123 None − 3.127 − 4.262
Zero None None − 3 − 4
Comments Second-order

approx. OK
Pure second-
order

Second-order
approx. OK

Second-order
approx. OK

In summary, although compensation methods c and d yield slower responses than method b,
the addition of ideal derivative compensation shortened the response time in each case while
keeping the percent overshoot the same. This change can best be seen in the settling time

K
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and peak time, where there is at least a doubling of speed across all of the cases of
compensation. An added benefit is the improvement in the steady-state error, even though
lag compensation was not used. Here the steady-state error of the compensated system is at
least one-third that of the uncompensated system, as seen by e (∞) and Kp. All systems in
Table 9.2 are Type 0, and some steady-state error is expected. The reader must not assume
that, in general, improvement in transient response always yields an improvement in steady-
state error.

The time response of each case in Table 9.2 is shown in Figure 9.16. We see that the
compensated responses are faster and exhibit less error than the uncompensated response.

FIGURE 9.16 Uncompensated system and ideal derivative compensation
solutions from Table 9.2

Now that we have seen what ideal derivative compensation can do, we are ready to design
our own ideal derivative compensator to meet a transient response specification. Basically,
we will evaluate the sum of angles from the open-loop poles and zeros to a design point that
is the closed-loop pole that yields the desired transient response. The difference between
180° and the calculated angle must be the angular contribution of the compensator zero.
Trigonometry is then used to locate the position of the zero to yield the required difference
in angle.
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Example 9.3 Ideal Derivative Compensator Design
PROBLEM:
Given the system of Figure 9.17, design an ideal derivative compensator to yield a 16%
overshoot, with a threefold reduction in settling time.

FIGURE 9.17 Feedback control system for Example 9.3

SOLUTION:
Let us first evaluate the performance of the uncompensated system operating with 16%
overshoot. The root locus for the uncompensated system is shown in Figure 9.18. Since
16% overshoot is equivalent to ζ = 0.504, we search along that damping ratio line for an
odd multiple of 180° and find that the dominant, second-order pair of poles is at −1.205
±j2.064. Thus, the settling time of the uncompensated system is

Ts = = = 3.320

FIGURE 9.18 Root locus for uncompensated system shown in Figure 9.17

4

ζωn

4

1.205



Virtual Experiment 9.1 PD Controller Design
Put theory into practice and use root-locus to design a PD controller for the
Quanser Ball and Beam using LabVIEW. The Ball and Beam is an unstable system,
similar to exothermic chemical processes that have to be stabilized to avoid
overheating.

Run Experiment 9.1

Since our evaluation of percent overshoot and settling time is based upon a second-
order approximation, we must check the assumption by finding the third pole and
justifying the second-order approximation. Searching beyond −6 on the real axis for a
gain equal to the gain of the dominant, second-order pair, 43.35, we find a third pole at
−7.59, which is over six times as far from the jω-axis as the dominant, second-order
pair. We conclude that our approximation is valid. The transient and steady-state error
characteristics of the uncompensated system are summarized in Table 9.3.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp09.zip
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TABLE 9.3

Uncompensated and compensated system characteristic of Example 9.3
Uncompensated Simulation Compensated Simulation

Plant and
compensator
Dominant poles − 1.205 ±j2.064 − 3.613 ±j6.193
K 43.35 47.45
ζ 0.504 0.504
ωn 2.39 7.17

%OS 16 14.8 16 11.8
Ts 3.320 3.6 1.107 1.2

Tp 1.522 1.7 0.507 0.5

Kv 1.806 5.94

e (∞) 0.554 0.168
Third pole − 7.591 − 2.775
Zero None − 3.006
Comments Second-order

approx. OK
Pole-zero not
canceling

Now we proceed to compensate the system. First we find the location of the
compensated system's dominant poles. In order to have a threefold reduction in the
settling time, the compensated system's settling time will be one-third of Eq. (9.13). The
new settling time will be 1.107. Therefore, the real part of the compensated system's
dominant, second-order pole is

σ = = = 3.613

Figure 9.19 shows the designed dominant, second-order pole, with a real part equal to
−3.613 and an imaginary part of

ωd = 3.613 tan (180° − 120.26°) = 6.193

K
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4
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FIGURE 9.19 Compensated dominant pole superimposed over the
uncompensated root locus for Example 9.3

Next we design the location of the compensator zero. Input the uncompensated
system's poles and zeros in the root locus program as well as the design point −3.613
±j6.193 as a test point. The result is the sum of the angles to the design point of all the
poles and zeros of the compensated system except for those of the compensator zero
itself. The difference between the result obtained and 180° is the angular contribution
required of the compensator zero. Using the open-loop poles shown in Figure 9.19 and
the test point, −3.613 + j6.193, which is the desired dominant second-order pole, we
obtain the sum of the angles as −275.6°. Hence, the angular contribution required from
the compensator zero for the test point to be on the root locus is +275.6° −180° = 95.6°.
The geometry is shown in Figure 9.20, where we now must solve for −σ, the location of
the compensator zero.
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FIGURE 9.20 Evaluating the location of the compensating zero for
Example 9.3

From the figure,

= tan (180° − 95.6°)

Thus, σ = 3.006. The complete root locus for the compensated system is shown in
Figure 9.21.

6.193

3.613 − σ



FIGURE 9.21 Root locus for the compensated system of Example 9.3

Table 9.3 summarizes the results for both the uncompensated system and the
compensated system. For the uncompensated system, the estimate of the transient
response is accurate since the third pole is at least five times the real part of the
dominant, second-order pair. The second-order approximation for the compensated
system, however, may be invalid because there is no approximate closed-loop third-pole
and zero cancellation between the closed-loop pole at −2.775 and the closed-loop zero at
−3.006. A simulation or a partial-fraction expansion of the closed-loop response to
compare the residue of the pole at −2.775 to the residues of the dominant poles at
−3.613 ±j6.193 is required. The results of a simulation are shown in the table's second
column for the uncompensated system and the fourth column for the compensated
system. The simulation results can be obtained using MATLAB (discussed at the end of
this example) or a program like the state-space step-response program described in
Appendix H.1 at www.wiley.com/go/Nise/ControlSystemsEngineering8e. The percent
overshoot differs by 3% between the uncompensated and compensated systems, while
there is approximately a threefold improvement in speed as evaluated from the settling
time.

The final results are displayed in Figure 9.22, which compares the uncompensated
system and the faster compensated system.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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FIGURE 9.22 Uncompensated and compensated system step responses of
Example 9.3

 Students who are using MATLAB should now run ch9apB1 in Appendix B.
MATLAB will be used to design a PD controller. You will input the desired

percent overshoot from the keyboard. MATLAB will plot the root locus of the

uncompensated system and the percent overshoot line. You will interactively

select the gain, after which MATLAB will display the performance

characteristics of the uncompensated system and plot its step response.

Using these characteristics, you will input the desired settling time.

MATLAB will design the PD controller, enumerate its performance

characteristics, and plot a step response. This exercise solves Example 9.3

using MATLAB.

Once we decide on the location of the compensating zero, how do we implement the ideal
derivative, or PD controller? The ideal integral compensator that improved steady-state
error was implemented with a proportional-plus-integral (PI) controller. The ideal derivative
compensator used to improve the transient response is implemented with a proportional-
plus-derivative (PD) controller. For example, in Figure 9.23 the transfer function of the
controller is

Gc (s) = K2s + K1 = K2 (s + )

Hence, K1/K2 is chosen to equal the negative of the compensator zero, and K2 is chosen to
contribute to the required loop-gain value. Later in the chapter, we will study circuits that
can be used to approximate differentiation and produce gain.

K1

K2

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_9.zip


FIGURE 9.23 PD controller

While the ideal derivative compensator can improve the transient response of the system, it
has two drawbacks. First, it requires an active circuit to perform the differentiation. Second,
as previously mentioned, differentiation is a noisy process: The level of the noise is low, but
the frequency of the noise is high compared to the signal. Differentiation of high frequencies
can lead to large unwanted signals or saturation of amplifiers and other components. The
lead compensator is a passive network used to overcome the disadvantages of ideal
differentiation and still retain the ability to improve the transient response.

Lead Compensation
Just as the active ideal integral compensator can be approximated with a passive lag
network, an active ideal derivative compensator can be approximated with a passive lead
compensator. When passive networks are used, a single zero cannot be produced; rather, a
compensator zero and a pole result. However, if the pole is farther from the imaginary axis
than the zero, the angular contribution of the compensator is still positive and thus
approximates an equivalent single zero. In other words, the angular contribution of the
compensator pole subtracts from the angular contribution of the zero. This deduction does
not preclude the use of the compensator to improve transient response, since the net angular
contribution is positive, just as for a single PD controller zero.



TryIt 9.2
1. On the Home tab of the MATLAB Command window, click Clear Workspace

in the VARIABLE category.

2. Click APPS in the Tab bar of the MATLAB Command window and Click Control
System Designer.

3. In the resulting Control System Designer window, under the Control System
tab, click Preferences and select Zero/pole/gain under the Options tab. Then
click on Edit Architecture.

4. In the resulting Edit Architecture – Configuration 1 window, click the Blocks
tab and enter for G: zpk([ ], [0, −4, −6], 1). Click OK.

5. Right-click on Root Locus Editor for… tab at the top and select Maximize
Root Locus Editor for…

6. Right-click on the root locus white space and choose Design
Requirements/New…

7. Choose Percent overshoot in the drop-down menu and type in 16. Click OK.

8. Right-click on the root locus white space and choose Design
Requirements/New…

9. Choose Settling time and click OK.

10. Drag the settling time vertical line to the intersection of the root locus and 16%
overshoot radial line. You can magnify the root locus in the ROOT LOCUS
EDITOR tab.

11. Drag a closed-loop pole along the root locus until it is at the intersection of the
percent overshoot and settling time boundaries.

12. Left-click in the white space of the root locus and choose Design
Requirements/Edit… Select Settling time from the drop-down menu. Change
settling time to 1/3 of that shown. Click Close.

13. From the ROOT LOCUS EDITOR tab, select a zero and place it on the root locus
real axis. Move the zero until the root locus intersects the percent overshoot amd
settling time boundaries. Move a closed-loop pole along the root locus until it
intercepts the same two boundaries.

14. Left-click the white area of the root locus and select Edit Compensator to see the
designed ideal lead compensator design.

15. Under the CONTROL SYSTEM tab select New Plot/New Step. In the resulting
window, Select New Input- Output Transfer Response. Specify input (r) and
output (y) signals. Click Plot.

16. Left-click the plot and select Characteristics/Peak Response and Settling
time.

17. Click on the resulting dots to verify your design.

The advantages of a passive lead network over an active PD controller are that (1) no
additional power supplies are required and (2) noise due to differentiation is reduced. The
disadvantage is that the additional pole does not reduce the number of branches of the root

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_9.zip
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locus that cross the imaginary axis into the right half-plane. On the other hand, the addition
of the single zero of the PD controller tends to reduce the number of branches of the root
locus that cross into the right half-plane.

Let us first look at the concept behind lead compensation. If we select a desired dominant,
second-order pole on the s-plane, the sum of the angles from the uncompensated system's
poles and zeros to the design point can be found. The difference between 180° and the sum
of the angles must be the angular contribution required of the compensator.

For example, looking at Figure 9.24, we see that

θ2 − θ1 − θ3 − θ4 + θ5 = (2k + 1) 180°

where (θ2 − θ1) = θc is the angular contribution of the lead compensator. From Figure 9.24
we see that θc is the angle of a ray extending from the design point and intersecting the real
axis at the pole value and zero value of the compensator. Now visualize this ray rotating
about the desired closed-loop pole location and intersecting the real axis at the compensator
pole and zero, as illustrated in Figure 9.25. We realize that an infinite number of lead
compensators could be used to meet the transient response requirement.

FIGURE 9.24 Geometry of lead compensation

FIGURE 9.25 Three of the infinite possible lead compensator solutions



How do the possible lead compensators differ? The differences are in the values of static
error constants, the gain required to reach the design point on the compensated root locus,
the difficulty in justifying a second-order approximation when the design is complete, and
the ensuing transient response.

For design, we arbitrarily select either a lead compensator pole or zero and find the angular
contribution at the design point of this pole or zero along with the system's open-loop poles
and zeros. The difference between this angle and 180° is the required contribution of the
remaining compensator pole or zero. Let us look at an example.



Example 9.4 Lead Compensator Design
PROBLEM:
Design three lead compensators for the system of Figure 9.17 that will reduce the
settling time by a factor of 2 while maintaining 30% overshoot. Compare the system
characteristics between the three designs.

SOLUTION:
First determine the characteristics of the uncompensated system operating at 30%
overshoot to see what the uncompensated settling time is. Since 30% overshoot is
equivalent to a damping ratio of 0.358, we search along the ζ = 0.358 line for the
uncompensated dominant poles on the root locus, as shown in Figure 9.26. From the
pole's real part, we calculate the uncompensated settling time as Ts = 4/1.007 = 3.972
seconds. The remaining characteristics of the uncompensated system are summarized
in Table 9.4.

FIGURE 9.26 Lead compensator design, showing evaluation of
uncompensated and compensated dominant poles for Example 9.4
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TABLE 9.4

Comparison of lead compensation designs for Example 9.4
Uncompensated Compensation

a
Compensation

b
Compensation

c

Plant and
compensator
Dominant
poles

− 1.007 ±j2.627 − 2.014 ±j5.252 − 2.014 ±j5.252 − 2.014 ±j5.252

K 63.21 1423 698.1 345.6
ζ 0.358 0.358 0.358 0.358
ωn 2.813 5.625 5.625 5.625

%OS* 30 (28) 30 (30.7) 30 (28.2) 30 (14.5)

Ts
* 3.972 (4) 1.986 (2) 1.986 (2) 1.986 (1.7)

Tp
* 1.196 (1.3) 0.598 (0.6) 0.598 (0.6) 0.598 (0.7)

Kv 2.634 6.9 5.791 3.21

e (∞) 0.380 0.145 0.173 0.312
Other poles − 7.986 −43.8, −5.134 − 22.06 −13.3, −1.642
Zero None −5 None −2
Comments Second-order

approx. OK
Second-order
approx. OK

Second-order
approx. OK

No pole-zero
cancellation

* Simulation results are shown in parentheses.

Next we find the design point. A twofold reduction in settling time yields Ts = 3.972/2 =
1.986 seconds, from which the real part of the desired pole location is −ζωn = − 4/Ts = −
2.014. The imaginary part is ωd = − 2.014 tan(110.98°) = 5.252.

We continue by designing the lead compensator. Arbitrarily assume a compensator zero
at −5 on the real axis as a possible solution. Using the root locus program, sum the
angles from both this zero and the uncompensated system's poles and zeros, using the
design point as a test point. The resulting angle is −172.69°. The difference between this
angle and 180° is the angular contribution required from the compensator pole in order
to place the design point on the root locus. Hence, an angular contribution of −7.31° is
required from the compensator pole.

The geometry shown in Figure 9.27 is used to calculate the location of the compensator
pole. From the figure,

= tan 7.31°

from which the compensator pole is found to be

pc = 42.96

K

s(s+4)(s+6)

K(s+5)

s(s+4)(s+6)(s+42.96)

K(s+4)

s(s+4)(s+6)(s+20.09)

K(s+2)

s(s+4)(s+6)(s+8.971)

5.252

pc − 2.014



The compensated system root locus is sketched in Figure 9.28.

FIGURE 9.27 s-plane picture used to calculate the location of the
compensator pole for Example 9.4

FIGURE 9.28 Compensated system root locus

In order to justify our estimates of percent overshoot and settling time, we must show
that the second-order approximation is valid. To perform this validity check, we search
for the third and fourth closed-loop poles found beyond −42.96 and between −5 and −6
in Figure 9.28. Searching these regions for the gain equal to that of the compensated
dominant pole, 1423, we find that the third and fourth poles are at −43.8 and −5.134,
respectively. Since −43.8 is more than 20 times the real part of the dominant pole, the
effect of the third closed-loop pole is negligible. Since the closed-loop pole at −5.134 is
close to the zero at −5, we have pole-zero cancellation, and the second-order
approximation is valid.

All results for this design and two other designs, which place the compensator zero
arbitrarily at −2 and −4 and follow similar design techniques, are summarized in Table
9.4. Each design should be verified by a simulation, which could consist of using
MATLAB (discussed at the end of this example) or the state-space model and the step-
response program discussed in Appendix H.1 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. We have performed a
simulation for this design problem, and the results are shown by parenthetical entries
next to the estimated values in the table. The only design that disagrees with the

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


simulation is the case where the compensator zero is at −2. For this case the closed-loop
pole and zero do not cancel.

A sketch of the root locus, which you should generate, shows why the effect of the zero is
pronounced, causing the response to be different from that predicted. Placing the zero
to the right of the pole at −4 creates a portion of the root locus that is between the origin
and the zero. In other words, there is a closed-loop pole closer to the origin than the
dominant poles, with little chance of pole-zero cancellation except at high gain. Thus, a
quick sketch of the root locus gives us information from which we can make better
design decisions. For this example, we want to place the zero on, or to the left of, the
pole at −4, which gives a better chance for pole-zero cancellation and for a higher-order
pole that is to the left of the dominant poles and subsequently faster. This is verified by
the fact that our results show good second-order approximations for the cases where the
zero was placed at −4 and −5. Again, decisions about where to place the zero are based
on simple rules of thumb and must be verified by simulations at the end of the design.

Let us now summarize the results shown in Table 9.4. First we notice differences in the
following:

1. The position of the arbitrarily selected zero

2. The amount of improvement in the steady-state error

3. The amount of required gain, K

4. The position of the third and fourth poles and their relative effect upon the second-
order approximation. This effect is measured by their distance from the dominant
poles or the degree of cancellation with the closed-loop zero.

Once a simulation verifies desired performance, the choice of compensation can be
based upon the amount of gain required or the improvement in steady-state error that
can be obtained without a lag compensator.

The results of Table 9.4 are supported by simulations of the step response, shown in
Figure 9.29 for the uncompensated system and the three lead compensation solutions.



FIGURE 9.29 Uncompensated system and lead compensation responses
for Example 9.4

 Students who are using MATLAB should now run ch9apB2 in Appendix B.
MATLAB will be used to design a lead compensator. You will input the desired

percent overshoot from the keyboard. MATLAB will plot the root locus of the

uncompensated system and the percent overshoot line. You will interactively

select the gain, after which MATLAB will display the performance

characteristics of the uncompensated system and plot its step response.

Using these characteristics, you will input the desired settling time and a

zero value for the lead compensator. You will then interactively select a

value for the compensator pole. MATLAB will respond with a root locus. You

can then continue selecting pole values until the root locus goes through

the desired point. MATLAB will display the lead compensator, enumerate its

performance characteristics, and plot a step response. This exercise solves

Example 9.4 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_9.zip


Skill-Assessment Exercise 9.2
PROBLEM:
A unity-feedback system with the forward transfer function

G (s) =

is operating with a closed-loop step response that has 15% overshoot. Do the following:

a. Evaluate the settling time.

b. Design a lead compensator to decrease the settling time by three times. Choose the
compensator’s zero to be at –10.

ANSWERS:

a. Ts = 1.143 s

b. Glead (s) = , K = 476.3

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

9.4 Improving Steady-State Error and Transient Response
We now combine the design techniques covered in Sections 9.2 and 9.3 to obtain
improvement in steady-state error and transient response independently. Basically, we first
improve the transient response by using the methods of Section 9.3. Then we improve the
steady-state error of this compensated system by applying the methods of Section 9.2. A
disadvantage of this approach is the slight decrease in the speed of the response when the
steady-state error is improved.

As an alternative, we can improve the steady-state error first and then follow with the design
to improve the transient response. A disadvantage of this approach is that the improvement
in transient response in some cases yields deterioration in the improvement of the steady-
state error, which was designed first. In other cases, the improvement in transient response
yields further improvement in steady-state errors. Thus, a system can be overdesigned with
respect to steady-state errors. Overdesign is usually not a problem unless it affects cost or
produces other design problems. In this textbook, we first design for transient response and
then design for steady-state error.

The design can use either active or passive compensators, as previously described. If we
design an active PD controller followed by an active PI controller, the resulting compensator
is called a proportional-plus-integral-plus-derivative (PID) controller. If we first
design a passive lead compensator and then design a passive lag compensator, the resulting
compensator is called a lag–lead compensator.

PID Controller Design
A PID controller is shown in Figure 9.30. Its transfer function is

K

s (s + 7)

s+10
s+25.52

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(9.21)

Gc (s) = K1 + + K3s = =

which has two zeros plus a pole at the origin. One zero and the pole at the origin can be
designed as the ideal integral compensator; the other zero can be designed as the ideal
derivative compensator.

FIGURE 9.30 PID controller

The design technique, which is demonstrated in Example 9.5, consists of the following steps:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the PD controller to meet the transient response specifications. The design
includes the zero location and the loop gain.

3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Design the PI controller to yield the required steady-state error.

6. Determine the gains, K1, K2, and K3, in Figure 9.30.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if simulation shows that requirements have not been met.

K2

s

K1s + K2 + K3s
2

s

K3 (s2 + s + )K1

K3

K2

K3

s
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Example 9.5 PID Controller Design
PROBLEM:
Given the system of Figure 9.31, design a PID controller so that the system can operate
with a peak time that is two-thirds that of the uncompensated system at 20% overshoot
and with zero steady-state error for a step input.

FIGURE 9.31 Uncompensated feedback control system for Example 9.5

SOLUTION:
Note that our solution follows the eight-step procedure described earlier.

Step 1 Let us first evaluate the uncompensated system operating at 20% overshoot.
Searching along the 20% overshoot line (ζ = 0.456) in Figure 9.32, we find the
dominant poles to be −5.415 ±j10.57 with a gain of 121.5. A third pole, which exists
at −8.169, is found by searching the region between −8 and −10 for a gain
equivalent to that at the dominant poles. The complete performance of the
uncompensated system is shown in the first column of Table 9.5, where we
compare the calculated values to those obtained through simulation (Figure 9.35).
We estimate that the uncompensated system has a peak time of 0.297 second at
20% overshoot.

Step 2 To compensate the system to reduce the peak time to two-thirds of that of
the uncompensated system, we must first find the compensated system's dominant
pole location. The imaginary part of the compensated dominant pole is

ωd = = = 15.87

Thus, the real part of the compensated dominant pole is

σ = = −8.13

Next we design the compensator. Using the geometry shown in Figure 9.33, we
calculate the compensating zero's location. Using the root locus program, we find
the sum of angles from the uncompensated system's poles and zeros to the desired
compensated dominant pole to be −198.37°. Thus, the contribution required from
the compensator zero is 198.37° −180° = 18.37°. Assume that the compensator
zero is located at −zc, as shown in Figure 9.33. Since

= tan 18.37°

then

π

Tp

π

(2/3) (0.297)

ωd

tan 117.13°

15.87

zc − 8.13



(9.26)

(9.25)

(9.27)

(9.28)

zc = 55.92

Thus, the PD controller is

GPD (s) = (s + 55.92)

The complete root locus for the PD-compensated system is sketched in Figure
9.34. Using a root locus program, the gain at the design point is 5.34. Complete
specifications for ideal derivative compensation are shown in the third column of
Table 9.5.

Steps 3 & 4 We simulate the PD-compensated system, as shown in Figure 9.35.
We see the reduction in peak time and the improvement in steady-state error over
the uncompensated system.

Step 5 After we design the PD controller, we design the ideal integral compensator
to reduce the steady-state error to zero for a step input. Any ideal integral
compensator zero will work, as long as the zero is placed close to the origin.
Choosing the ideal integral compensator to be

GPI (s) =

we sketch the root locus for the PID-compensated system, as shown in Figure
9.36. Searching the 0.456 damping ratio line, we find the dominant, second-order
poles to be −7.516 ±j14.67, with an associated gain of 4.6. The remaining
characteristics for the PID-compensated system are summarized in the fourth
column of Table 9.5.

Step 6 Now we determine the gains, K1, K2, and K3, in Figure 9.30. From Eqs.
(9.26) and (9.27), the product of the gain and the PID controller is

GPID (s) = =

=

Matching Eqs. (9.21) and (9.28), K1 = 259.5, K2 = 128.6, and K3 = 4.6.

Steps 7 & 8 Returning to Figure 9.35, we summarize the results of our design. PD
compensation improved the transient response by decreasing the time required to
reach the first peak as well as yielding some improvement in the steady-state error.
The complete PID controller further improved the steady-state error without
appreciably changing the transient response designed with the PD controller. As we
have mentioned before, the PID controller exhibits a slower response, reaching the
final value of unity at approximately 3 seconds. If this is undesirable, the speed of
the system must be increased by redesigning the ideal derivative compensator or
moving the PI controller zero farther from the origin. Simulation plays an
important role in this type of design since our derived equation for settling time is
not applicable for this part of the response, where there is a slow correction of the
steady-state error.

s + 0.5

s

K(s+55.92)(s+0.5)

s

4.6(s+55.92)(s+0.5)

s

4.6(s2+56.42s+27.96)
s



FIGURE 9.32 Root locus for the uncompensated system of Example 9.5



TABLE 9.5

Predicted characteristics of uncompensated, PD-, and PID-compensated
systems of Example 9.5

Uncompensated PD-
compensated

PID-compensated

Plant and
compensator
Dominant poles − 5.415 ±j10.57 − 8.13 ±j15.87 − 7.516 ±j14.67
K 121.5 5.34 4.6
ζ 0.456 0.456 0.456
ωn 11.88 17.83 16.49

%OS 20 20 20
Ts 0.739 0.492 0.532

Tp 0.297 0.198 0.214

Kp 5.4 13.27 ∞

e (∞) 0.156 0.070 0
Other poles − 8.169 − 8.079 −8.099, −0.468
Zeros − 8 −8, −55.92 −8, −55.92, −0.5
Comments Second-order

approx. OK
Second-order
approx. OK

Zeros at −55.92 and −0.5
not canceled

FIGURE 9.33 Calculating the PD compensator zero for Example 9.5

K(s+8)

(s+3)(s+6)(s+10)

K(s+8)(s+55.92)

(s+3)(s+6)(s+10)

K(s+8)(s+55.92)(s+0.5)

(s+3)(s+6)(s+10)s



FIGURE 9.34 Root locus for PD-compensated system of Example 9.5

FIGURE 9.35 Step responses for uncompensated, PD-compensated, and
PID-compensated systems of Example 9.5



FIGURE 9.36 Root locus for PID-compensated system of Example 9.5

Lag–Lead Compensator Design
In the previous example, we serially combined the concepts of ideal derivative and ideal
integral compensation to arrive at the design of a PID controller that improved both the
transient response and the steady-state error performance. In the next example, we improve
both transient response and the steady-state error by using a lead compensator and a lag
compensator rather than the ideal PID. Our compensator is called a lag–lead
compensator.

We first design the lead compensator to improve the transient response. Next we evaluate
the improvement in steady-state error still required. Finally, we design the lag compensator
to meet the steady-state error requirement. Later in the chapter we show circuit designs for
the passive network. The following steps summarize the design procedure:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the lead compensator to meet the transient response specifications. The design
includes the zero location, pole location, and the loop gain.

3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.



5. Evaluate the steady-state error performance for the lead-compensated system to
determine how much more improvement in steady-state error is required.

6. Design the lag compensator to yield the required steady-state error.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if the simulation shows that requirements have not been met.



(9.29)

(9.30)

(9.31)

Example 9.6 Lag–Lead Compensator Design
PROBLEM:
Design a lag–lead compensator for the system of Figure 9.37 so that the system will
operate with 20% overshoot and a twofold reduction in settling time. Further, the
compensated system will exhibit a tenfold improvement in steady-state error for a ramp
input.

FIGURE 9.37 Uncompensated system for Example 9.6

SOLUTION:
Again, our solution follows the steps just described.

Step 1 First we evaluate the performance of the uncompensated system. Searching
along the 20% overshoot line (ζ = 0.456) in Figure 9.38, we find the dominant
poles at −1.794 ±j3.501, with a gain of 192.1. The performance of the
uncompensated system is summarized in Table 9.6.

Step 2 Next we begin the lead compensator design by selecting the location of the
compensated system's dominant poles. In order to realize a twofold reduction in
settling time, the real part of the dominant pole must be increased by a factor of 2,
since the settling time is inversely proportional to the real part. Thus,

−ζωn = −2 (1.794) = −3.588

The imaginary part of the design point is

ωd = ζωn tan 117.13° = 3.588 tan 117.13° = 7.003

Now we design the lead compensator. Arbitrarily select a location for the lead
compensator zero. For this example, we select the location of the compensator
zero coincident with the open-loop pole at −6. This choice will eliminate a zero
and leave the lead-compensated system with three poles, the same number as the
uncompensated system.

We complete the design by finding the location of the compensator pole. Using the
root locus program, sum the angles to the design point from the uncompensated
system's poles and zeros and the compensator zero and get −164.65°. The
difference between 180° and this quantity is the angular contribution required
from the compensator pole, or −15.35°. Using the geometry shown in Figure 9.39,

= tan 15.35°
7.003

pc − 3.588



(9.32)

(9.33)

(9.34)

(9.35)

from which the location of the compensator pole, pc, is found to be −29.1.

The complete root locus for the lead-compensated system is sketched in Figure
9.40. The gain setting at the design point is found to be 1977.

Steps 3 & 4 Check the design with a simulation. (The result for the lead-
compensated system is shown in Figure 9.42 and is satisfactory.)

Step 5 Continue by designing the lag compensator to improve the steady-state
error. Since the uncompensated system's open-loop transfer function is

G (s) =

the static error constant, Kv, which is inversely proportional to the steady-state
error, is 3.201. Since the open-loop transfer function of the lead-compensated
system is

GLC (s) =

the static error constant, Kv, which is inversely proportional to the steady-state
error, is 6.794. Thus, the addition of lead compensation has improved the steady-
state error by a factor of 2.122. Since the requirements of the problem specified a
tenfold improvement, the lag compensator must be designed to improve the
steady-state error by a factor of 4.713 (10/2.122 = 4.713) over the lead-compensated
system.

Step 6 We arbitrarily choose the lag compensator pole at 0.01, which then places
the lag compensator zero at 0.04713, yielding

Glag (s) =

as the lag compensator. The lag-lead-compensated system's open-loop transfer
function is

GLLC (s) =

where the uncompensated system pole at −6 canceled the lead compensator zero
at −6. By drawing the complete root locus for the lag-lead-compensated system
and by searching along the 0.456 damping ratio line, we find the dominant,
closed-loop poles to be at −3.574 ±j6.976, with a gain of 1971. The lag-lead-
compensated root locus is shown in Figure 9.41.

A summary of our design is shown in Table 9.6. Notice that the lag-lead
compensation has indeed increased the speed of the system, as witnessed by the
settling time or the peak time. The steady-state error for a ramp input has also
decreased by about 10 times, as seen from e (∞).

192.1

s (s + 6) (s + 10)

1977

s (s + 10) (s + 29.1)

(s + 0.04713)

(s + 0.01)

K (s + 0.04713)

s (s + 10) (s + 29.1) (s + 0.01)



Step 7 The final proof of our designs is shown by the simulations of Figures 9.42
and 9.43. The improvement in the transient response is shown in Figure 9.42,
where we see the peak time occurring sooner in the lag-lead-compensated system.
Improvement in the steady-state error for a ramp input is seen in Figure 9.43,
where each step of our design yields more improvement. The improvement for the
lead-compensated system is shown in Figure 9.43(a), and the final improvement
due to the addition of the lag is shown in Figure 9.43(b).

FIGURE 9.38 Root locus for uncompensated system of Example 9.6



TABLE 9.6

Predicted characteristics of uncompensated, lead-compensated, and lag-
lead-compensated systems of Example 9.6

Uncompensated Lead-
compensated

Lag-lead-
compensated

Plant and
compensator
Dominant poles − 1.794 ±j3.501 − 3.588 ±j7.003 − 3.574 ±j6.976
K 192.1 1977 1971
ζ 0.456 0.456 0.456
ωn 3.934 7.869 7.838

%OS 20 20 20
Ts 2.230 1.115 1.119

Tp 0.897 0.449 0.450

Kv 3.202 6.794 31.92

e (∞) 0.312 0.147 0.0313
Third pole − 12.41 − 31.92 −31.91, −0.0474
Zero None None − 0.04713
Comments Second-order

approx. OK
Second-order
approx. OK

Second-order approx.
OK

FIGURE 9.39 Evaluating the compensator pole for Example 9.6
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FIGURE 9.40 Root locus for lead-compensated system of Example 9.6

FIGURE 9.41 Root locus for lag-lead-compensated system of Example 9.6



FIGURE 9.42 Improvement in step response for lag-lead-compensated
system of Example 9.6



FIGURE 9.43 Improvement in ramp response error for the system of
Example 9.6: a. lead-compensated; b. lag-lead-compensated

In the previous example, we canceled the system pole at −6 with the lead compensator zero.
The design technique is the same if you place the lead compensator zero at a different
location. Placing a zero at a different location and not canceling the open-loop pole yields a
system with one more pole than the example. This increased complexity could make it more
difficult to justify a second-order approximation. In any case, simulations should be used at
each step to verify performance.

Notch Filter
If a plant, such as a mechanical system, has high-frequency vibration modes, then a desired
closed-loop response may be difficult to obtain. These high-frequency vibration modes can



be modeled as part of the plant's transfer function by pairs of complex poles near the
imaginary axis. In a closed-loop configuration, these poles can move closer to the imaginary
axis or even cross into the right half-plane, as shown in Figure 9.44(a). Instability or high-
frequency oscillations superimposed over the desired response can result (see Figure
9.44(b)).







FIGURE 9.44 a. Root locus before cascading notch filter; b. typical closed-
loop step response before cascading notch filter; c. pole-zero plot of a notch
filter; d. root locus after cascading notch filter; e. closed-loop step response
after cascading notch filter

One way of eliminating the high-frequency oscillations is to cascade a notch filter2 with
the plant (Kuo, 1995), as shown in Figure 9.44(c). The notch filter has zeros close to the low-
damping-ratio poles of the plant as well as two real poles. Figure 9.44(d) shows that the root
locus branch from the high-frequency poles now goes a short distance from the high-
frequency pole to the notch filter's zero. The high-frequency response will now be negligible
because of the pole-zero cancellation (see Figure 9.44(e)). Other cascade compensators can
now be designed to yield a desired response. The notch filter will be applied to Progressive
Analysis and Design Problem 55 near the end of this chapter.



Skill-Assessment Exercise 9.3
PROBLEM:
A unity-feedback system with forward transfer function

G (s) =

is operating with a closed-loop step response that has 20% overshoot. Do the following:

a. Evaluate the settling time.

b. Evaluate the steady-state error for a unit ramp input.

c. Design a lag–lead compensator to decrease the settling time by 2 times and
decrease the steady-state error for a unit ramp input by 10 times. Place the lead
zero at −3.

ANSWERS:

a. Ts = 1.143 s

b. eramp (∞) = 0.1189

c. Gc (s) = , K = 205.4

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Before concluding this section, let us briefly summarize our discussion of cascade
compensation. In Sections 9.2, 9.3, and 9.4, we used cascade compensators to improve
transient response and steady-state error. Table 9.7 itemizes the types, functions, and
characteristics of these compensators.

K

s (s + 7)

(s+3)(s+0.092)

(s+9.61)(s+0.01)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


TABLE 9.7

Types of cascade compensators
Function Compensator Transfer

function
Characteristics

Improve steady-state
error

PI K 1. Increases system type.

2. Error becomes zero.

3. Zero at −zc is small and
negative.

4. Active circuits are required
to implement.

Improve steady-state
error

Lag K 1. Error is improved but not
driven to zero.

2. Pole at −pc is small and
negative.

3. Zero at −zc is close to, and
to the left of, the pole at
−pc.

4. Active circuits are not
required to implement.

Improve transient
response

PD K (s + zc) 1. Zero at −zc is selected to put
design point on root locus.

2. Active circuits are required
to implement.

3. Can cause noise and
saturation; implement with
rate feedback or with a pole
(lead).

Improve transient
response

Lead K 1. Zero at −zc and pole at −pc
are selected to put design
point on root locus.

2. Pole at −pc is more negative
than zero at −zc.

3. Active circuits are not
required to implement.

s+zc
s

s+zc
s+pc

s+zc
s+pc



Function Compensator Transfer
function

Characteristics

Improve steady-state
error and transient
response

PID K 1. Lag zero at −zlag and pole at
origin improve steady-state
error.

2. Lead zero at −zlead
improves transient
response.

3. Lag zero at −zlag is close to,
and to the left of, the origin.

4. Lead zero at −zlead is
selected to put design point
on root locus.

5. Active circuits required to
implement.

6. Can cause noise and
saturation; implement with
rate feedback or with an
additional pole.

Improve steady-state
error and transient
response

Lag-lead K 1. Lag pole at −plag and lag
zero at −zlag are used to
improve steady-state error.

2. Lead pole at −plead and lead
zero at −zlead are used to
improve transient response.

3. Lag pole at −plag is small
and negative.

4. Lag zero at −zlag is close to,
and to the left of, lag pole at
−plag.

5. Lead zero at −zlead and lead
pole at −plead are selected
to put design point on root
locus.

6. Lead pole at −plead is more
negative than lead zero at
−zlead.

7. Active circuits are not
required to implement.

(s+zlag)(s+zlead)

s

(s+zlag)(s+zlead)

(s+plag)(s+plead)



9.5 Feedback Compensation
In Section 9.4, we used cascade compensation as a way to improve transient response and
steady-state response independently. Cascading a compensator with the plant is not the only
way to reshape the root locus to intersect the closed-loop s-plane poles that yield a desired
transient response. Transfer functions designed to be placed in a feedback path can also
reshape the root locus. Figure 9.45 is a generic configuration showing a compensator, Hc(s),
placed in the minor loop of a feedback control system. Other configurations arise if we
consider K unity, G2(s) unity, or both unity.

FIGURE 9.45 Generic control system with feedback compensation.

The design procedures for feedback compensation can be more complicated than for cascade
compensation. On the other hand, feedback compensation can yield faster responses. Thus,
the engineer has the luxury of designing faster responses into portions of a control loop in
order to provide isolation. For example, the transient response of the ailerons and rudder
control systems of an aircraft can be designed separately to be fast in order to reduce the
effect of their dynamic response on the steering control loop. Feedback compensation can be
used in cases where noise problems preclude the use of cascade compensation. Also,
feedback compensation may not require additional amplification, since the signal passing
through the compensator originates at the high-level output of the forward path and is
delivered to a low-level input in the forward path. For example, let K and G2(s) in Figure
9.45 be unity. The input to the feedback compensator, KfHc(s), is from the high-level output
of G1(s), while the output of KfHc(s) is one of the low-level inputs into K1. Thus, there is a
reduction in level through KfHc(s), and amplification is usually not required.

A popular feedback compensator is a rate sensor that acts as a differentiator. In aircraft and
ship applications, the rate sensor can be a rate gyro that responds with an output voltage
proportional to the input angular velocity. In many other systems this rate sensor is
implemented with a tachometer. A tachometer is a voltage generator that yields a voltage
output proportional to input rotational speed. This compensator can easily be geared to the
position output of a system. Figure 9.46 is a position control system showing the gearing of
the tachometer to the motor. You can see the input and output potentiometers as well as the
motor and inertial load. The block diagram representation of a tachometer is shown in
Figure 9.47(a), and its typical position within a control loop is shown in Figure 9.47(b).



FIGURE 9.46 A position control system that uses a tachometer as a
differentiator in the feedback path. Can you see the similarity between this
system and the schematic in Appendix A2?

FIGURE 9.47 a. Transfer function of a tachometer; b. tachometer feedback
compensation

While this section shows methods for designing systems using rate feedback, it also sets the
stage for compensation techniques in Chapter 12, where not only rate but all states including
position will be fed back for proper control system performance.

We now discuss design procedures. Typically, the design of feedback compensation consists
of finding the gains, such as K, K1, and Kf in Figure 9.45, after establishing a dynamic form
for Hc(s). There are two approaches. The first is similar to cascade compensation. Assume a
typical feedback system, where G(s) is the forward path and H(s) is the feedback. Now
consider that a root locus is plotted from G(s)H(s). With cascade compensation we added
poles and zeros to G(s). With feedback compensation, poles and zeros are added via H(s).



(9.36)

(9.37)

(9.38)

With the second approach, we design a specified performance for the minor loop, shown in
Figure 9.45, followed by a design of the major loop. Thus, the minor loop, such as ailerons
on an aircraft, can be designed with its own performance specifications and operate within
the major loop.

Approach 1
The first approach consists of reducing Figure 9.45 to Figure 9.48 by pushing K to the right
past the summing junction, pushing G2(s) to the left past the pickoff point, and then adding
the two feedback paths. Figure 9.48 shows that the loop gain, G(s)H(s), is

G (s)H (s) = K1G1 (s) [KfHc (s) + KG2 (s)]

Without feedback, KfHc(s), the loop gain is

G (s)H (s) = KK1G1 (s)G2 (s)

Thus, the effect of adding feedback is to replace the poles and zeros of G2(s) with the poles
and zeros of [KfHc (s) + KG2 (s)]. Hence, this method is similar to cascade compensation in
that we add new poles and zeros via H(s) to reshape the root locus to go through the design
point. However, one must remember that zeros of the equivalent feedback shown in Figure
9.48, H(s) = [KfHc (s) + KG2 (s)]/KG2 (s), are not closed-loop zeros.

FIGURE 9.48 Equivalent block diagram of Figure 9.45

For example, if G2 (s) = 1 and the minor-loop feedback, KfHc(s), is a rate sensor, KfHc (s) =
Kfs, then from Eq. (9.36) the loop gain is

G (s)H (s) = KfK1G1 (s)(s + )

Thus, a zero at −K/Kf is added to the existing open-loop poles and zeros. This zero reshapes
the root locus to go through the desired design point. A final adjustment of the gain, K1,
yields the desired response. Again, you should verify that this zero is not a closed-loop zero.
Let us look at a numerical example.

K

Kf



Example 9.7 Compensating Zero via Rate Feedback
PROBLEM:
Given the system of Figure 9.49(a), design rate feedback compensation, as shown in
Figure 9.49(b), to reduce the settling time by a factor of 4 while continuing to operate
the system with 20% overshoot.

FIGURE 9.49 a. System for Example 9.7; b. system with rate feedback
compensation; c. equivalent compensated system; d. equivalent
compensated system showing unity feedback

SOLUTION:
First design a PD compensator. For the uncompensated system, search along the 20%
overshoot line (ζ = 0.456) and find that the dominant poles are at −1.809 ±j3.531, as
shown in Figure 9.50. The estimated specifications for the uncompensated system are



shown in Table 9.8, and the step response is shown in Figure 9.51. The settling time is
2.21 seconds and must be reduced by a factor of 4 to 0.55 second.

FIGURE 9.50 Root locus for uncompensated system of Example 9.7



TABLE 9.8

Predicted characteristics of uncompensated and compensated systems of
Example 9.7

Uncompensated Compensated

Plant and compensator

Feedback 1 0.185(s + 5.42)
Dominant poles − 1.809 ±j3.531 − 7.236 ±j14.12
K1 257.8 1388

ζ 0.456 0.456
ωn 3.97 15.87

%OS 20 20
Ts 2.21 0.55

Tp 0.89 0.22

Kv 3.44 4.18

e (∞) (ramp) 0.29 0.24
Other poles − 16.4 − 5.53
Zero None None
Comments Second-order approx. OK Simulate

FIGURE 9.51 Step response for uncompensated system of Example 9.7

K1

s(s+5)(s+15)

K1

s(s+5)(s+15)



(9.40)

(9.39)

Next determine the location of the dominant poles for the compensated system. To
achieve a fourfold decrease in the settling time, the real part of the pole must be
increased by a factor of 4. Thus, the compensated pole has a real part of 4(− 1.809) = −
7.236. The imaginary part is then

ωd = −7.236 tan 117.13° = 14.12

where 117.13° is the angle of the 20% overshoot line.

Using the compensated dominant pole position of −7.236 ±j14.12, we sum the angles
from the uncompensated system's poles and obtain −277.33°. This angle requires a
compensator zero contribution of +97.33° to yield 180° at the design point. The
geometry shown in Figure 9.52 leads to the calculation of the compensator's zero
location. Hence,

= tan (180° − 97.33°)

from which zc = 5.42.

FIGURE 9.52 Finding the compensator zero in Example 9.7

The root locus for the equivalent compensated system of Figure 9.49(c) is shown in
Figure 9.53. The gain at the design point, which is K1Kf from Figure 9.49(c), is found to
be 256.7. Since Kf is the reciprocal of the compensator zero, Kf = 0.185. Thus, K1 = 1388.

14.12

7.236 − zc



(9.41)

(9.42)

FIGURE 9.53 Root locus for the compensated system of Example 9.7

In order to evaluate the steady-state error characteristic, Kv is found from Figure
9.49(d) to be

Kv = = 4.18

Predicted performance for the compensated system is shown in Table 9.8. Notice that
the higher-order pole is not far enough away from the dominant poles and thus cannot
be neglected. Further, from Figure 9.49(d), we see that the closed-loop transfer function
is

T (s) = =

Thus, as predicted, the open-loop zero is not a closed-loop zero, and there is no pole-
zero cancellation. Hence, the design must be checked by simulation.

The results of the simulation are shown in Figure 9.54 and show an over-damped
response with a settling time of 0.75 second, compared to the uncompensated system's
settling time of approximately 2.2 seconds. Although not meeting the design
requirements, the response still represents an improvement over the uncompensated

K1

75 + K1Kf

G (s)

1 + G (s)H (s)

K1

s3 + 20s2 + (75 + K1Kf) s + K1



system of Figure 9.51. Typically, less overshoot is acceptable. The system should be
redesigned for further reduction in settling time.

FIGURE 9.54 Step response for the compensated system of Example 9.7

You may want to do Problem 8 at the end of this chapter, where you can repeat this
example using PD cascade compensation. You will see that the compensator zero for
cascade compensation is a closed-loop zero, yielding the possibility of pole-zero
cancellation. However, PD compensation is usually noisy and not always practical.

Approach 2
The second approach allows us to use feedback compensation to design a minor loop's
transient response separately from the closed-loop system response. In the case of an
aircraft, the minor loop may control the position of the aerosurfaces, while the entire closed-
loop system may control the entire aircraft's pitch angle.

We will see that the minor loop of Figure 9.45 basically represents a forward-path transfer
function whose poles can be adjusted with the minor-loop gain. These poles then become the
open-loop poles for the entire control system. In other words, rather than reshaping the root
locus with additional poles and zeros, as in cascade compensation, we can actually change
the plant's poles through a gain adjustment. Finally, the closed-loop poles are set by the loop
gain, as in cascade compensation.



(9.43)

Example 9.8 Minor-Loop Feedback Compensation
PROBLEM:
For the system of Figure 9.55(a), design minor-loop feedback compensa-tion, as shown
in Figure 9.55(b), to yield a damping ratio of 0.8 for the minor loop and a damping ratio
of 0.6 for the closed-loop system.

FIGURE 9.55 a. Uncompensated system and b. feedback-compensated
system for Example 9.8

SOLUTION:
The minor loop is defined as the loop containing the plant, 1/[s (s + 5) (s + 15)], and the
feedback compensator, Kfs. The value of Kf will be adjusted to set the location of the
minor-loop poles, and then K will be adjusted to yield the desired closed-loop response.

The transfer function of the minor loop, GML(s), is

GML (s) =

The poles of GML(s) can be found analytically or via the root locus. The root locus for
the minor loop, where Kfs/[s (s + 5) (s + 15)] is the open-loop transfer function, is
shown in Figure 9.56. Since the zero at the origin comes from the feedback transfer
function of the minor loop, this zero is not a zero of the closed-loop transfer function of
the minor loop. Hence, the pole at the origin appears to remain stationary, and there is
no pole-zero cancellation at the origin. Equation (9.43) also shows this phenomenon.
We see a stationary pole at the origin and two complex poles that change with gain.
Notice that the compensator gain, Kf, varies the natural frequency, ωn, of the minor-
loop poles as seen from Eq. (9.43). Since the real parts of the complex poles are

1

s [s2 + 20s + (75 + Kf)]



constant at −ζωn = − 10, the damping ratio must also be varying to keep 2ζωn = 20, a
constant. Drawing the ζ = 0.8 line in Figure 9.56 yields the complex poles at −10 ±j 7.5.
The gain, Kf, which equals 81.25, places the minor-loop poles in a position to meet the
specifications. The poles just found, −10 ±j 7.5, as well as the pole at the origin (Eq.
(9.43)), act as open-loop poles that generate a root locus for variations of the gain, K.

FIGURE 9.56 Root locus for minor loop of Example 9.8

The final root locus for the system is shown in Figure 9.57. The ζ = 0.6 damping ratio
line is drawn and searched. The closed-loop complex poles are found to be −4.535
±j6.046, with a required gain of 624.3. A third pole is at −10.93.



Virtual Experiment 9.2 Improving Performance Using Rate
Feedback with PD or PID Control
Put theory into practice and design a compensator in LabVIEW that controls the
ball position in the Quanser Magnetic Levitation system. Magnetic Levitation
technology is used for modern transportation systems that suspend, such as the
high-speed Magnetic Levitation train.

Run Experiment 9.2

FIGURE 9.57 Root locus for closed-loop system of Example 9.8

The results are summarized in Table 9.9. We see that the compensated system, although
having the same damping ratio as the uncompensated system, is much faster and also
has a smaller steady-state error. The results, however, are predicted results and must be

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Exp10.zip


simulated to verify percent overshoot, settling time, and peak time, since the third pole
is not far enough from the dominant poles. The step response is shown in Figure 9.58
and closely matches the predicted performance.

TABLE 9.9

Predicted characteristics of the uncompensated and compensated
systems of Example 9.8

Uncompensated Compensated

Plant and compensator

Feedback 1 1
Dominant poles − 1.997 ±j2.662 − 4.535 ±j6.046
K 177.3 624.3
ζ 0.6 0.6
ωn 3.328 7.558

%OS 9.48 9.48
Ts 2 0.882

Tp 1.18 0.52

Kv 2.364 3.996

e (∞)(ramp) 0.423 0.25
Other poles − 16 − 10.93
Zero None None
Comments Second-order approx. OK Simulate

FIGURE 9.58 Step response simulation for Example 9.8

K1

s(s+5)(s+15)
K

s(s2+20s+156.25)
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Skill-Assessment Exercise 9.4
PROBLEM:
For the system of Figure 9.59, design minor-loop rate feedback compensation to yield a
damping ratio of 0.7 for the minor loop's dominant poles and a damping ratio of 0.5 for
the closed-loop system's dominant poles.

FIGURE 9.59 System for Skill-Assessment Exercise 9.4

ANSWERS:
The system is configured similar to Figure 9.55(b) with Kf = 77.42 and K = 626.3.

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Our discussion of compensation methods is now complete. We studied both cascade and
feedback compensation and compared and contrasted them. We are now ready to show how
to physically realize the controllers and compensators we designed.

9.6 Physical Realization of Compensation
In this chapter, we derived compensation to improve transient response and steady-state
error in feedback control systems. Transfer functions of compensators used in cascade with
the plant or in the feedback path were derived. These compensators were defined by their
pole-zero configurations. They were either active PI, PD, or PID controllers or passive lag,
lead, or lag–lead compensators. In this section, we show how to implement the active
controllers and the passive compensators.

Active-Circuit Realization
In Chapter 29, we derived

= −

as the transfer function of an inverting operational amplifier whose configuration is repeated
here in Figure 9.60. By judicious choice of Z1(s) and Z2(s), this circuit can be used as a
building block to implement the compensators and controllers, such as PID controllers,
discussed in this chapter. Table 9.10 summarizes the realization of PI, PD, and PID
controllers as well as lag, lead, and lag–lead compensators using operational amplifiers. You
can verify the table by using the methods of Chapter 29 to find the impedances.

Vo(s)

Vi(s)

Z2(s)

Z1(s)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE 9.60 Operational amplifier configured for transfer function
realization



TABLE 9.10

Active realization of controllers and compensators, using an operational
amplifier

Function Z1 (s) Z2 (s) Gc (s) = −

Gain −

Integration −

Differentiation − RCs

PI controller −

PD controller −R2C (s + )

PID controller − [( + ) + R2C1s + ]

Lag compensation
−

where R2C2 > R1C1

Z2(s)

Z1(s)

R2

R1

1

RC

s

R2

R1

(s+ )1
R2C

s

1
R1C

R2

R1

C1

C2

1
R1C2

s

C1

C2

(s+ )1
R1C1

(s+ )1

R2C2



Function Z1 (s) Z2 (s) Gc (s) = −

Lead compensation
−

where R1C1 > R2C2

Other compensators can be realized by cascading compensators shown in the table. For
example, a lag–lead compensator can be formed by cascading the lag compensator with the
lead compensator, as shown in Figure 9.61. As an example, let us implement one of the
controllers we designed earlier in the chapter.

FIGURE 9.61 Lag–lead compensator implemented with operational
amplifiers

Z2(s)

Z1(s)

C1

C2

(s+ )1
R1C1

(s+ )1

R2C2
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(9.47)

(9.49)
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Example 9.9 Implementing a PID Controller
PROBLEM:
Implement the PID controller of Example 9.5.

SOLUTION:
The transfer function of the PID controller is

Gc (s) =

which can be put in the form

Gc (s) = s + 56.42 +

Comparing the PID controller in Table 9.10 with Eq. (9.46), we obtain the following
three relationships:

+ = 56.42

R2C1 = 1

and

= 27.96

Since there are four unknowns and three equations, we arbitrarily select a practical
value for one of the elements. Selecting C2 = 0.1 μF, the remaining values are found to
be R1 =357.65 kΩ, R2 = 178, 891 kΩ, and C1 = 5.59 μF.

The complete circuit is shown in Figure 9.62, where the circuit element values have
been rounded off.

FIGURE 9.62 PID controller

(s + 55.92) (s + 0.5)

s

27.96

s

R2

R1

C1

C2

1

R1C2



Passive-Circuit Realization
Lag, lead, and lag–lead compensators can also be implemented with passive networks. Table
9.11 summarizes the networks and their transfer functions. The transfer functions can be
derived with the methods of Chapter 2.

TABLE 9.11

Passive realization of compensators

Function Network Transfer function, 

Lag compensation

Lead compensation

Lag–lead compensation

The lag–lead transfer function can be put in the following form:

Vo(s)

Vi(s)

R2

R1+R2

s+ 1
R2C

s+ 1

(R1+R2)C

s+ 1
R1C

s+ +1
R1C

1
R2C

(s+ )(s+ )1
R1C1

1
R2C2

s2+( + + )s+
1

R1C1

1

R2C2

1

R2C1

1

R1R2C1C2



(9.50)

Gc (s) =

where α < 1. Thus, the terms with T1 form the lead compensator, and the terms with T2 form
the lag compensator. Equation (9.50) shows a restriction inherent in using this passive
realization. We see that the ratio of the lead compensator zero to the lead compensator pole
must be the same as the ratio of the lag compensator pole to the lag compensator zero. In
Chapter 11 we design a lag–lead compensator with this restriction.

A lag–lead compensator without this restriction can be realized with an active network as
previously shown or with passive networks by cascading the lead and lag networks shown in
Table 9.11. Remember, though, that the two networks must be isolated to ensure that one
network does not load the other. If the networks load each other, the transfer function will
not be the product of the individual transfer functions. A possible realization using passive
networks is shown in Figure 9.63. Isolation is implemented with a noninverting operational
amplifier configured as a voltage follower, where gain = (Rf  + R3)/Rf = 1 if Rf >> R3.
Example 9.10 demonstrates the design of a passive compensator.

FIGURE 9.63 Lag–lead compensator implemented with cascaded lag and lead
networks with isolation

(s + )(s + )1
T1

1
T2

(s + )(s + )1
αT1

α
T2
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Example 9.10 Realizing a Lead Compensator
PROBLEM:
Realize the lead compensator designed in Example 9.4 (Compensator b).

SOLUTION:
The transfer function of the lead compensator is

Gc (s) =

Comparing the transfer function of a lead network shown in Table 9.11 with Eq. (9.51),
we obtain the following two relationships:

= 4

and

+ = 20.09

Hence, R1C = 0.25, and R2C = 0.0622. Since there are three network elements and two
equations, we may select one of the element values arbitrarily. Letting C = 1 μF, then R1
= 250 kΩ and R2 = 62.2 kΩ.

s + 4

s + 20.09

1

R1C

1

R1C

1

R2C



Skill-Assessment Exercise 9.5
PROBLEM:
Implement the compensators shown in a. and b. below. Choose a passive realization if
possible.

a. Gc (s) =

b. Gc (s) =

ANSWERS:

a. Gc(s) is a PID controller and thus requires active realization. Use Figure 9.60 with
the PID controller circuits shown in Table 9.10. One possible set of approximate
component values is

C1 = 10 μF, C2 = 100 μF, R1 = 20 kΩ, R2 = 100 kΩ

b. Gc(s) is a lag–lead compensator that can be implemented with a passive network
because the ratio of the lead pole to zero is the inverse of the ratio of the lag pole to
zero. Use the lag–lead compensator circuit shown in Table 9.11. One possible set of
approximate component values is

C1 = 100 μF, C2 = 900 μF, R1 = 100 kΩ, R2 = 560 Ω

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

(s+0.1)(s+5)

s

(s+0.1)(s+2)

(s+0.01)(s+20)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Case Studies Antenna Control: Lag–Lead Compensation
 For the antenna azimuth position control system case study in Chapter 8, we

obtained a 25% overshoot using a simple gain adjustment. Once this percent overshoot
was obtained, the settling time was determined. If we try to improve the settling time by
increasing the gain, the percent overshoot also increases. In this section, we continue
with the antenna azimuth position control by designing a cascade compensator that
yields 25% overshoot at a reduced settling time. Further, we effect an improvement in
the steady-state error performance of the system.

PROBLEM:
Given the antenna azimuth position control system shown in Appendix A2,
Configuration 1, design cascade compensation to meet the following requirements: (1)
25% overshoot, (2) 2-second settling time, and (3) Kv = 20.

SOLUTION:
For the case study in Chapter 8, a preamplifier gain of 64.21 yielded 25% overshoot,
with the dominant, second-order poles at −0.833 ±j1.888. The settling time is thus 4/
ζωn = 4/.833 = 4.8 seconds. The open-loop function for the system as derived in the
case study in Chapter 5 is G(s) = 6.63K/[s (s + 1.71) (s + 100)]. Hence Kv = 6.63K/(1.71
× 100) = 2.49. Comparing these values to this example's problem statement, we want to
improve the settling time by a factor of 2.4, and we want approximately an eightfold
improvement in Kv.

Lead compensator design to improve transient response:
First locate the dominant second-order pole. To obtain a settling time, Ts, of 2 seconds
and a percent overshoot of 25%, the real part of the dominant second-order pole should
be at −4/Ts = − 2. Locating the pole on the 113.83° line (ζ = 0.404, corresponding to
25% overshoot) yields an imaginary part of 4.529 (see Figure 9.64).



(9.54)

(9.55)

FIGURE 9.64 Locating compensator pole

Second, assume a lead compensator zero and find the compensator pole. Assuming a
compensator zero at −2, along with the uncompensated system's open-loop poles and
zeros, use the root locus program in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e to find that there is an angular
contribution of −120.14° at the design point of −2 ±j4.529. Therefore, the
compensator's pole must contribute 120.14° −180° = − 59.86° for the design point to be
on the compensated system's root locus. The geometry is shown in Figure 9.64. To
calculate the compensator pole, we use 4.529/(pc − 2) = tan 59.86° or pc = 4.63.

Now determine the gain. Using the lead-compensated system's open-loop function,

G (s) =

and the design point −2 + j4.529 as the test point in the root locus program, the gain,
6.63K, is found to be 2549.

Lag compensator design to improve the steady-state error:
Kv for the lead-compensated system is found using Eq. (9.54). Hence,

Kv = = 6.44

Since we want Kv = 20, the amount of improvement required over the lead-
compensated system is 20/6.44 = 3.1. Choose pc = − 0.01 and calculate zc = 0.031,
which is 3.1 times larger.

Determine gain:
The complete lag–lead-compensated open-loop function, GLLC(s), is

6.63K (s + 2)

s (s + 1.71) (s + 100) (s + 4.63)

2549 (2)

(1.71) (100) (4.63)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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GLLC (s) =

Using the root locus program in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e and the poles and zeros of Eq.
(9.56), search along the 25% overshoot line (113.83°) for the design point. This point
has moved slightly with the addition of the lag compensator to −1.99 ±j4.51. The gain at
this point equals 2533, which is 6.63K. Solving for K yields K = 382.1.

Realization of the compensator:
A realization of the lag–lead compensator is shown in Figure 9.63. From Table 9.11 the
lag portion has the following transfer function:

Glag (s) = =

Selecting C = 10 μF, we find R2 = 3.2 MΩ and R1 = 6.8 MΩ.

From Table 9.11 the lead compensator portion has the following transfer function:

Glead (s) = =

Selecting C = 10 μF, we find R1 = 50 kΩ and R2 = 38 kΩ.

The total loop gain required by the system is 2533. Hence,

6.63K = 2533

where K is the gain of the preamplifier, and R2/(R1 + R2) is the gain of the lag portion.
Using the values of R1 and R2 found during the realization of the lag portion, we find K
= 1194.

The final circuit is shown in Figure 9.65, where the preamplifier is implemented with an
operational amplifier whose feedback and input resistor ratio approximately equals
1194, the required preamplifier gain. The preamplifier isolates the lag and lead portions
of the compensator.

6.63K (s + 2) (s + 0.031)

s (s + .01) (s + 1.71) (s + 4.63) (s + 100)

R2

R1 + R2

s + 1
R2C

s + 1
(R1+R2)C

R2

R1 + R2

(s + 0.031)

(s + 0.01)

s + 1
R1C

s + +1
R1C

1
R2C

(s + 2)

(s + 4.63)

R2

R1 + R2
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(9.60)

FIGURE 9.65 Realization of lag–lead compensator

Summary of the design results:
Using Eq. (9.56) along with K = 382.1 yields the compensated value of Kv. Thus,

Kv = lim
s→0

sGLLC (s) = = 19.84

which is an improvement over the gain-compensated system in the case study of
Chapter 8, where Kv = 2.49. This value is calculated from the uncompensated G(s) by
letting K = 64.21, as found in the Case Study of Chapter 8.

Finally, checking the second-order approximation via simulation, we see in Figure 9.66
the actual transient response. Compare this to the gain-compensated system response
of Figure 8.29 to see the improvement effected by cascade compensation over simple
gain adjustment. The gain-compensated system yielded 25%, with a settling time of
about 4 seconds. The lag–lead-compensated system yields 28% overshoot, with a
settling time of about 2 seconds. If the results are not adequate for the application, the
system should be redesigned to reduce the percent overshoot.

2533 (2) (0.031)

(0.01) (1.71) (4.63) (100)



FIGURE 9.66 Step response of lag–lead-compensated antenna control

CHALLENGE:
You are now given a problem to test your knowledge of this chapter's objectives. You are
given the antenna azimuth position control system shown in Appendix A2,
Configuration 2. In the challenge in Chapter 8, you were asked to design, via gain
adjustment, an 8-second settling time.

a. For your solution to the challenge in Chapter 8, evaluate the percent overshoot and
the value of the appropriate static error constant.

b. Design a cascade compensator to reduce the percent overshoot by a factor of 4 and
the settling time by a factor of 2. Also, improve the appropriate static error constant
by a factor of 2.

c.  Repeat Part b using MATLAB.

UFSS Vehicle: Lead and Feedback Compensation
As a final look at this case study, we redesign the pitch control loop for the UFSS
vehicle. For the case study in Chapter 8, we saw that rate feedback improved the
transient response. In this chapter's case study, we replace the rate feedback with a
cascade compensator.

PROBLEM:
Given the pitch control loop without rate feedback (K2 = 0) for the UFSS vehicle shown
in Appendix A3, design a compensator to yield 20% overshoot and a settling time of 4
seconds (Johnson, 1980).

SOLUTION:



(9.61)

(9.62)

(9.63)

First determine the location of the dominant closed-loop poles. Using the required 20%
overshoot and a 4-second settling time, a second-order approximation shows the
dominant closed-loop poles are located at −1 ±j1.951. From the uncompensated system
analyzed in the Chapter 8 case study, the estimated settling time was 19.8 seconds for
dominant closed-loop poles of −0.202 ±j 0.394. Hence, a lead compensator is required
to speed up the system.

Arbitrarily assume a lead compensator zero at −1. Using the root locus program in
Appendix H.2 at www.wiley.com/go/Nise/ControlSystemsEngineering8e, we find that
this compensator zero, along with the open-loop poles and zeros of the system, yields an
angular contribution at the design point, −1 + j1.951, of −178.92°. The difference
between this angle and 180°, or −1.08°, is the angular contribution required from the
compensator pole.

Using the geometry shown in Figure 9.67, where −pc is the compensator pole location,
we find that

= tan 1.08°

from which pc = 104.5. The compensated open-loop transfer function is thus

G (s) =

where the compensator is

Gc (s) =

FIGURE 9.67 Locating compensator pole

1.951

pc − 1

0.25K1 (s + 0.435) (s + 1)

(s + 1.23) (s + 2) (s2 + 0.226s + 0.0169) (s + 104.5)

(s + 1)

(s + 104.5)
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Using all poles and zeros shown in Eq. (9.62), the root locus program shows that a gain
of 516.5 is required at the design point, −1 ±j1.951. The root locus of the compensated
system is shown in Figure 9.68.

FIGURE 9.68 Root locus for lead-compensated system

A test of the second-order approximation shows three more closed-loop poles at −0.5,
−0.9, and −104.5. Since the open-loop zeros are at −0.435 and −1, simulation is
required to see if there is effectively closed-loop pole-zero cancellation with the closed-
loop poles at −0.5 and −0.9, respectively. Further, the closed-loop pole at −104.5 is
more than five times the real part of the dominant closed-loop pole, −1 ±j1.951, and its
effect on the transient response is therefore negligible.

The step response of the closed-loop system is shown in Figure 9.69, where we see a
26% overshoot and a settling time of about 4.5 seconds. Comparing this response with
Figure 8.31, the response of the uncompensated system, we see considerable
improvement in the settling time and steady-state error. However, the transient
response performance does not meet the design requirements. Thus, a redesign of the
system to reduce the percent overshoot is suggested if required by the application.



FIGURE 9.69 Step response of lead-compensated UFSS vehicle

CHALLENGE:
You are now given a problem to test your knowledge of this chapter's objectives. The
heading control system for the UFSS vehicle is shown in Appendix A3. The minor loop
contains the rudder and vehicle dynamics, and the major loop relates output and input
headings (Johnson, 1980).

a. Find the values of K1 and K2 so that the minor-loop dominant poles have a
damping ratio of 0.6 and the major-loop dominant poles have a damping ratio of
0.5.

b.  Repeat, using MATLAB.

Summary
In this chapter, we learned how to design a system to meet transient and steady-state
specifications. These design techniques overcame limitations in the design methodology
covered in Chapter 8, whereby a transient response could be created only if the poles
generating that response were on the root locus. Subsequent gain adjustment yielded the
desired response. Since this value of gain dictated the amount of steady-state error in the
response, a trade-off was required between the desired transient response and the desired
steady-state error.

Cascade or feedback compensation is used to overcome the disadvantages of gain
adjustment as a compensating technique. In this chapter, we saw that the transient response
and the steady-state error can be designed separately from each other. No longer was a
trade-off between these two specifications required. Further, we were able to design for a
transient response that was not represented on the original root locus.



The transient response design technique covered in this chapter is based upon reshaping the
root locus to go through a desired transient response point, followed by a gain adjustment.
Typically, the resulting gain is much higher than the original if the compensated system
response is faster than the uncompensated response.

The root locus is reshaped by adding additional poles and zeros via a cascade or feedback
compensator. The additional poles and zeros must be checked to see that any second-order
approximations used in the design are valid. All poles, besides the dominant second-order
pair, must yield a response that is much faster than the designed response. Thus,
nondominant poles must be at least five times as far from the imaginary axis as the
dominant pair. Further, any zeros of the system must be close to a nondominant pole for
pole-zero cancellation, or far from the dominant pole pair. The resulting system can then be
approximated by two dominant poles.

The steady-state response design technique is based upon placing a pole on or near the
origin in order to increase or nearly increase the system type. Then a zero is placed near this
pole so that the effect upon the transient response is negligible. However, final reduction of
steady-state error occurs with a long-time constant. The same arguments about other poles
yielding fast responses and about zeros being cancelled in order to validate a second-order
approximation also hold true for this technique. If the second-order approximations cannot
be justified, then a simulation is required to make sure the design is within tolerance.

Steady-state design compensators are implemented via PI controllers or lag
compensators. PI controllers add a pole at the origin, thereby increasing the system type.
Lag compensators, usually implemented with passive networks, place the pole off the origin
but near it. Both methods add a zero very close to the pole in order not to affect the transient
response.

The transient response design compensators are implemented through PD controllers or
lead compensators. PD controllers add a zero to compensate the transient response; they
are considered ideal. Lead compensators, on the other hand, are not ideal since they add a
pole along with the zero. Lead compensators are usually passive networks.

We can correct both transient response and steady-state error with a PID or lag–lead
compensator. Both of these are simply combinations of the previously described
compensators. Table 9.7 summarized the types of cascade compensators.

Feedback compensation can also be used to improve the transient response. Here the
compensator is placed in the feedback path. The feedback gain is used to change the
compensator zero or the system's open-loop poles, giving the designer a wide choice of
various root loci. The system gain is then varied to move along the selected root locus to the
design point. An advantage of feedback compensation is the ability to design a fast response
into a subsystem independently of the system's total response.

In the next chapter, we look at another method of design, frequency response, which is an
alternate method to the root locus.

Review Questions
1. Briefly distinguish between the design techniques in Chapter 8 and Chapter 9.

2. Name two major advantages of the design techniques of Chapter 9 over the design
techniques of Chapter 8.

3. What kind of compensation improves the steady-state error?

4. What kind of compensation improves transient response?



5. What kind of compensation improves both steady-state error and transient response?

6. Cascade compensation to improve the steady-state error is based upon what pole-zero
placement of the compensator? Also, state the reasons for this placement.

7. Cascade compensation to improve the transient response is based upon what pole-zero
placement of the compensator? Also, state the reasons for this placement.

8. What difference on the s-plane is noted between using a PD controller or using a lead
network to improve the transient response?

9. In order to speed up a system without changing the percent overshoot, where must the
compensated system's poles on the s-plane be located in comparison to the
uncompensated system's poles?

10. Why is there more improvement in steady-state error if a PI controller is used instead of
a lag network?

11. When compensating for steady-state error, what effect is sometimes noted in the
transient response?

12. A lag compensator with the zero 25 times as far from the imaginary axis as the
compensator pole will yield approximately how much improvement in steady-state
error?

13. If the zero of a feedback compensator is at −3 and a closed-loop system pole is at
−3.001, can you say there will be pole-zero cancellation? Why?

14. Name two advantages of feedback compensation.

Cyber Exploration Laboratory

EXPERIMENT 9.1
Objectives
To perform a trade-off study for lead compensation. To design a PI controller and see its
effect upon steady-state error.

Minimum Required Software Packages
MATLAB, and the Control System Toolbox

Prelab

1. How many lead compensator designs will meet the transient response specifications of
a system?

2. What differences do the lead compensators of Prelab 1 make?

3. Design a lead compensator for a unity negative feedback system with a forward transfer
function of G (s) =  to meet the following specifications: percent overshoot =

20 %; settling time = 2 seconds. Specify the required gain, K. Estimate the validity of the
second-order approximation.

4. What is the total angular contribution of the lead compensator of Prelab 3?

5. Determine the pole and zero of two more lead compensators that will meet the
requirements of Prelab 3.

K

s(s+3)(s+6)



6. What is the expected steady-state error for a step input for each of the lead-
compensated systems?

7. What is the expected steady-state error for a ramp input for each of the lead-
compensated systems?

8. Select one of the lead compensator designs and specify a PI controller that can be
cascaded with the lead compensator that will produce a system with zero steady-state
error for both step and ramp inputs.

Lab

1. Using the Control System Designer create the design in Prelab 3 and plot the root locus,
step response, and ramp response. Take data to determine the percent overshoot,
settling time, and step and ramp steady-state errors. Record the gain, K.

2. Repeat Lab 1 for each of the designs in Prelab 5.

3. For the design selected in Prelab 8, use the Control System Designer and insert the PI
controller. Plot the step response and measure the percent overshoot, settling time, and
steady-state error. Also, plot the ramp response for the design and measure the steady-
state error.

4. Plot the step and ramp responses for two more values of the PI controller zero.

Postlab

1. Make a table showing calculated and actual values for percent overshoot, settling time,
gain, K, steady-state error for step inputs, and steady-state error for ramp inputs. Use
the three systems without the PI controller and the single system with the PI controller
from Lab 3.

2. Itemize the benefits of each system without the PI controller.

3. Choose a final design and discuss the reasons for your choice.

EXPERIMENT 9.2
Objective
To design a PID controller via LabVIEW

Minimum Required Software Packages
LabVIEW with the Control Design and Simulation Module

Prelab

1. Perform Cyber Exploration Laboratory Experiment 8.3.

2. Use the system described in Cyber Exploration Laboratory Experiment 8.3 and replace
the controller described there, Gc(s) = KDs + KP, with a PID controller.

3. Design the controller to meet the following requirements: (1) shorten the settling time
found in the design of Cyber Exploration Laboratory Experiment 8.3 to less than 1
second, and (2) limit the percent overshoot to no more than 5%.



4. Design a LabVIEW VI to test your design. The front panel inputs will be the PID gains
and the numerator and denominator of the plant. The indicators will be the transfer
functions of the plant, PID controller, and closed-loop system. Finally, provide an
indicator for the step-response graph.

Lab

Run your LabVIEW VI and obtain the step response of the closed-loop system.

Postlab
Compare the transient and steady-state error performance between the closed-loop step
responses of Cyber Exploration Laboratory Experiment 8.3 and this experiment.

Hardware Interface Laboratory
EXPERIMENT 9.3 Speed Control Using PI Control
Objectives
To control the speed of the motor in closed loop using integral control and to investigate the
tradeoffs of this approach

Material Required
Computer with LabView installed; myDAQ; dc brushed gearmotor with Hall Sensor
quadrature encoder (−10V to +10V normal operation range); and motor control chip
BA6956AN, or a transistor circuit substitute.

Files Provided at www.wiley.com/go/Nise/ControlSystemsEngineering8e
Speed PI Control.vi

Signal Conditioning (SubVI).vi

PI Controller (SubVI).vi

Prelab
Answer the following questions:

For the system shown in Figure P9.70, do the following:

1. Find the closed-loop transfer function from R(s) to C(s).

2. Draw the root locus as a function of KI.

3. Draw the unit-step response marking the settling time, peak time, and maximum
output. Find all the possibilities: overdamped, critically damped, and underdamped.

4. Find an expression for the steady-state error for a unit-step input.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Hardware_Interface_Experiments_for_Chapter_9.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


FIGURE P9.70

Lab

Software: Use the Speed PI Control.vi and change the constant on the left to fit your
motor's gear ratio and encoder CPR as shown in Figure P9.71(b). Also change the constants
wired to the PI controller. These values should be the maximum motor voltage-dead-zone
constant. Change the dead-zone constants inside the signal conditioning block just as you
did in Experiment 8.4.



FIGURE P9.71 Speed PI Control.vi: a. Front Panel; b. Block Diagram

Hardware: Same as Experiment 8.4

Procedure:

1. Make the P gain = 0, and choose a small I gain. Verify the operation of your closed-loop
system. In this experiment we will keep the P gain at 0.



2. Draw a functional block diagram (similar to that presented in Chapter 1) of the system.
Do not include the signal conditioning functions, nor the change-of-direction signals.

3. Using the transfer function you found in Experiment 4.6, draw the system's root locus.

4. Find the theoretical range of KI in which the system is closed-loop stable.

5. Run your program and system to find experimentally the range of KI in which the
system is closed-loop stable.

6. Make a judicious choice of three different values of KI for experimentation.

7. Using the transfer function you found in Experiment 8.4 and the three judicious choices
of proportional gain, complete the following table using hand calculations only
(calculators OK, computer simulations are not acceptable). Show all your work.

KI    

TP—Peak time    

%OS—Percent overshoot    
Ts—Settling time    

ess—Steady-state error (step input)    

Theoretical

8. For each one of the three values of KI, perform step-input experiments. Use a single
value of step input for the three values of KI. Make sure that your oscilloscope captures
contain the system's transient response in its entirety. Show measurements of all the
parameters in the Theoretical table above and fill in the following Experimental table.
Please note that Ts, the settling time, is hard to measure in the current setting because
of the limited number of analog channels available. Instead of measuring Ts, mark on
your oscilloscope the theoretical value using the scope cursors. (Important: In this
experiment stop the VI before restarting it every time you apply a step input. This action
will reset the integrator).

KI    

Tp—Peak time    

%OS—Percent overshoot    
ess—Steady-state error (step input)    

Experimental

Postlab
Make a detailed comparison of your theoretical and experimental tables. Discuss similarities
and discrepancies between experimental and theoretical and give possible reasons.
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Notes
1 The word dynamic describes compensators with noninstantaneous transient response. The

transfer functions of such compensators are functions of the Laplace variable, s, rather
than pure gain.

2 The name of this filter comes from the shape of its magnitude frequency response
characteristics, which shows a dip near the damped frequency of the high-frequency
poles. Magnitude frequency response is discussed in Chapter 10.



Chapter 10
Frequency Response Techniques



Chapter 10 Problems
1. For each of the following G(s), find analytical expressions for
the magnitude and phase response. [Section: 10.1]

a. G (s) =

b. G (s) =

c. G (s) =

2. For each function in Problem 1, make a plot of the log-
magnitude and the phase, using log-frequency in rad/s as the
ordinate. Do not use asymptotic approximations. [Section: 10.1]

 3. For each function in Problem 1 in the text problems, make
a polar plot of the frequency response. [Section: 10.1]

Check Answer!

4. Sketch the Nyquist diagram for each of the systems in Figure
P10.1. [Section: 10.4]

1
s(s+1)(s+3)

(s+2)

(s+1)(s+3)

(s+2)(s+4)

s(s+1)(s+3)



FIGURE P10.1

5. Draw the polar plot from the separate magnitude and phase
curves shown in Figure P10.2. [Section: 10.1]



FIGURE P10.2

 6. Draw the separate magnitude and phase curves from the
polar plot shown in Figure P10.3. [Section: 10.1]



FIGURE P10.3

Check Answer!

7. Using the Nyquist criterion, find out whether each system of
Problem 4 is stable. [Section: 10.3]

 8. Using the Nyquist criterion, find the range of K for
stability for each of the systems in Figure P10.4. [Section: 10.3]



FIGURE P10.4

Check Answer!

9. Find the gain margin and the phase margin for each one of the
systems of Problem 8 assuming that in each part: [Section: 10.6]

a. K = 500

b. K = 50



c. K = 0.5

10.  Write a program in MATLAB that will do the
following:

a. Allow a value of gain, K, to be entered from the
keyboard

b. Display the Bode plots of a system for the entered
value of K

c. Calculate and display the gain and phase margin for
the entered value of K

Test your program on a unity-feedback system with G(s) =

K/[s(s + 3)(s + 12)].

 11. Derive Eq. (10.54), the closed-loop bandwidth in terms of
ζ and ωn of a two-pole system. [Section: 10.8]

Check Answer!

12. Find the closed-loop bandwidth that corresponds to each
system with the following characteristics. [Section: 10.8]

a. ζ = 0.3, Ts = 1.5 seconds

b. ζ = 0.3, Tp = 1.5 seconds

c. Ts = 5 seconds, Tp = 3 seconds

d. ζ = 0.2, Tr = 0.5 seconds.

13. Consider the unity-feedback system of Figure 10.10. For each
G(s) that follows, use the M and N circles to make a plot of the
closed-loop frequency response: [Section: 10.9]

a. G (s) =

b. G (s) =

c. G (s) =

10
s(s+1)(s+2)

1000
(s+3)(s+4)(s+5)(s+6)

50(s+3)

s(s+2)(s+4)



 14. Repeat Problem 13, using the Nichols chart in place of
the M and N circles. [Section: 10.9]

Check Answer!

15. Using the results of Problem 13, estimate the percent
overshoot that can be expected in the step response for each
system shown. [Section: 10.10]

16. Use the results of Problem 14 to estimate the percent
overshoot if the gain term in the numerator of the forward path
of each part of the problem is respectively changed as follows:
[Section: 10.10]

a. From 10 to 30

b. From 1000 to 2500

c. From 50 to 75

17.  Write a program in MATLAB that will do the
following:

a. Allow a value of gain, K, to be entered from the
keyboard

b. Display the closed-loop magnitude and phase frequency
response plots of a unity-feedback system with an open-

loop transfer function, KG(s)

c. Calculate and display the peak magnitude, frequency
of the peak magnitude, and bandwidth for the closed-loop

frequency response and the entered value of K

Test your program on the system of Figure P10.5 for K = 50.

FIGURE P10.5



18.  For a unity-feedback system with a forward-path
transfer function

G (s) =

use MATLAB's Linear System Analyzer Nichols plot to find

the gain margin, dB frequency, and the −180° frequency.

19. For each one of the system in Figure P10.6, estimate the
transient response using Bode P1ots. [Section: 10.10]

FIGURE P10.6

 20. For the system of Figure P10.5, do the following:
[Section: 10.10]

a. Plot the Bode magnitude and phase plots.

b. Assuming a second-order approximation, estimate the
transient response of the system if K = 2.

c.  Use MATLAB or any other program to check your
assumptions by simulating the step response of the system.

7 (s + 5)

s(s2 + 5s + 20)



Check Answer!

21.  Write a program in MATLAB that will use an open-
loop transfer function, G(s), to do the following:

a. Make a Bode plot

b. Use frequency response methods to estimate the
percent overshoot, settling time, and peak time

c. Plot the closed-loop step response

Test your program by comparing the results to those

obtained for the systems of Problem 19.

22. The Bode plots for a plant, G(s), used in a unity-feedback
system are shown in Figure P10.7. Do the following:

a. Find the gain margin, phase margin, zero dB frequency,
180° frequency, and the closed-loop bandwidth.

b. Use your results in Part a to estimate the damping ratio,
percent overshoot, settling time, and peak time.



FIGURE P10.7

23. For the system in Figure P10.8. [Section: 10.12]

a. Caculate the phase margin if the system is stable for time
delays of 0, 0.1, 0.2, 0.5, and 1 second.

b. Caculate the gain margin if the system is stable for each
one of the time delays in Part a.

c. Find out for which of the time delays in Part a the system
is closed-loop stable.

d. Find out by what amount the gain should be reduced to
obtain a stable closed-loop system for those time delays for
which the system was closed-loop unstable.



FIGURE P10.8

24. Given a unity-feedback system with the forward-path
transfer function

G (s) =

and a delay of 0.2 second, make a second-order approximation
and estimate the percent overshoot if K = 30. Use Bode plots
and frequency response techniques. [Section: 10.12]

25.  Use the MATLAB function pade(T,n) to model the
delay in Problem 24. Obtain the unit-step response and

evaluate your second-order approximation in Problem 24.

26. For the Bode plots shown in Figure P10.9 determine the
transfer function by hand or via MATLAB. [Section: 10.13]

K

s (s + 1) (s + 15)



FIGURE P10.9

27. Repeat Problem 26 for the Bode plots shown in Figure
P10.10. [Section: 10.13]



FIGURE P10.10

28. A room's temperature can be controlled by varying the
radiator power. In a specific room, the transfer function from
indoor radiator power, 

⋅
Q, to room temperature, T in °C is

(Thomas, 2005)

P (s) =

=

The system is controlled in the closed-loop configuration shown
in Figure 10.20 with G(s) = KP(s), H = 1.

a. Draw the corresponding Nyquist diagram for K = 1.

b. Obtain the gain and phase margins.

c. Find the range of K for the closed-loop stability. Compare
your result with that of Problem 40, Chapter 6.

T (s)
⋅

Q(s)

(1×10−6)s2+(1.314×10−9)s+(2.66×10−13)

s3+0.00163 s2+(5.272×10−7)s+(3.538×10−11)



29. Problem 35, Chapter 8 discusses a magnetic levitation
system with a plant transfer function P (s) = −  (Galvão,

2003). Assume that the plant is in cascade with an M(s) and that
the system will be controlled by the loop shown in Figure 10.20,
where G(s) = M(s)P(s) and H = 1. For each M(s) that follows,
draw the Nyquist diagram when K = 1, and find the range of
closed-loop stability for K > 0.

a. M(s) = − K

b. M (s) = −

c. Compare your results with those obtained in Problem 35,
Chapter 8.

 30. A simple modified and linearized model for the transfer
function of a certain bicycle from steer angle (δ) to roll angle (φ)
is given by (Åstrom, 2005)

P (s) = =

Assume the rider can be represented by a gain K, and that the
closed-loop system is shown in Figure 10.20 with G(s) = KP(s)
and H = 1.

 Use MATLAB and the Nyquist stability criterion to
find the range of K for closed-loop stability.

Check Answer!

31. A ship's roll can be stabilized with a control system. A voltage
applied to the fins’ actuators creates a roll torque that is applied
to the ship. The ship, in response to the roll torque, yields a roll
angle. Assuming the block diagram for the roll control system
shown in Figure P10.11, determine the gain and phase margins
for the system.

1300

s2−8602

K(s+200)

s+1000

φ (s)

δ (s)

12 (s + 20)

s2 + 25



FIGURE P10.11 Block diagram of a ship's roll-
stabilizing system

32. The linearized model of a particular network link working
under TCP/IP and controlled using a random early detection
(RED) algorithm can be described by Figure 10.20 where G(s) =
M(s)P(s), H = 1, and (Hollot, 2001)

M (s) = ; P (s) =

a. Plot the Nichols chart for L = 1. Is the system closed-loop
stable?

b. Find the range of L for closed-loop stability.

c. Use the Nichols chart to predict %OS and Ts for L = 0.95.
Make a hand sketch of the expected unit-step response.

d.  Verify Part c with a Simulink unit-step
response simulation.

 33. In the TCP/IP network link of Problem 32, let L = 0.8,
but assume that the amount of delay is an unknown variable.

a. Plot the Nyquist diagram of the system for zero delay, and
obtain the phase margin.

b. Find the maximum delay allowed for closed-loop stability.

Check Answer!

 34. An experimental holographic media storage system uses
a flexible photopolymer disk. During rotation, the disk tilts,
making information retrieval difficult. A system that
compensates for the tilt has been developed. For this, a laser

0.005L

s+0.005
140625e−0.1s

(s+2.67)(s+10)



beam is focused on the disk surface and disk variations are
measured through reflection. A mirror is in turn adjusted to align
with the disk and makes information retrieval possible. The
system can be represented by a unity-feedback system in which a
controller with transfer function

GC(s) =

and a plant

P(s) =

form an open loop transmission L(s) = Gc(s)P(s) (Kim, 2009).

a.  Use MATLAB to obtain the system's Nyquist
diagram. Find out if the system is stable.

b. Find the system's phase margin.

c. Use the value of phase margin obtained in b to
calculate the expected system's overshoot to a step

input.

d. Simulate the system's response to a unit-step input
and verify the %OS calculated in c.

Check Answer!

35.   Use LabVIEW with the Control Design and
Simulation Module and MathScript RT Module to do the

following: Modify the CDEx Nyquist Analysis.vi to obtain the

range of K for stability using the Nyquist plot for any

system you enter. In addition, design a LabVIEW VI that will

accept as an input the polynomial numerator and polynomial

denominator of an open-loop transfer function and obtain a

Nyquist plot for a value of K = 10,000. Your VI will also

78.575(s + 436)
2

(s + 132)(s + 8030)

1.163 × 108

s3 + 962.5s2 + 5.958 × 105s + 1.16 × 108



display the following as generated from the Nyquist plot:

(1) gain margin, (2) phase margin, (3) zero dB frequency,

and (4) 180 degrees frequency. Use the system and results of

Skill-Assessment Exercise 10.6 to test your VIs.

36.   Use LabVIEW with the Control Design and
Simulation Module, and MathScript RT Module to build a VI

that will accept an open-loop transfer 51 function, plot the

Bode diagram, and plot the closed-loop step response. Your

VI will also use the CD Parametric Time Response VI to

display (1) rise time, (2) peak time, (3) settling time, (4)

percent overshoot, (5) steady-state value, and (6) peak

value. Use the system in Skill-Assessment Exercise 10.9 to

test your VI. Compare the results obtained from your VI with

those obtained in Skill-Assessment Exercise 10.9.

37.  The block diagram of a cascade system used to
control water level in a steam generator of a nuclear power

plant (Wang, 2009) was presented in Figure P6.12. In that

system, the level controller, GLC(s), is the master

controller and the feed-water flow controller, GFC(s), is

the slave controller. Consider that the inner feedback loop

is replaced by its equivalent transfer function, GWX(s).

Using numerical values (Wang, 2009; Bhambhani, 2008), the

transfer functions with a 1-second pure delay are:

Gfw(s) = = ;

GWX(s) = ;

GLC(s) = KPLC + KDLCs = 1.5(10s + 1)

Use MATLAB or any other program to:

2 ⋅ e−τs

s(T1s + 1)

2 ⋅ e−s

s(25s + 1)

(4s + 1)

3(3.333s + 1)



a. Obtain Bode magnitude and phase plots for this system
using a fifth-order Padé approximation (available in

MATLAB). Note on these plots, if applicable, the gain

and phase margins.

b. Plot the response of the system, c(t), to a unit-step
input, r(t) = u(t). Note on the c(t) curve, the rise

time, Tr, the settling time, Ts, the final value of the

output, and, if applicable, the percent overshoot, %OS,

and mid peak time, Tp.

c. Repeat the above two steps for a pure delay of 1.5
seconds.

38. In order to self-balance a bicycle, its open-loop transfer
function is found to be (Lam, 2011):

G(s) = =

where θ(s) is the angle of the bicycle with respect to the vertical,
and U(s) is the voltage applied to the motor that drives a
flywheel used to stabilize the bicycle. Note that the bicycle is
open-loop unstable with one open-loop pole in the right half-
plane.

a. Draw the Nyquist diagram of the system.

b. Find the system's gain and phase margins.

c. Assuming a unit feedback system, find the range of K for
closed-loop stability if the forward path transfer function is
KG(s).

d. Assuming a second-order approximation, what is the
expected %OS if K = 0.141?

e. Use a computer program to simulate your system for a
unit-step response using the value of K in Part d.

39.  Modify the MATLAB program you developed in
Problem 10.17 to do the following:

θ(s)

U(s)

334019

s4 + 5126.16s3 + 2470.7s2 + 428419s − 34040



a. Display the closed-loop magnitude and phase frequency
response plots for the drive system (Thomsen, 2011)

presented in Problem 42, Chapter 8. Using the graph

properties, specify the value of K in the Bode plot

title.

b. Calculate and display the closed-loop transfer
function, T(s), the peak magnitude, frequency of the

peak magnitude, and bandwidth for the closed-loop

frequency response at the following two values of the

proportional controller's gain, K = KP = 3.2 and 10.

40. A linear model of the α-subsystem of a grid-connected
voltage-source converter (VSC) with a Y-Y transformer
(Mahmood, 2012) was presented in Problem 52, Chapter 8. In
Figure P8.18(b), GC(s) = K and GP(s) is given in a pole zero form
(with a unity gain and slightly modified parameters) as follows:

GP (s) = =

 Use MATLAB and frequency response techniques to
obtain the Bode plots for this system and find the

following:

a. The range of K for system stability

b. The gain margin, phase margin, zero dB frequency, and
180° frequency, if K = 5 × 105.

41. A new measurement-based technique to design fixed-
structure controllers for unknown SISO systems, which does not
require system identification, has been proposed. The fourth-
order transfer function shown below and modified to have a unity
steady-state gain is used as an example (Khadraoui, 2013).

G(s) =

Vα(s)

Mα(s)

(s + 2200)

(s + 220)(s2 + 120s + 16 × 106)

0.1111(4s2 + 5s + 1)

s4 + 3.1s3 + 0.85s2 + 0.87s + 0.1111



The interested reader is referred to the reference to explore this
new technique. In this problem and its companion design
problem in Chapter 11, however, we take a standard approach as
covered in Chapters 10 and 11.

 Assuming that a cascade-connected proportional
controller, GC(s) = K, is used, utilize MATLAB and

frequency response techniques to obtain the Bode plots for

this system and find:

a. The range of K for system stability

b. The gain margin, phase margin, zero dB frequency, and
180° frequency, if K = 0.3.

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

42. Control of HIV/AIDS. The linearized model for an
HIV/AIDS patient treated with RTIs was obtained in Chapter 6
as (Craig, 2004);

P (s) = =

a. Consider this plant in the feedback configuration in
Figure 10.20 with G(s) = P(s) and H(s) = 1. Obtain the
Nyquist diagram. Evaluate the system for closed-loop
stability.

b. Consider this plant in the feedback configuration in
Figure 10.20 with G(s) = −P(s) and H(s) = 1. Obtain the
Nyquist diagram. Evaluate the system for closed-loop
stability. Obtain the gain and phase margins.

43.  Hybrid vehicle. In Problem 54, Chapter 8, we
used MATLAB to plot the root locus for the speed control of

an HEV rearranged as a unity-feedback system, as shown in

Y (s)

U1 (s)

−520s − 10.3844

s3 + 2.6817s2 + 0.11s + 0.0126



Figure P7.25 (Preitl, 2007). The plant and compensator were

given by

G(s) =

and we found that K = 0.78, resulted in a critically damped

system.

a. Use MATLAB or any other program to plot the
following:

i. The Bode magnitude and phase plots for that system,
and

ii. The response of the system, c(t), to a step input,
r(t) = 4 u(t). Note on the c(t) curve the rise

time, Tr, and settling time, Ts, as well as the

final value of the output.

b. Now add an integral gain to the controller, such that
the plant and compensator transfer function becomes

G(s) =

where K1=0.78 and Zc = = 0.4. Use MATLAB or any
other program to do the following:

i. Plot the Bode magnitude and phase plots for this
case.

ii. Obtain the response of the system to a step input,
r(t) = 4 u(t). Plot c(t) and note on it the rise

time, Tr, percent overshoot, %OS, peak time, Tp, and

settling time, Ts.

c. Does the response obtained in Parts a or b resemble a
second-order overdamped, critically damped, or

underdamped response? Explain.

K(s + 0.6)

(s + 0.5858)(s + 0.0163)

K1(s + Zc)(s + 0.6)

s(s + 0.5858)(s + 0.0163)

K2

K1



44. Parabolic trough collector. As discussed in Section 10.12,
the Nyquist stability criterion can be applied to systems with pure
time delay without the need for rational approximations as
required in Problems 8.55 and 9.44. You will verify this by
applying the Nyquist stability criterion to the parabolic trough
collector by assuming a unity-feedback system and a forward-
path transfer function (Camacho, 2012),

G(s) = e−39s

a. Draw the corresponding Nyquist diagram for K = 1.

b. Use the Nyquist diagram to find the range of K for which
the system is closed-loop stable.

c. Find the value of K that will make the system marginally
stable and the associated frequency of oscillation.

137.2 × 10−6K

s2 + 0.0224s + 196 × 10−6



Chapter 10 Readings



Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Define and plot the frequency response of a system (Section 10.1)

Plot asymptotic approximations to the frequency response of a system
(Section 10.2)

Sketch a Nyquist diagram (Sections 10.3–10.4)

Use the Nyquist criterion to determine the stability of a system (Section
10.5)

Find stability and gain and phase margins using Nyquist diagrams and
Bode plots (Sections 10.6–10.7)

Find the bandwidth, peak magnitude, and peak frequency of a closed-
loop frequency response given the closed-loop time response parameters
of peak time, settling time, and percent overshoot (Section 10.8)

Find the closed-loop frequency response given the open-loop frequency
response (Section 10.9)

Find the closed-loop time response parameters of peak time, settling
time, and percent overshoot given the open-loop frequency response
(Section 10.10)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with
a case study as follows:

Given the antenna azimuth position control system shown in Appendix
A2 and using frequency response methods, you will be able to find the
range of gain, K, for stability. You will also be able to find percent
overshoot, settling time, peak time, and rise time, given K.

10.1 Introduction
The root locus method for transient design, steady-state design, and stability
was covered in Chapters 8 and 9. In Chapter 8, we covered the simple case of
design through gain adjustment, where a trade-off was made between a
desired transient response and a desired steady-state error. In Chapter 9, the
need for this trade-off was eliminated using compensation networks so that



transient and steady-state errors could be separately specified and designed.
Further, a desired transient response no longer had to be on the original
system's root locus.

This chapter and Chapter 11 present the design of feedback control systems
through gain adjustment and compensation networks from another
perspective—that of frequency response. The results of frequency response
compensation techniques are not new or different from the results of root
locus techniques.

Frequency response methods, developed by Nyquist and Bode in the 1930s,
are older than the root locus method, which was discovered by Evans in 1948
(Nyquist, 1932; Bode, 1945). The older method, which is covered in this
chapter, is not as intuitive as the root locus. However, frequency response
yields a new vantage point from which to view feedback control systems. This
technique has distinct advantages in the following situations:

1. When modeling transfer functions from physical data, as shown in Figure
10.1

2. When designing lead compensators to meet a steady-state error
requirement and a transient response requirement

3. When finding the stability of nonlinear systems

4. In settling ambiguities when sketching a root locus



FIGURE 10.1 National Instruments PXI, Compact RIO, Compact
DAQ, and USB hardware platforms (shown from left to right)
coupled with NI LabVIEW software to provide stimulus and
acquire signals from physical systems. NI LabVIEW can then be
used to analyze data, determine the mathematical model, and
prototype and deploy a controller for the physical system

We first discuss the concept of frequency response, define frequency response,
derive analytical expressions for the frequency response, plot the frequency
response, develop ways of sketching the frequency response, and then apply
the concept to control system analysis and design.

The Concept of Frequency Response
In the steady state, sinusoidal inputs to a linear system generate sinusoidal
responses of the same frequency. Even though these responses are of the same
frequency as the input, they differ in amplitude and phase angle from the
input. These differences are functions of frequency.

Before defining frequency response, let us look at a convenient representation
of sinusoids. Sinusoids can be represented as complex numbers called
phasors. The magnitude of the complex number is the amplitude of the
sinusoid, and the angle of the complex number is the phase angle of the
sinusoid. Thus, M1 cos (ωt + ϕ1) can be represented as M1∠ϕ1 where the
frequency, ω, is implicit.

Since a system causes both the amplitude and phase angle of the input to be
changed, we can think of the system itself as represented by a complex
number, defined so that the product of the input phasor and the system
function yields the phasor representation of the output.



(10.1)

(10.2)

(10.3)

Consider the mechanical system of Figure 10.2(a). If the input force,  f(t), is
sinusoidal, the steady-state output response, x(t), of the system is also
sinusoidal and at the same frequency as the input. In Figure 10.2(b), the input
and output sinusoids are represented by complex numbers, or phasors,
Mi(ω)∠ϕi(ω) and Mo(ω)∠ϕo(ω), respectively. Here, the Ms are the amplitudes
of the sinusoids and the ϕs are the phase angles of the sinusoids as shown in
Figure 10.2(c). Assume that the system is represented by the complex number,
M(ω)∠ϕ(ω). The output steady-state sinusoid is found by multiplying the
complex number representation of the input by the complex number
representation of the system. Thus, the steady-state output sinusoid is

Mo (ω) ∠ϕo (ω) = Mi (ω) M (ω) ∠ [ϕi (ω) + ϕ (ω)]

From Eq. (10.1) we see that the system function is given by

M (ω) =

and

ϕ (ω) = ϕo (ω) − ϕi (ω)

Equations (10.2) and (10.3) form our definition of frequency response. We call
M(ω) the magnitude frequency response and ϕ(ω) the phase frequency
response. The combination of the magnitude and phase frequency responses
is called the frequency response and is M(ω) ∠ ϕ(ω).

Mo (ω)

Mi (ω)



FIGURE 10.2 Sinusoidal frequency response: a. system; b.
transfer function; c. input and output waveforms

In other words, we define the magnitude frequency response to be the ratio of
the output sinusoid's magnitude to the input sinusoid's magnitude. We define
the phase response to be the difference in phase angle between the output and
the input sinusoids. Both responses are a function of frequency and apply only
to the steady-state sinusoidal response of the system.

Analytical Expressions for Frequency Response
Now that we have defined frequency response, let us obtain the analytical
expression for it (Nilsson, 1990). Later in the chapter, we will use this
analytical expression to determine stability, transient response, and steady-
state error. Figure 10.3 shows a system, G(s), with the Laplace transform of a
general sinusoid, 



(10.4)

(10.5)

(10.6a)

(10.6b)

(10.7)

r (t) = A cos ωt + B sin ωt = √A2 + B2 cos [ωt − tan− 1 (B/A)] as the
input. We can represent the input as a phasor in three ways: (1) in polar form,
Mi ∠ ϕi, where Mi = √A2 + B2 and ϕi = − tan− 1 (B/A); (2) in rectangular
form, A − jB; and (3) using Euler's formula, Mie

jϕi .

FIGURE 10.3 System with sinusoidal input

We now solve for the forced response portion of C(s), from which we evaluate
the frequency response. From Figure 10.3,

C (s) = G (s)

We separate the forced solution from the transient solution by performing a
partial-fraction expansion on Eq. (10.4). Thus,

C (s) = G (s)

= + + Partial fraction terms from G (s)

where

K1 = G (s)∣
∣s→−jω

= (A + jB) G (−jω) = Mie
−jϕiMGe−jϕG

= e−j(ϕi+ϕG)

K2 = G (s)∣
∣s→+jω

= (A − jB) G ( jω) = Mie
jϕiMGe jϕG

= e j(ϕi+ϕG) = K∗
1

For Eqs. (10.6), K∗
1  is the complex conjugate of K1,

MG = |G ( jω) |

and

As + Bω

(s2 + ω2)

As+Bω

(s+jω)(s−jω)

K1

s+jω

K2

s−jω

As+Bω

s−jω
1
2

1
2

MiMG

2

As+Bω

s+jω
1
2

1
2

MiMG

2



(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

ϕG = angle of G ( jω)

The steady-state response is that portion of the partial-fraction expansion that
comes from the input waveform's poles, or just the first two terms of Eq.
(10.5). Hence, the sinusoidal steady-state output, Css(s), is

Css (s) = +

Substituting Eqs. (10.6) into Eq. (10.9), we obtain

Css (s) = +

Taking the inverse Laplace transformation, we obtain

c (t) = MiMG ( )

= MiMG cos (ωt + ϕi + ϕG)

which can be represented in phasor form as Mo∠ϕo = (M1∠ϕ1) (MG∠ϕG),
where MG∠ϕG is the frequency response function. But from Eqs. (10.7) and
(10.8), MG∠ϕG = G(jω). In other words, the frequency response of a system
whose transfer function is G(s) is

G ( jω) = G (s) |s→jω

Plotting Frequency Response
G(jω) = MG(ω) < ϕG(ω) can be plotted in several ways; two of them are (1) as a
function of frequency, with separate magnitude and phase plots; and (2) as a
polar plot, where the phasor length is the magnitude and the phasor angle is
the phase. When plotting separate magnitude and phase plots, the magnitude
curve can be plotted in decibels (dB) vs. log ω, where dB = 20 log M.1 The
phase curve is plotted as phase angle vs. log ω. The motivation for these plots
is shown in Section 10.2.

Using the concepts covered in Section 8.1, data for the plots also can be
obtained using vectors on the s-plane drawn from the poles and zeros of G(s)
to the imaginary axis. Here the magnitude response at a particular frequency

K1

s + jω

K2

s − jω

e−j(ϕi+ϕG)MiMG

2

s + jω

e j(ϕi+ϕG)MiMG

2

s − jω

e
−j(ωt+ϕi+ϕG)+e

j(ωt+ϕi+ϕG)

2



is the product of the vector lengths from the zeros of G(s) divided by the
product of the vector lengths from the poles of G(s), drawn to points on the
imaginary axis. The phase response is the sum of the angles from the zeros of
G(s) minus the sum of the angles from the poles of G(s) drawn to points on the
imaginary axis. Performing this operation for successive points along the
imaginary axis yields the data for the frequency response. Remember, each
point is equivalent to substituting that point, s = jω1, into G(s) and evaluating
its value.

The plots also can be made from a computer program that calculates the
frequency response. For example, the root locus program discussed in
Appendix H at www.wiley.com/go/Nise/ControlSystemsEngineering8e can be
used with test points that are on the imaginary axis. The calculated K value at
each frequency is the reciprocal of the scaled magnitude response, and the
calculated angle is, directly, the phase angle response at that frequency.

The following example demonstrates how to obtain an analytical expression
for frequency response and make a plot of the result.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Example 10.1 Frequency Response from the Transfer
Function
PROBLEM:
Find the analytical expression for the magnitude frequency response and
the phase frequency response for a system G(s) = 1/(s + 2). Also, plot both
the separate magnitude and phase diagrams and the polar plot.

SOLUTION:
First substitute s = jω in the system function and obtain G(jω) = 1/(jω + 2)
= (2 − jω)/(ω2 + 4). The magnitude of this complex number, 
|G ( jω) | = M (ω) = 1/√(ω2 + 4), is the magnitude frequency response.
The phase angle of G(jω), ϕ(ω) = − tan− 1 (ω/2), is the phase frequency
response.

G(jω) can be plotted in two ways: (1) in separate magnitude and phase
plots and (2) in a polar plot. Figure 10.4 shows separate magnitude and
phase diagrams, where the magnitude diagram is 
20 log M (ω) = 20 log (1/√ω2 + 4) vs. log ω, and the phase diagram is

ϕ(ω) = − tan− 1 (ω/2) vs. log ω. The polar plot, shown in Figure 10.5, is a
plot of M (ω) < ϕ (ω) = 1/√ω2 + 4 < −tan− 1 (ω/2) for different ω.



FIGURE 10.4 Frequency response plots for G(s) = 1/(s + 2):
separate magnitude and phase diagrams

FIGURE 10.5 Frequency response plot for G(s) = 1/(s + 2):
polar plot



In the previous example, we plotted the separate magnitude and phase
responses, as well as the polar plot, using the mathematical expression for the
frequency response. Either of these frequency response presentations can also
be obtained from the other. You should practice this conversion by looking at
Figure 10.4 and obtaining Figure 10.5 using successive points. For example, at
a frequency of 1 rad/s in Figure 10.4, the magnitude is approximately −7 dB,
or 10−7/20 = 0.447. The phase plot at 1 rad/s tells us that the phase is about
−26°. Thus on the polar plot, a point of radius 0.447 at an angle of −26° is
plotted and identified as 1 rad/s. Continuing in like manner for other
frequencies in Figure 10.4, you can obtain Figure 10.5.

Similarly, Figure 10.4 can be obtained from Figure 10.5 by selecting a
sequence of points in Figure 10.5 and translating them to separate magnitude
and phase values. For example, drawing a vector from the origin to the point
at 2 rad/s in Figure 10.5, we see that the magnitude is 20 log 0.35 = − 9.12 dB
and the phase angle is about −45°. The magnitude and phase angle are then
plotted at 2 rad/s in Figure 10.4 on the separate magnitude and phase curves.



Skill-Assessment Exercise 10.1
PROBLEM:

a. Find analytical expressions for the magnitude and phase responses of

G (s) =

b. Make plots of the log-magnitude and the phase, using log-frequency
in rad/s as the ordinate.

c. Make a polar plot of the frequency response.

ANSWERS:

a. M (ω) = ; for ω ≤ √8 : ϕ (ω) = −arctan( ), for 

ω > √8 : ϕ (ω) = − [π + arctan( )]

b. See the answer at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

c. See the answer at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we defined frequency response and saw how to obtain an
analytical expression for the frequency response of a system simply by
substituting s = jω into G(s). We also saw how to make a plot of G(jω). The
next section shows how to approximate the magnitude and phase plots in
order to sketch them rapidly.

10.2 Asymptotic Approximations: Bode Plots
The log-magnitude and phase frequency response curves as functions of log ω
are called Bode plots or Bode diagrams. Sketching Bode plots can be
simplified because they can be approximated as a sequence of straight lines.
Straight-line approximations simplify the evaluation of the magnitude and
phase frequency response.

1

(s + 2) (s + 4)

1

√(8−ω2)2+(6ω)2

6ω

8−ω2

6ω

8−ω2

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(10.13)

(10.14)

(10.15)

Consider the following transfer function:

G (s) =

The magnitude frequency response is the product of the magnitude frequency
responses of each term, or

|G ( jω) | =
∣
∣
∣s→jω

Thus, if we know the magnitude response of each pole and zero term, we can
find the total magnitude response. The process can be simplified by working
with the logarithm of the magnitude, since the zero terms’ magnitude
responses would be added and the pole terms’ magnitude responses
subtracted, rather than, respectively, multiplied or divided, to yield the
logarithm of the total magnitude response. Converting the magnitude
response into dB, we obtain

20 log |G ( jω) | = 20 log K + 20 log | (s + z1) | + 20 log | (s + z2) |

+ ⋯ − 20 log |sm| − 20 log | (s + p1) | − ⋯ |s→jω

Thus, if we knew the response of each term, the algebraic sum would yield the
total response in dB. Further, if we could make an approximation of each term
that would consist only of straight lines, graphical addition of terms would be
greatly simplified.

Before proceeding, let us look at the phase response. From Eq. (10.13), the
phase frequency response is the sum of the phase frequency response curves
of the zero terms minus the sum of the phase frequency response curves of the
pole terms. Again, since the phase response is the sum of individual terms,
straight-line approximations to these individual responses simplify graphical
addition.

Let us now show how to approximate the frequency response of simple pole
and zero terms by straight-line approximations. Later we show how to
combine these responses to sketch the frequency response of more
complicated functions. In subsequent sections, after a discussion of the
Nyquist stability criterion, we learn how to use the Bode plots for the analysis
and design of stability and transient response.

Bode Plots for G(s) = (s + a)

K (s + z1) (s + z2) ⋯ (s + zk)

sm (s + p1) (s + p2) ⋯ (s + pn)

K| (s + z1) || (s + z2) | ⋯ | (s + zk) |

|sm|| (s + p1) || (s + p2) | ⋯ | (s + pn) |



(10.16)

(10.17)

(10.18)

Consider a function, G(s) = (s + a), for which we want to sketch separate
logarithmic magnitude and phase response plots. Letting s = jω, we have

G ( jω) = ( jω + a) = a( j + 1)

At low frequencies when ω approaches zero,

G ( jω) ≈ a

The magnitude response in dB is

20 log M = 20 log a

where M = |G (jω)| and is a constant. Equation (10.18) is shown plotted in
Figure 10.6(a) from ω = 0.01a to a.

ω

a



(10.19)

(10.20)

FIGURE 10.6 Bode plots of (s + a): a. magnitude plot; b. phase
plot

At high frequencies where ω ≫ a, Eq. (10.16) becomes

G ( jω) ≈ a( ) = a( )∠ 90° = ω ∠90°

The magnitude response in dB is

20 log M = 20 log a + 20 log = 20 log ω

where a < ω < ∞. Notice from the middle term that the high-frequency
approximation is equal to the low-frequency approximation when ω = a, and
increases for ω > a.

If we plot dB, 20 log M, against log ω, Eq. (10.20) becomes a straight line:

jω

a

ω

a

ω

a



(10.21)y = 20x

where y = 20 log M, and x = log ω. The line has a slope of 20 when plotted as
dB vs. log ω.

Since each doubling of frequency causes 20 log ω to increase by 6 dB, the line
rises at an equivalent slope of 6 dB/octave, where an octave is a doubling of
frequency. This rise begins at ω = a, where the low-frequency approximation
equals the high-frequency approximation.

We call the straight-line approximations asymptotes. The low-frequency
approximation is called the low-frequency asymptote, and the high-frequency
approximation is called the high-frequency asymptote. The frequency, a, is
called the break frequency because it is the break between the low- and the
high-frequency asymptotes.

Many times it is convenient to draw the line over a decade rather than an
octave, where a decade is 10 times the initial frequency. Over one decade, 20
log ω increases by 20 dB. Thus, a slope of 6 dB/octave is equivalent to a slope
of 20 dB/decade. The plot is shown in Figure 10.6(a) from ω = 0.01a to 100a.

Let us now turn to the phase response, which can be drawn as follows. At the
break frequency, a, Eq. (10.16) shows the phase to be 45°. At low frequencies,
Eq. (10.17) shows that the phase is 0°. At high frequencies, Eq. (10.19) shows
that the phase is 90°. To draw the curve, start one decade (1/10) below the
break frequency, 0.1a, with 0° phase, and draw a line of slope +45°/decade
passing through 45° at the break frequency and continuing to 90° one decade
above the break frequency, 10a. The resulting phase diagram is shown in
Figure 10.6(b).

It is often convenient to normalize the magnitude and scale the frequency so
that the log-magnitude plot will be 0 dB at a break frequency of unity.
Normalizing and scaling helps in the following applications:

1. When comparing different first- or second-order frequency response
plots, each plot will have the same low-frequency asymptote after
normalization and the same break frequency after scaling.

2. When sketching the frequency response of a function such as Eq. (10.13),
each factor in the numerator and denominator will have the same low-
frequency asymptote after normalization. This common low-frequency
asymptote makes it easier to add components to obtain the Bode plot.

To normalize (s + a), we factor out the quantity a and form a [(s/a) + 1]. The
frequency is scaled by defining a new frequency variable, s1 = s/a. Then the
magnitude is divided by the quantity a to yield 0 dB at the break frequency.
Hence, the normalized and scaled function is (s1 + 1). To obtain the original



frequency response, the magnitude and frequency are multiplied by the
quantity a.

We now use the concepts of normalization and scaling to compare the
asymptotic approximation to the actual magnitude and phase plot for (s + a).
Table 10.1 shows the comparison for the normalized and scaled frequency
response of (s + a). Notice that the actual magnitude curve is never greater
than 3.01 dB from the asymptotes. This maximum difference occurs at the
break frequency. The maximum difference for the phase curve is 5.71°, which
occurs at the decades above and below the break frequency. For convenience,
the data in Table 10.1 is plotted in Figures 10.7 and 10.8.



TABLE 10.1

Asymptotic and actual normalized and scaled frequency
response data for (s + a)

20 log (dB) Phase (degrees)

(rad/s) Asymptotic Actual Asymptotic Actual
0.01 0 0.00 0.00 0.57
0.02 0 0.00 0.00 1.15
0.04 0 0.01 0.00 2.29
0.06 0 0.02 0.00 3.43
0.08 0 0.03 0.00 4.57
0.1 0 0.04 0.00 5.71
0.2 0 0.17 13.55 11.31
0.4 0 0.64 27.09 21.80
0.6 0 1.34 35.02 30.96
0.8 0 2.15 40.64 38.66
1 0 3.01 45.00 45.00
2 6 6.99 58.55 63.43
4 12 12.30 72.09 75.96
6 15.56 15.68 80.02 80.54
8 18 18.13 85.64 82.87
10 20 20.04 90.00 84.29
20 26.02 26.03 90.00 87.14
40 32.04 32.04 90.00 88.57
60 35.56 35.56 90.00 89.05
80 38.06 38.06 90.00 89.28
100 40 40.00 90.00 89.43

Frequency
a

M

a



FIGURE 10.7 Asymptotic and actual normalized and scaled
magnitude response of (s + a)



(10.22)

(10.23)

FIGURE 10.8 Asymptotic and actual normalized and scaled phase
response of (s + a)

We now find the Bode plots for other common transfer functions.

Bode Plots for G(s) = 1/(s + a)
Let us find the Bode plots for the transfer function

G (s) = =

This function has a low-frequency asymptote of 20 log (1/a), which is found
by letting the frequency, s, approach zero. The Bode plot is constant until the
break frequency, a rad/s, is reached. The plot is then approximated by the
high-frequency asymptote found by letting s approach ∞. Thus, at high
frequencies,

G ( jω) =
∣
∣
∣s→jω

= = ∠ − 90° = ∠ − 90°

or, in dB,

1

(s + a)

1

a ( + 1)s
a

1

a ( )s
a

1

a( )jω

a

1
a
ω
a

1

ω



(10.24)
20 log M = 20 log − 20 log = −20 log ω

Notice from the middle term that the high-frequency approximation equals
the low-frequency approximation when ω = a, and decreases for ω > a. This
result is similar to Eq. (10.20), except the slope is negative rather than
positive. The Bode log-magnitude diagram will decrease at a rate of 20
dB/decade rather than increase at a rate of 20 dB/decade after the break
frequency.

The phase plot is the negative of the previous example, since the function is
the inverse. The phase begins at 0° and reaches −90° at high frequencies,
going through −45° at the break frequency. Both the Bode normalized and
scaled log-magnitude and phase plot are shown in Figure 10.9(d).

Bode Plots for G(s) = s
Our next function, G(s) = s, has only a high-frequency asymptote. Letting s =
jω, the magnitude is 20 log ω, which is the same as Eq. (10.20). Hence, the
Bode magnitude plot is a straight line drawn with a +20-dB/decade slope
passing through 0 dB when ω = 1. The phase plot, which is a constant +90°, is
shown with the magnitude plot in Figure 10.9(a).

1

a

ω

a



FIGURE 10.9 Normalized and scaled Bode plots for

a. G(s) = s;
b. G(s) = 1/s;
c. G(s) = (s + a);
d. G(s) = 1/(s + a)

Bode Plots for G(s) = 1/s
The frequency response of the inverse of the preceding function, G(s) = 1/s, is
shown in Figure 10.9(b) and is a straight line with a −20 dB/decade slope



passing through zero dB at ω = 1. The Bode phase plot is equal to a constant
−90°.

We have covered four functions that have first-order polynomials in s in the
numerator or denominator. Before proceeding to second-order polynomials,
let us look at an example of drawing the Bode plots for a function that consists
of the product of first-order polynomials in the numerator and denominator.
The plots will be made by adding together the individual frequency response
curves.
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Example 10.2 Bode Plots for Ratio of First-Order
Factors
PROBLEM:
Draw the Bode plots for the system shown in Figure 10.10, where G(s) = K
(s + 3)/[s (s + 1) (s + 2)].

FIGURE 10.10 Closed-loop unity-feedback system

SOLUTION:
We will make a Bode plot for the open-loop function G(s) = K (s + 3)/[s (s
+ 1) (s + 2)]. The Bode plot is the sum of the Bode plots for each first-
order term. Thus, it is convenient to use the normalized plot for each of
these terms so that the low-frequency asymptote of each term, except the
pole at the origin, is at 0 dB, making it easier to add the components of the
Bode plot. We rewrite G(s) showing each term normalized to a low-
frequency gain of unity. Hence,

G (s) =

Now determine that the break frequencies are at 1, 2, and 3. The
magnitude plot should begin a decade below the lowest break frequency
and extend a decade above the highest break frequency. Hence, we choose
0.1 radian to 100 radians, or three decades, as the extent of our plot.

K ( + 1)3
2

s
3

s (s + 1) ( + 1)s

2



FIGURE 10.11 Bode log-magnitude plot for Example 10.2:

a. components;
b. composite

At ω = 0.1, the low-frequency value of the function is found from Eq.
(10.25) using the low-frequency values for all of the [(s/a) + 1] terms (i.e.,
s = 0) and the actual value for the s term in the denominator. Thus, 
G ( j0.1) ≈ K/0.1 = 15 K. The effect of K is to move the magnitude
curve up (increasing K) or down (decreasing K) by the amount of 20 log K.
K has no effect upon the phase curve. If we choose K = 1, the magnitude
plot can be denormalized later for any value of K that is calculated or
known.

Figure 10.11(a) shows each component of the Bode log-magnitude
frequency response. Summing the components yields the composite plot
shown in Figure 10.11(b). The results are summarized in Table 10.2, which
can be used to obtain the slopes. Each pole and zero is itemized in the first
column. Reading across the table shows its contribution at each
frequency. The last row is the sum of the slopes and correlates with Figure

3
2



10.11(b). The Bode magnitude plot for K = 1 starts at ω = 0.1 with a value
of 20 log 15 = 23.52 dB, and decreases immediately at a rate of −20
dB/decade, due to the s term in the denominator. At ω = 1, the (s + 1) term
in the denominator begins its 20 dB/decade downward slope and causes
an additional 20 dB/decade negative slope, or a total of −40 dB/decade.
At ω = 2, the term [(s/2) + 1] begins its −20 dB/decade slope, adding yet
another −20 dB/decade to the resultant plot, or a total of −60 dB/decade
slope that continues until ω = 3. At this frequency, the [(s/3) + 1] term in
the numerator begins its positive 20 dB/decade slope. The resultant
magnitude plot, therefore, changes from a slope of −60 dB/decade to −40
dB/decade at ω = 3, and continues at that slope, since there are no other
break frequencies.

TABLE 10.2

Bode magnitude plot: slope contribution from each pole and
zero in Example 10.2

Frequency (rad/s)
Description 0.1 (Start:

Pole at 0)
1 (Start:

Pole at −1)
2 (Start:

Pole at −2)
3 (Start:

Zero at −3)
Pole at 0 −20 −20 −20 −20
Pole at −1 0 −20 −20 −20
Pole at −2 0 0 −20 −20
Zero at −3 0 0 0 20
Total slope
(dB/dec)

−20 −40 −60 −40

The slopes are easily drawn by sketching straight-line segments
decreasing by 20 dB over a decade. For example, the initial −20
dB/decade slope is drawn from 23.52 dB at ω = 0.1, to 3.52 dB (a 20 dB
decrease) at ω = 1. The −40 dB/decade slope starting at ω = 1 is drawn by
sketching a line segment from 3.52 dB at ω = 1, to −36.48 dB (a 40-dB
decrease) at ω = 10, and using only the portion from ω = 1 to ω = 2. The
next slope of −60 dB/decade is drawn by first sketching a line segment
from ω = 2 to ω = 20 (1 decade) that drops down by 60 dB, and using only
that portion of the line from ω = 2 to ω = 3. The final slope is drawn by
sketching a line segment from ω = 3 to ω = 30 (1 decade) that drops by 40
dB. This slope continues to the end of the plot.

Phase is handled similarly. However, the existence of breaks, a decade
below and a decade above the break frequency, requires a little more



bookkeeping. Table 10.3 shows the starting and stopping frequencies of
the 45°/decade slope for each of the poles and zeros. For example, reading
across for the pole at −2, we see that the −45° slope starts at a frequency of
0.2 and ends at 20. Filling in the rows for each pole and then summing the
columns yields the slope portrait of the resulting phase plot. Looking at
the row marked Total slope, we see that the phase plot will have a slope of
−45°/decade from a frequency of 0.1 to 0.2. The slope will then increase to
−90°/decade from 0.2 to 0.3. The slope will return to −45°/decade from
0.3 to 10 rad/s. A slope of 0 ensues from 10 to 20 rad/s, followed by a
slope of +45°/decade from 20 to 30 rad/s. Finally, from 30 rad/s to
infinity, the slope is 0°/decade.

TABLE 10.3

Bode phase plot: slope contribution from each pole and zero
in Example 10.2

Frequency (rad/s)
Description 0.1

(Start:
Pole at

−1)

0.2
(Start:
Pole at

−2)

0.3
(Start:
Pole at

−3)

0
(End:

Pole at
−1)

20
(End:

Pole at
−2)

30
(End:

Zero at
−3)

Pole at −1 −45 −45 −45 0
Pole at −2 −45 −45 −45 0
Zero at −3 45 45 45 0
Total slope
(deg/dec)

−45 −90 −45 0 45 0

The resulting component and composite phase plots are shown in Figure
10.12. Since the pole at the origin yields a constant −90° phase shift, the
plot begins at −90° and follows the slope portrait just described.
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FIGURE 10.12 Bode phase plot for Example 10.2:

a. components;
b. composite

Bode Plots for G(s) = s2 + 2ζωns + ωn
2

Now that we have covered Bode plots for first-order systems, we turn to the
Bode log-magnitude and phase plots for second-order polynomials in s. The
second-order polynomial is of the form

G (s) = s2 + 2ζωns + ω2
n = ω2

n ( + 2ζ + 1)

Unlike the first-order frequency response approximation, the difference
between the asymptotic approximation and the actual frequency response can
be great for some values of ζ. A correction to the Bode diagrams can be made
to improve the accuracy. We first derive the asymptotic approximation and

s2

ω2
n

s

ωn
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(10.28)

(10.29)

(10.30)

(10.31)

then show the difference between the asymptotic approximation and the
actual frequency response curves.

At low frequencies, Eq. (10.26) becomes

G (s) ≈ ω2
n = ω2

n∠0°

The magnitude, M, in dB at low frequencies therefore is

20 log M = 20 log |G ( jω) | = 20 log ω2
n

At high frequencies,

G (s) ≈ s2

or

G ( jω) ≈−ω2 = ω2∠180°

The log-magnitude is

20 log M = 20 log |G ( jω) | = 20 log ω2 = 40 log ω

Equation (10.31) is a straight line with twice the slope of a first-order term
[Eq. (10.20)]. Its slope is 12 dB/octave, or 40 dB/decade.



FIGURE 10.13 Bode asymptotes for normalized and scaled 
G (s) = s2 + 2ζωns + ω2

n: a. magnitude; b. phase

The low-frequency asymptote [Eq. (10.27)] and the high-frequency asymptote
[Eq. (10.31)] are equal when ω = ωn. Thus, ωn is the break frequency for the
second-order polynomial.

For convenience in representing systems with different ωn, we normalize and
scale our findings before drawing the asymptotes. Using the normalized and
scaled term of Eq. (10.26), we normalize the magnitude, dividing by ω2

n, and
scale the frequency, dividing by ωn. Thus, we plot G (s1) /ω2

n = s2
1 + 2ζs1 + 1

, where s1 = s/ωn. G(s1) has a low-frequency asymptote at 0 dB and a break
frequency of 1 rad/s. Figure 10.13(a) shows the asymptotes for the normalized
and scaled magnitude plot.

We now draw the phase plot. It is 0° at low frequencies [Eq. (10.27)] and 180°
at high frequencies [Eq. (10.30)]. To find the phase at the natural frequency,
first evaluate G(jω):



(10.32)

(10.33)

(10.34)

G ( jω) = s2 + 2ζωns + ω2
n|s→jω = (ω2

n − ω2) + j2ζωnω

Then find the function value at the natural frequency by substituting ω = ωn.
Since the result is j2ζω2

n, the phase at the natural frequency is +90°. Figure
10.13(b) shows the phase plotted with frequency scaled by ωn. The phase plot
increases at a rate of 90°/decade from 0.1 to 10 and passes through 90° at 1.

Corrections to Second-Order Bode Plots
Let us now examine the error between the actual response and the asymptotic
approximation of the second-order polynomial. Whereas the first-order
polynomial has a disparity of no more than 3.01 dB magnitude and 5.71°
phase, the second-order function may have a greater disparity, which depends
upon the value of ζ.

From Eq. (10.32), the actual magnitude and phase for 
G (s) = s2 + 2ζωns + ω2

n are, respectively,

M = √(ω2
n − ω2)

2
+ (2ζωnω)2

Phase = tan− 1

These relationships are tabulated in Table 10.4 for a range of values of ζ and
plotted in Figures 10.14 and 10.15 along with the asymptotic approximations
for normalized magnitude and scaled frequency. In Figure 10.14, which is
normalized to the square of the natural frequency, the normalized log-
magnitude at the scaled natural frequency is +20 log 2ζ. The student should
verify that the actual magnitude at the unscaled natural frequency is 
+20 log 2ζω2

n. Table 10.4 and Figures 10.14 and 10.15 can be used to improve
accuracy when drawing Bode plots. For example, a magnitude correction of
+20 log 2ζ can be made at the natural, or break, frequency on the Bode
asymptotic plot.

2ζωnω

ω2
n−ω2



TABLE 10.4

Data for normalized and scaled log-magnitude and phase plots
for (s2 + 2ζωns + ω2

n). Mag = 20 log (M/ω2
n)

Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
0.10 −0.09 1.16 −0.08 2.31 −0.07 3.47
0.20 −0.35 2.39 −0.32 4.76 −0.29 7.13
0.30 −0.80 3.77 −0.74 7.51 −0.65 11.19
0.40 −1.48 5.44 −1.36 10.78 −1.17 15.95
0.50 −2.42 7.59 −2.20 14.93 −1.85 21.80
0.60 −3.73 10.62 −3.30 20.56 −2.68 29.36
0.70 −5.53 15.35 −4.70 28.77 −3.60 39.47
0.80 −8.09 23.96 −6.35 41.63 −4.44 53.13
0.90 −11.64 43.45 −7.81 62.18 −4.85 70.62
1.00 −13.98 90.00 −7.96 90.00 −4.44 90.00
1.10 −10.34 133.67 −6.24 115.51 −3.19 107.65
1.20 −6.00 151.39 −3.73 132.51 −1.48 121.43
1.30 −2.65 159.35 −1.27 143.00 0.35 131.50
1.40 0.00 163.74 0.92 149.74 2.11 138.81
1.50 2.18 166.50 2.84 154.36 3.75 144.25
1.60 4.04 168.41 4.54 157.69 5.26 148.39
1.70 5.67 169.80 6.06 160.21 6.64 151.65
1.80 7.12 170.87 7.43 162.18 7.91 154.26
1.90 8.42 171.72 8.69 163.77 9.09 156.41
2.00 9.62 172.41 9.84 165.07 10.19 158.20
3.00 18.09 175.71 18.16 171.47 18.28 167.32
4.00 23.53 176.95 23.57 173.91 23.63 170.91
5.00 27.61 177.61 27.63 175.24 27.67 172.87
6.00 30.89 178.04 30.90 176.08 30.93 174.13
7.00 33.63 178.33 33.64 176.66 33.66 175.00
8.00 35.99 178.55 36.00 177.09 36.01 175.64
9.00 38.06 178.71 38.07 177.42 38.08 176.14

ω

ωn



Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
10.00 39.91 178.84 39.92 177.69 39.93 176.53
Freq. Mag

(dB)
ζ = 0. 5

Phase
(deg)

ζ = 0. 5

Mag
(dB)

ζ = 0. 7

Phase
(deg)

ζ = 0. 7

Mag
(dB)

ζ = 1. 0

Phase
(deg)

ζ = 1. 0
0.10 −0.04 5.77 0.00 8.05 0.09 11.42
0.20 −0.17 11.77 0.00 16.26 0.34 22.62
0.30 −0.37 18.25 0.02 24.78 0.75 33.40
0.40 −0.63 25.46 0.08 33.69 1.29 43.60
0.50 −0.90 33.69 0.22 43.03 1.94 53.13
0.60 −1.14 43.15 0.47 52.70 2.67 61.93
0.70 −1.25 53.92 0.87 62.51 3.46 69.98
0.80 −1.14 65.77 1.41 72.18 4.30 77.32
0.90 −0.73 78.08 2.11 81.42 5.15 83.97
1.00 0.00 90.00 2.92 90.00 6.02 90.00
1.10 0.98 100.81 3.83 97.77 6.89 95.45
1.20 2.13 110.14 4.79 104.68 7.75 100.39
1.30 3.36 117.96 5.78 110.76 8.60 104.86
1.40 4.60 124.44 6.78 116.10 9.43 108.92
1.50 5.81 129.81 7.76 120.76 10.24 112.62
1.60 6.98 134.27 8.72 124.85 11.03 115.99
1.70 8.10 138.03 9.66 128.45 11.80 119.07
1.80 9.17 141.22 10.56 131.63 12.55 121.89
1.90 10.18 143.95 11.43 134.46 13.27 124.48
2.00 11.14 146.31 12.26 136.97 13.98 126.87
3.00 18.63 159.44 19.12 152.30 20.00 143.13
4.00 23.82 165.07 24.09 159.53 24.61 151.93
5.00 27.79 168.23 27.96 163.74 28.30 157.38
6.00 31.01 170.27 31.12 166.50 31.36 161.08
7.00 33.72 171.70 33.80 168.46 33.98 163.74
8.00 36.06 172.76 36.12 169.92 36.26 165.75
9.00 38.12 173.58 38.17 171.05 38.28 167.32

ω

ωn

ω

ωn



Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
10.00 39.96 174.23 40.00 171.95 40.09 168.58

FIGURE 10.14 Normalized and scaled log-magnitude response
for (s2 + 2ζωns + ω2

n)

ω

ωn



FIGURE 10.15 Scaled phase response for (s2 + 2ζωns + ω2
n)

Bode Plots for G(s) = 1/(s2 + 2ζωns + ωn
2)

Bode plots for G (s) = 1/ (s2 + 2ζωns + ω2
n) can be derived similarly to those

for G (s) = s2 + 2ζωns + ω2
n. We find that the magnitude curve breaks at the

natural frequency and decreases at a rate of −40 dB/decade. The phase plot is
0° at low frequencies. At 0.1ωn, it begins a decrease of −90°/decade and
continues until ω = 10ωn, where it levels off at −180°.

The exact frequency response also follows the same derivation as that of 
G (s) = s2 + 2ζωns + ω2

n. The results are summarized in Table 10.5, as well
as Figures 10.16 and 10.17. The exact magnitude is the reciprocal of Eq.
(10.33), and the exact phase is the negative of Eq. (10.34). The normalized
magnitude at the scaled natural frequency is −20 log 2ζ, which can be used as
a correction at the break frequency on the Bode asymptotic plot.



TABLE 10.5

Data for normalized and scaled log-magnitude and phase plots
for 1/ (s2 + 2ζωns + ω2

n). Mag = 20 log (M/ω2
n)

Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
0.10 0.09 −1.16 0.08 −2.31 0.07 −3.47
0.20 0.35 −2.39 0.32 −4.76 0.29 −7.13
0.30 0.80 −3.77 0.74 −7.51 0.65 −11.19
0.40 1.48 −5.44 1.36 −10.78 1.17 −15.95
0.50 2.42 −7.59 2.20 −14.93 1.85 −21.80
0.60 3.73 −10.62 3.30 −20.56 2.68 −29.36
0.70 5.53 −15.35 4.70 −28.77 3.60 −39.47
0.80 8.09 −23.96 6.35 −41.63 4.44 −53.13
0.90 11.64 −43.45 7.81 −62.18 4.85 −70.62
1.00 13.98 −90.00 7.96 −90.00 4.44 −90.00
1.10 10.34 −133.67 6.24 −115.51 3.19 −107.65
1.20 6.00 −151.39 3.73 −132.51 1.48 −121.43
1.30 2.65 −159.35 1.27 −143.00 −0.35 −131.50
1.40 0.00 −163.74 −0.92 −149.74 −2.11 −138.81
1.50 −2.18 −166.50 −2.84 −154.36 −3.75 −144.25
1.60 −4.04 −168.41 −4.54 −157.69 −5.26 −148.39
1.70 −5.67 −169.80 −6.06 −160.21 −6.64 −151.65
1.80 −7.12 −170.87 −7.43 −162.18 −7.91 −154.26
1.90 −8.42 −171.72 −8.69 −163.77 −9.09 −156.41
2.00 −9.62 −172.41 −9.84 −165.07 −10.19 −158.20
3.00 −18.09 −175.71 −18.16 −171.47 −18.28 −167.32
4.00 −23.53 −176.95 −23.57 −173.91 −23.63 −170.91
5.00 −27.61 −177.61 −27.63 −175.24 −27.67 −172.87
6.00 −30.89 −178.04 −30.90 −176.08 −30.93 −174.13
7.00 −33.63 −178.33 −33.64 −176.66 −33.66 −175.00
8.00 −35.99 −178.55 −36.00 −177.09 −36.01 −175.64
9.00 −38.06 −178.71 −38.07 −177.42 −38.08 −176.14

ω

ωn



Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
10.00 −39.91 −178.84 −39.92 −177.69 −39.93 −176.53
Freq. Mag

(dB)
ζ = 0. 5

Phase
(deg)

ζ = 0. 5

Mag
(dB)

ζ = 0. 7

Phase
(deg)

ζ = 0. 7

Mag
(dB)

ζ = 1. 0

Phase
(deg)

ζ = 1. 0
0.10 0.04 −5.77 0.00 −8.05 −0.09 −11.42
0.20 0.17 −11.77 0.00 −16.26 −0.34 −22.62
0.30 0.37 −18.25 −0.02 −24.78 −0.75 −33.40
0.40 0.63 −25.46 −0.08 −33.69 −1.29 −43.60
0.50 0.90 −33.69 −0.22 −43.03 −1.94 −53.13
0.60 1.14 −43.15 −0.47 −52.70 −2.67 −61.93
0.70 1.25 −53.92 −0.87 −62.51 −3.46 −69.98
0.80 1.14 −65.77 −1.41 −72.18 −4.30 −77.32
0.90 0.73 −78.08 −2.11 −81.42 −5.15 −83.97
1.00 0.00 −90.00 −2.92 −90.00 −6.02 −90.00
1.10 −0.98 −100.81 −3.93 −97.77 −6.89 −95.45
1.20 −2.13 −110.14 −4.79 −104.68 −7.75 −100.39
1.30 −3.36 −117.96 −5.78 −110.76 −8.60 −104.86
1.40 −4.60 −124.44 −6.78 −116.10 −9.43 −108.92
1.50 −5.81 −129.81 −7.76 −120.76 −10.24 −112.62
1.60 −6.98 −134.27 −8.72 −124.85 −11.03 −115.99
1.70 −8.10 −138.03 −9.66 −128.45 −11.80 −119.07
1.80 −9.17 −141.22 −10.56 −131.63 −12.55 −121.89
1.90 −10.18 −143.95 −11.43 −134.46 −13.27 −124.48
2.00 −11.14 −146.31 −12.26 −136.97 −13.98 −126.87
3.00 −18.63 −159.44 −19.12 −152.30 −20.00 −143.13
4.00 −23.82 −165.07 −24.09 −159.53 −24.61 −151.93
5.00 −27.79 −168.23 −27.96 −163.74 −28.30 −157.38
6.00 −31.01 −170.27 −31.12 −166.50 −31.36 −161.08
7.00 −33.72 −171.70 −33.80 −168.46 −33.98 −163.74
8.00 −36.06 −172.76 −36.12 −169.92 −36.26 −165.75
9.00 −38.12 −173.58 −38.17 −171.05 −38.28 −167.32

ω

ωn

ω

ωn



Freq. Mag
(dB)

ζ = 0. 1

Phase
(deg)

ζ = 0. 1

Mag
(dB)

ζ = 0. 2

Phase
(deg)

ζ = 0. 2

Mag
(dB)

ζ = 0. 3

Phase
(deg)

ζ = 0. 3
10.00 −39.96 −174.23 −40.00 −171.95 −40.09 −168.58

FIGURE 10.16 Normalized and scaled log-magnitude response
for 1/ (s2 + 2ζωns + ω2

n)

ω

ωn



FIGURE 10.17 Scaled phase response for 1/ (s2 + 2ζωns + ω2
n)

Let us now look at an example of drawing Bode plots for transfer functions
that contain second-order factors.



(10.35)

(10.36)

Example 10.3 Bode Plots for Ratio of First- and
Second-Order Factors
PROBLEM:
Draw the Bode log-magnitude and phase plots of G(s) for the unity-
feedback system shown in Figure 10.10, where G(s) = (s + 3)/[(s + 2) (s2 +
2s + 25)].

SOLUTION:
We first convert G(s) to show the normalized components that have unity
low-frequency gain. The second-order term is normalized by factoring out 
ω2

n, forming

+ s + 1

Thus,

G(s) = =

The Bode log-magnitude diagram is shown in Figure 10.18(b) and is the
sum of the individual first- and second-order terms of G(s) shown in
Figure 10.18(a). We solve this problem by adding the slopes of these
component parts, beginning and ending at the appropriate frequencies.
The results are summarized in Table 10.6, which can be used to obtain the
slopes. The low-frequency value for G(s), found by letting s = 0, is 3/50, or
−24.44 dB. The Bode magnitude plot starts out at this value and continues
until the first break frequency at 2 rad/s. Here the pole at −2 yields a −20
dB/decade slope downward until the next break at 3 rad/s. The zero at −3
causes an upward slope of +20 dB/decade, which, when added to the
previous −20 dB/decade curve, gives a net slope of 0. At a frequency of 5
rad/s, the second-order term initiates a −40 dB/decade downward slope,
which continues to infinity.

s2

ω2
n

2ζ

ωn

3

(2)(25)

( + 1)s
3

( + 1)( + s + 1)s

2
s2

25
2
25

3

50

( + 1)s
3

( + 1)( + s + 1)s

2
s2

25
2
25



FIGURE 10.18 Bode magnitude plot for G(s) = (s + 3)/[(s + 2)
(s2 + 2s + 25)]:

a. components;
b. composite



TABLE 10.6

Magnitude diagram slopes for Example 10.3
Frequency (rad/s)

Description 0.01
(Start:
Plot)

2 (Start:
Pole at −2)

3 (Start:
Zero at −3)

5 (Start:
ωn = 5)

Pole at −2 0 −20 −20 −20
Zero at −3 0 0 20 20
ωn = 5 0 0 0 −40

Total slope
(dB/dec)

0 −20 0 −40

The correction to the log-magnitude curve due to the underdamped
second-order term can be found by plotting a point −20 log 2ζ above the
asymptotes at the natural frequency. Since ζ = 0.2 for the second-order
term in the denominator of G(s), the correction is 7.96 dB. Points close to
the natural frequency can be corrected by taking the values from the
curves of Figure 10.16.

We now turn to the phase plot. Table 10.7 is formed to determine the
progression of slopes on the phase diagram. The first-order pole at −2
yields a phase angle that starts at 0° and ends at −90° via a −45°/decade
slope starting a decade below its break frequency and ending a decade
above its break frequency. The first-order zero yields a phase angle that
starts at 0° and ends at +90° via a +45°/decade slope starting a decade
below its break frequency and ending a decade above its break frequency.
The second-order poles yield a phase angle that starts at 0° and ends at
−180° via a −90°/decade slope starting a decade below their natural
frequency (ωn = 5) and ending a decade above their natural frequency.
The slopes, shown in Figure 10.19(a), are summed over each frequency
range, and the final Bode phase plot is shown in Figure 10.19(b).



FIGURE 10.19 Bode phase plot for G(s) = (s + 3)/[(s + 2) (s2 +
2s + 25)]:

a. components;
b. composite



TABLE 10.7

Phase diagram slopes for Example 10.3
Frequency (rad/s)

Description 0.2
(Start:
Pole at

−2)

0.3
(Start:
Zero at

−3)

0.5
(Start:
ωn at
−5)

20
(End:

Pole at
−2)

30
(End:

Zero at
−3)

50
(End:
ωn =

5)
Pole at −2 −45 −45 −45 0
Zero at −3 45 45 45 0
ωn = 5 −90 −90 −90 0

Total slope
(dB/dec)

−45 0 −90 −45 −90 0

 Students who are using MATLAB should now run ch10apB1 in 

Appendix B. You will learn how to use MATLAB to make Bode plots 
and list the points on the plots. This exercise solves Example 
10.3 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_9.zip


Skill-Assessment Exercise 10.2
PROBLEM:
Draw the Bode log-magnitude and phase plots for the system shown in
Figure 10.10, where

G (s) =

ANSWER:
The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 10.1
Use MATLAB, the Control System Toolbox, and the following
statements to obtain the Bode plots for the system of Skill-Assessment
Exercise 10.2

G=zpk([−20],[−1,−7,...−50], 1)
bode (G); grid on

After the Bode plots appear, click on the curve and drag to read the
coordinates.

In this section, we learned how to construct Bode log-magnitude and Bode
phase plots. The Bode plots are separate magnitude and phase frequency
response curves for a system, G(s). In the next section, we develop the Nyquist
criterion for stability, which makes use of the frequency response of a system.
The Bode plots can then be used to determine the stability of a system.

10.3 Introduction to the Nyquist Criterion
The Nyquist criterion relates the stability of a closed-loop system to the open-
loop frequency response and open-loop pole location. Thus, knowledge of the
open-loop system's frequency response yields information about the stability
of the closed-loop system. This concept is similar to the root locus, where we
began with information about the open-loop system, its poles and zeros, and
developed transient and stability information about the closed-loop system.

(s + 20)

(s + 1) (s + 7) (s + 50)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip


(10.37a)

(10.37b)

(10.38a)

(10.38b)

(10.38c)

Although the Nyquist criterion will yield stability information at first, we will
extend the concept to transient response and steady-state errors. Thus,
frequency response techniques are an alternate approach to the root locus.

Derivation of the Nyquist Criterion
Consider the system of Figure 10.20. The Nyquist criterion can tell us how
many closed-loop poles are in the right half-plane. Before deriving the
criterion, let us establish four important concepts that will be used during the
derivation: (1) the relationship between the poles of 1 + G(s)H(s) and the poles
of G(s)H(s); (2) the relationship between the zeros of 1 + G(s)H(s) and the
poles of the closed-loop transfer function, T(s); (3) the concept of mapping
points; and (4) the concept of mapping contours.

FIGURE 10.20 Closed-loop control system

Letting

G (s) =

H (s) =

we find

G (s) H (s) =

1 + G (s) H (s) = 1 + =

T (s) = =

NG

DG

NH

DH

NGNH

DGDH

NGNH

DGDH

DGDH + NGNH

DGDH

G (s)

1 + G (s) H (s)

NGDH

DGDH + NGNH



(10.39)

From Eqs. (10.38), we conclude that (1) the poles of 1 + G(s)H(s) are the same
as the poles of G(s)H(s), the open-loop system, and (2) the zeros of 1 +
G(s)H(s) are the same as the poles of T(s), the closed-loop system.

Next, let us define the term mapping. If we take a complex number on the s-
plane and substitute it into a function, F(s), another complex number results.
This process is called mapping. For example, substituting s = 4 + j3 into the
function (s2 + 2s + 1) yields 16 + j30. We say that 4 + j3 maps into 16 + j30
through the function (s2 + 2s + 1).

Finally, we discuss the concept of mapping contours. Consider the collection
of points, called a contour, shown in Figure 10.21 as contour A. Also, assume
that

F (s) =

Contour A can be mapped through F(s) into contour B by substituting each
point of contour A into the function F(s) and plotting the resulting complex
numbers. For example, point Q in Figure 10.21 maps into point Q′ through the
function F(s).

FIGURE 10.21 Mapping contour A through function F(s) to
contour B

The vector approach to performing the calculation, covered in Section 8.1, can
be used as an alternative. Some examples of contour mapping are shown in
Figure 10.22 for some simple F(s). The mapping of each point is defined by
complex arithmetic, where the resulting complex number, R, is evaluated
from the complex numbers represented by V, as shown in the last column of
Figure 10.22. You should verify that if we assume a clockwise direction for
mapping the points on contour A, then contour B maps in a clockwise
direction if F(s) in Figure 10.22 has just zeros or has just poles that are not
encircled by the contour. The contour B maps in a counterclockwise direction

(s − z1) (s − z2) …

(s − p1) (s − p2) …



if F(s) has just poles that are encircled by the contour. Also, you should verify
that if the pole or zero of F(s) is enclosed by contour A, the mapping encircles
the origin. In the last case of Figure 10.22, the pole and zero rotation cancel,
and the mapping does not encircle the origin.



FIGURE 10.22 Examples of contour mapping

Let us now begin the derivation of the Nyquist criterion for stability. We show
that a unique relationship exists between the number of poles of F(s)



contained inside contour A, the number of zeros of F(s) contained inside
contour A, and the number of counterclockwise encirclements of the origin for
the mapping of contour B. We then show how this interrelationship can be
used to determine the stability of closed-loop systems. This method of
determining stability is called the Nyquist criterion.

Let us first assume that F(s) = 1 + G(s)H(s), with the picture of the poles and
zeros of 1 + G(s)H(s) as shown in Figure 10.23 near contour A. Hence, R =
(V1V2)/(V3V4V5). As each point Q of the contour A is substituted into 1 +
G(s)H(s), a mapped point results on contour B. Assuming that F(s) = 1 +
G(s)H(s) has two zeros and three poles, each parenthetical term of Eq. (10.39)
is a vector in Figure 10.23. As we move around contour A in a clockwise
direction, each vector of Eq. (10.39) that lies inside contour A will appear to
undergo a complete rotation, or a change in angle of 360°. On the other hand,
each vector drawn from the poles and zeros of 1 + G(s)H(s) that exists outside
contour A will appear to oscillate and return to its previous position,
undergoing a net angular change of 0°.

FIGURE 10.23 Vector representation of mapping

Each pole or zero factor of 1 + G(s)H(s) whose vector undergoes a complete
rotation around contour A must yield a change of 360° in the resultant, R, or a
complete rotation of the mapping of contour B. If we move in a clockwise
direction along contour A, each zero inside contour A yields a rotation in the
clockwise direction, while each pole inside contour A yields a rotation in the
counterclockwise direction, since poles are in the denominator of Eq. (10.39).

Thus, N = P − Z, where N equals the number of counterclockwise rotations of
contour B about the origin; P equals the number of poles of 1 + G(s)H(s)
inside contour A, and Z equals the number of zeros of 1 + G(s)H(s) inside
contour A.

Since the poles shown in Figure 10.23 are poles of 1 + G(s)H(s), we know from
Eqs. (10.38) that they are also the poles of G(s)H(s) and are known. But, since
the zeros shown in Figure 10.23 are the zeros of 1 + G(s)H(s), we know from
Eqs. (10.38) that they are also the poles of the closed-loop system and are not



known. Thus, P equals the number of enclosed open-loop poles, and Z equals
the number of enclosed closed-loop poles. Hence, N = P − Z, or alternately, Z
= P − N, tells us that the number of closed-loop poles inside the contour
(which is the same as the zeros inside the contour) equals the number of open-
loop poles of G(s)H(s) inside the contour minus the number of
counterclockwise rotations of the mapping about the origin.

If we extend the contour to include the entire right half-plane, as shown in
Figure 10.24, we can count the number of right-half-plane closed-loop poles
inside contour A and determine a system's stability. Since we can count the
number of open-loop poles, P, inside the contour, which are the same as the
right-half-plane poles of G(s)H(s), the only problem remaining is how to
obtain the mapping and find N.

FIGURE 10.24 Contour enclosing right half-plane to determine
stability

Since all of the poles and zeros of G(s)H(s) are known, what if we map through
G(s)H(s) instead of 1 + G(s)H(s)? The resulting contour is the same as a
mapping through 1 + G(s)H(s), except that it is translated one unit to the left.
Thus, we count rotations about −1 instead of rotations about the origin.
Hence, the final statement of the Nyquist stability criterion is as follows:

If a contour, A, that encircles the entire right half-plane is mapped
through G(s)H(s), then the number of closed-loop poles, Z, in the right
half-plane equals the number of open-loop poles, P, that are in the right
half-plane minus the number of counterclockwise revolutions, N, around
−1 of the mapping; that is, Z = P − N. The mapping is called the Nyquist
diagram, or Nyquist plot, of G(s)H(s).

We can now see why this method is classified as a frequency response
technique. Around contour A in Figure 10.24, the mapping of the points on
the jω-axis through the function G(s)H(s) is the same as substituting s = jω
into G(s)H(s) to form the frequency response function G(jω)H(jω). We are
thus finding the frequency response of G(s)H(s) over that part of contour A on



the positive jω-axis. In other words, part of the Nyquist diagram is the polar
plot of the frequency response of G(s)H(s).

Applying the Nyquist Criterion to Determine Stability
Before describing how to sketch a Nyquist diagram, let us look at some typical
examples that use the Nyquist criterion to determine the stability of a system.
These examples give us a perspective prior to engaging in the details of
mapping. Figure 10.25(a) shows a contour A that does not enclose closed-loop
poles, that is, the zeros of 1 + G(s)H(s). The contour thus maps through
G(s)H(s) into a Nyquist diagram that does not encircle −1. Hence, P = 0, N =
0, and Z = P − N = 0. Since Z is the number of closed-loop poles inside
contour A, which encircles the right half-plane, this system has no right-half-
plane poles and is stable.

FIGURE 10.25 Mapping examples: a. Contour does not enclose
closed-loop poles; b. contour does enclose closed-loop poles



On the other hand, Figure 10.25(b) shows a contour A that, while it does not
enclose open-loop poles, does generate two clockwise encirclements of −1.
Thus, P = 0, N = − 2, and the system is unstable; it has two closed-loop poles
in the right half-plane, since Z = P − N = 2. The two closed-loop poles are
shown inside contour A in Figure 10.25(b) as zeros of 1 + G(s)H(s). You should
keep in mind that the existence of these poles is not known a priori.

In this example, notice that clockwise encirclements imply a negative value for
N. The number of encirclements can be determined by drawing a test radius
from −1 in any convenient direction and counting the number of times the
Nyquist diagram crosses the test radius. Counterclockwise crossings are
positive, and clockwise crossings are negative. For example, in Figure
10.25(b), contour B crosses the test radius twice in a clockwise direction.
Hence, there are −2 encirclements of the point −1.

Before applying the Nyquist criterion to other examples in order to determine
a system's stability, we must first gain experience in sketching Nyquist
diagrams. The next section covers the development of this skill.

10.4 Sketching the Nyquist Diagram
The contour that encloses the right half-plane can be mapped through the
function G(s)H(s) by substituting points along the contour into G(s)H(s). The
points along the positive extension of the imaginary axis yield the polar
frequency response of G(s)H(s). Approximations can be made to G(s)H(s) for
points around the infinite semicircle by assuming that the vectors originate at
the origin. Thus, their length is infinite, and their angles are easily evaluated.

However, most of the time a simple sketch of the Nyquist diagram is all that is
needed. A sketch can be obtained rapidly by looking at the vectors of G(s)H(s)
and their motion along the contour. In the examples that follow, we stress this
rapid method for sketching the Nyquist diagram. However, the examples also
include analytical expressions for G(s)H(s) for each section of the contour to
aid you in determining the shape of the Nyquist diagram.



Example 10.4 Sketching a Nyquist Diagram
PROBLEM:
Speed controls find wide application throughout industry and the home.
Figure 10.26(a) shows one application: output frequency control of
electrical power from a turbine and generator pair. By regulating the
speed, the control system ensures that the generated frequency remains
within tolerance. Deviations from the desired speed are sensed, and a
steam valve is changed to compensate for the speed error. The system
block diagram is shown in Figure 10.26(b). Sketch the Nyquist diagram
for the system of Figure 10.26.

FIGURE 10.26 a. Turbine and generator; b. block diagram of
speed control system for Example 10.4

SOLUTION:
Conceptually, the Nyquist diagram is plotted by substituting the points of
the contour shown in Figure 10.27(a) into G(s) = 500/[(s + 1)(s + 3)(s +
10)]. This process is equivalent to performing complex arithmetic using
the vectors of G(s) drawn to the points of the contour as shown in Figure



10.27(a) and (b). Each pole and zero term of G(s) shown in Figure
10.26(b) is a vector in Figure 10.27(a) and (b). The resultant vector, R,
found at any point along the contour is in general the product of the zero
vectors divided by the product of the pole vectors [see Figure 10.27(c)].
Thus, the magnitude of the resultant is the product of the zero lengths
divided by the product of the pole lengths, and the angle of the resultant is
the sum of the zero angles minus the sum of the pole angles.

FIGURE 10.27 Vector evaluation of the Nyquist diagram for
Example 10.4: a. vectors on contour at low frequency; b.
vectors on contour around infinity; c. Nyquist diagram

As we move in a clockwise direction around the contour from point A to
point C in Figure 10.27(a), the resultant angle goes from 0° to −3 × 90° =
−270°, or from A′ to C′ in Figure 10.27(c). Since the angles emanate from
poles in the denominator of G(s), the rotation or increase in angle is really



(10.40)

(10.41)

a decrease in angle of the function G(s); the poles gain 270° in a
counterclockwise direction, which explains why the function loses 270°.

While the resultant moves from A′ to C′ in Figure 10.27(c), its magnitude
changes as the product of the zero lengths divided by the product of the
pole lengths. Thus, the resultant goes from a finite value at zero frequency
[at point A of Figure 10.27(a), there are three finite pole lengths] to zero
magnitude at infinite frequency at point C [at point C of Figure 10.27(a),
there are three infinite pole lengths].

The mapping from point A to point C can also be explained analytically.
From A to C, the collection of points along the contour is imaginary.
Hence, from A to C, G(s) = G(jω), or from Figure 10.26(b),

G (jω) = |
s→jω

=

Multiplying the numerator and denominator by the complex conjugate of
the denominator, we obtain

G (jω) = 500

At zero frequency, G(jω) = 500/30 = 50/3. Thus, the Nyquist diagram
starts at 50/3, at an angle of 0°. As ω increases, the real part remains
positive and the imaginary part remains negative. At ω = √30/14, the
real part becomes negative. At ω = √43, the Nyquist diagram crosses the
negative real axis, since the imaginary term goes to zero. The real value at
the axis crossing, point Q′ in Figure 10.27(c), found by substituting into
Eq. (10.41), is −0.874. Continuing toward ω = ∞, the real part is negative,
and the imaginary part is positive. At infinite frequency G(jω) ≈ j500/ω3,
or approximately zero at 90°.

Around the infinite semicircle from point C to point D shown in Figure
10.27(b), the vectors rotate clockwise, each by 180°. Hence, the resultant
undergoes a counterclockwise rotation of 3 × 180°, starting at point C′ and
ending at point D′ of Figure 10.27(c). Analytically, we can see this by
assuming that around the infinite semicircle, the vectors originate
approximately at the origin and have infinite length. For any point on the
s-plane, the value of G(s) can be found by representing each complex
number in polar form, as follows:

500

(s + 1) (s + 3) (s + 10)

500

(−14ω2 + 30) + j (43ω − ω3)

(−14ω2 + 30) − j (43ω − ω3)

(−14ω2 + 30)2 + (43ω − ω3)2



(10.42)

(10.43)

G (s) =

where R−i is the magnitude of the complex number (s + i), and θ−i is the
angle of the complex number (s + i). Around the infinite semicircle, all R−i
are infinite, and we can use our assumption to approximate the angles as
if the vectors originated at the origin. Thus, around the infinite semicircle,

G (s) = = 0∠ − (θ−1 + θ−3 + θ−10)

At point C in Figure 10.27(b), the angles are all 90°. Hence, the resultant is
0∠ −270°, shown as point C′ in Figure 10.27(c). Similarly, at point D, G(s)
= 0∠ + 270° and maps into point D′. You can select intermediate points to
verify the spiral whose radius vector approaches zero at the origin, as
shown in Figure 10.27(c).

The negative imaginary axis can be mapped by realizing that the real part
of G(jω)H(jω) is always an even function, whereas the imaginary part of
G(jω)H(jω) is an odd function. That is, the real part will not change sign
when negative values of ω are used, whereas the imaginary part will
change sign. Thus, the mapping of the negative imaginary axis is a mirror
image of the mapping of the positive imaginary axis. The mapping of the
section of the contour from points D to A is drawn as a mirror image about
the real axis of the mapping of points A to C.

In the previous example, there were no open-loop poles situated along the
contour enclosing the right half-plane. If such poles exist, then a detour
around the poles on the contour is required; otherwise, the mapping would go
to infinity in an undetermined way, without angular information.
Subsequently, a complete sketch of the Nyquist diagram could not be made,
and the number of encirclements of −1 could not be found.

Let us assume a G(s)H(s) = N(s)/sD(s) where D(s) has imaginary roots. The s
term in the denominator and the imaginary roots of D(s) are poles of G(s)H(s)
that lie on the contour, as shown in Figure 10.28(a). To sketch the Nyquist
diagram, the contour must detour around each open-loop pole lying on its
path. The detour can be to the right of the pole, as shown in Figure 10.28(b),
which makes it clear that each pole's vector rotates through +180° as we move
around the contour near that pole. This knowledge of the angular rotation of
the poles on the contour permits us to complete the Nyquist diagram. Of
course, our detour must carry us only an infinitesimal distance into the right

500

(R−1ejθ−1) (R−3ejθ−3) (R−10ejθ−10)

500

∞∠ (θ−1 + θ−3 + θ−10)



half-plane, or else some closed-loop, right-half-plane poles will be excluded in
the count.

FIGURE 10.28 Detouring around open-loop poles: a. poles on
contour; b. detour right; c. detour left

We can also detour to the left of the open-loop poles. In this case, each pole
rotates through an angle of −180° as we detour around it. Again, the detour
must be infinitesimally small, or else we might include some left-half-plane
poles in the count. Let us look at an example.



Example 10.5 Nyquist Diagram for Open-Loop
Function with Poles on Contour
PROBLEM:
Sketch the Nyquist diagram of the unity-feedback system of Figure 10.10,
where G(s) = (s + 2)/s2.

SOLUTION:
The system's two poles at the origin are on the contour and must be
bypassed, as shown in Figure 10.29(a). The mapping starts at point A and
continues in a clockwise direction. Points A, B, C, D, E, and F of Figure
10.29(a) map, respectively, into points A′, B′, C′, D′, E′, and F′ of Figure
10.29(b).

FIGURE 10.29 a. Contour for Example 10.5; b. Nyquist
diagram for Example 10.5

At point A, the two open-loop poles at the origin contribute 2 × 90° =
180°, and the zero contributes 0°. The total angle at point A is thus −180°.
Close to the origin, the function is infinite in magnitude because of the
close proximity to the two open-loop poles. Thus, point A maps into point
A′, located at infinity at an angle of −180°.

Moving from point A to point B along the contour yields a net change in
angle of +90° from the zero alone. The angles of the poles remain the
same. Thus, the mapping changes by +90° in the counterclockwise
direction. The mapped vector goes from −180° at A′ to −90° at B′. At the
same time, the magnitude changes from infinity to zero, since at point B
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there is one infinite length from the zero divided by two infinite lengths
from the poles.

Alternately, the frequency response can be determined analytically from
G(jω) = (2 + jω)/(− ω2), considering ω going from 0 to ∞. At low
frequencies, G(jω) ≈ 2/(− ω2), or ∞∠180°. At high frequencies, G(jω) ≈
j/(− ω), or 0∠ −90°. Also, the real and imaginary parts are always
negative.

As we travel along the contour BCD, the function magnitude stays at zero
(one infinite zero length divided by two infinite pole lengths). As the
vectors move through BCD, the zero's vector and the two poles’ vectors
undergo changes of −180° each. Thus, the mapped vector undergoes a net
change of +180°, which is the angular change of the zero minus the sum of
the angular changes of the poles {− 180 − [2(− 180)] = + 180}. The
mapping is shown as B′ C′ D′, where the resultant vector changes by
+180° with a magnitude of ε that approaches zero.

From the analytical point of view,

G (s) =

anywhere on the s-plane where R−2∠θ−2 is the vector from the zero at −2
to any point on the s-plane, and R0∠θ0 is the vector from a pole at the
origin to any point on the s-plane. Around the infinite semicircle, all R−i =
∞, and all angles can be approximated as if the vectors originated at the
origin. Thus at point B, G(s) = 0∠ − 90°, since all θ−i = 90° in Eq. (10.44).
At point C, all R−i = ∞, and all θ−i = 0° in Eq. (10.44). Thus, G(s) = 0∠0°.
At point D, all R−i = ∞, and all θ−i = −90° in Eq. (10.44). Thus, G(s) =
0∠90°.

The mapping of the section of the contour from D to E is a mirror image of
the mapping of A to B. The result is D′ to E′.

Finally, over the section EFA, the resultant magnitude approaches infinity.
The angle of the zero does not change, but each pole changes by +180°.
This change yields a change in the function of −2 × 180° = −360°. Thus,
the mapping from E′ to A′ is shown as infinite in length and rotating
−360°. Analytically, we can use Eq. (10.44) for the points along the
contour EFA. At E, G(s) = (2∠ 0°)/[(ε∠ − 90°) (ε∠ − 90°)] = ∞∠180°. At F,
G(s) = (2∠0°)/[(ε∠ 0°)(ε∠ 0°)] = ∞∠ 0°. At A, G(s) = (2∠ 0°)/[(ε ∠90°) (ε
∠90°)] = ∞∠ − 180°.

R−2∠θ−2

(R0∠θ0) (R0∠θ0)



The Nyquist diagram is now complete, and a test radius drawn from −1 in
Figure 10.29(b) shows one counterclockwise revolution, and one clockwise
revolution, yielding zero encirclements.

 Students who are using MATLAB should now run ch10apB2 in 

Appendix B. You will learn how to use MATLAB to make a Nyquist 
plot and list the points on the plot. You will also learn how to 
specify a range for frequency. This exercise solves Example 10.5 
using MATLAB.

Skill-Assessment Exercise 10.3
PROBLEM:
Sketch the Nyquist diagram for the system shown in Figure 10.10 where

G (s) =

Compare your sketch with the polar plot in Skill-Assessment Exercise
10.1(c).

ANSWER:
The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we learned how to sketch a Nyquist diagram. We saw how to
calculate the value of the intersection of the Nyquist diagram with the negative
real axis. This intersection is important in determining the number of
encirclements of −1. Also, we showed how to sketch the Nyquist diagram when
open-loop poles exist on the contour; this case required detours around the
poles. In the next section, we apply the Nyquist criterion to determine the
stability of feedback control systems.

10.5 Stability via the Nyquist Diagram
We now use the Nyquist diagram to determine a system's stability, using the
simple equation Z = P − N. The values of P, the number of open-loop poles of
G(s)H(s) enclosed by the contour, and N, the number of encirclements the

1

(s + 2) (s + 4)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Nyquist diagram makes about −1, are used to determine Z, the number of
right-half-plane poles of the closed-loop system.

If the closed-loop system has a variable gain in the loop, one question we
would like to ask is, “For what range of gain is the system stable?” This
question, previously answered by the root locus method and the Routh–
Hurwitz criterion, is now answered via the Nyquist criterion. The general
approach is to set the loop gain equal to unity and draw the Nyquist diagram.
Since gain is simply a multiplying factor, the effect of the gain is to multiply
the resultant by a constant anywhere along the Nyquist diagram.

For example, consider Figure 10.30, which summarizes the Nyquist approach
for a system with variable gain, K. As the gain is varied, we can visualize the
Nyquist diagram in Figure 10.30(c) expanding (increased gain) or shrinking
(decreased gain) like a balloon. This motion could move the Nyquist diagram
past the −1 point, changing the stability picture. For this system, since P = 2,
the critical point must be encircled by the Nyquist diagram to yield N = 2 and
a stable system. A reduction in gain would place the critical point outside the
Nyquist diagram where N = 0, yielding Z = 2, an unstable system.

TryIt 10.2
Use MATLAB, the Control System Toolbox, and the following statements
to plot the Nyquist diagram of the system shown in Figure 10.30(a).

G=zpk([−3,−5],...[2,4],1)
nyquist(G)

After the Nyquist diagram appears, click on the curve and drag to read the
coordinates.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip


FIGURE 10.30 Demonstrating Nyquist stability: a. system; b.
contour; c. Nyquist diagram

From another perspective, we can think of the Nyquist diagram as remaining
stationary and the −1 point moving along the real axis. In order to do this, we
set the gain to unity and position the critical point at −1/K rather than −1.
Thus, the critical point appears to move closer to the origin as K increases.

Finally, if the Nyquist diagram intersects the real axis at −1, then G(jω)H(jω)
= −1. From root locus concepts, when G(s)H(s) = −1, the variable s is a closed-
loop pole of the system. Thus, the frequency at which the Nyquist diagram
intersects −1 is the same frequency at which the root locus crosses the jω-axis.
Hence, the system is marginally stable if the Nyquist diagram intersects the
real axis at −1.

In summary, then, if the open-loop system contains a variable gain, K, set K =
1 and sketch the Nyquist diagram. Consider the critical point to be at −1/K
rather than at −1. Adjust the value of K to yield stability, based upon the
Nyquist criterion.



(10.45)

Example 10.6 Range of Gain for Stability via the
Nyquist Criterion
PROBLEM:
For the unity-feedback system of Figure 10.10, where G(s) = K/[s (s + 3) (s
+ 5)], find the range of gain, K, for stability, instability, and the value of
gain for marginal stability. For marginal stability also, find the frequency
of oscillation. Use the Nyquist criterion.

SOLUTION:
First set K = 1 and sketch the Nyquist diagram for the system, using the
contour shown in Figure 10.31(a). For all points on the imaginary axis,

G( jω)H( jω) = |
K=1
s=jω

=

At ω = 0, G(jω)H(jω) = −0.0356 − j ∞.

FIGURE 10.31 a. Contour for Example 10.6; b. Nyquist
diagram

Next find the point where the Nyquist diagram intersects the negative real
axis. Setting the imaginary part of Eq. (10.45) equal to zero, we find 
ω = √15. Substituting this value of ω back into Eq. (10.45) yields the real
part of −0.0083. Finally, at ω = ∞, G(jω)H(jω) = G(s)H(s)|s →j∞ = 1/(j∞)3

= 0∠ − 270°.

K

s(s + 3) (s + 5)

−8ω2 − j (15ω − ω3)

64ω4 + ω2(15 − ω2)2



From the contour of Figure 10.31(a), P = 0; for stability N must then be
equal to zero. From Figure 10.31(b), the system is stable if the critical
point lies outside the contour (N = 0), so that Z = P − N = 0. Thus, K can
be increased by 1/0.0083 = 120.5 before the Nyquist diagram encircles −1.
Hence, for stability, K < 120.5. For marginal stability K = 120.5. At this
gain, the Nyquist diagram intersects −1, and the frequency of oscillation is 
√15 rad/s.

Now that we have used the Nyquist diagram to determine stability, we can
develop a simplified approach that uses only the mapping of the positive jω-
axis.

Stability via Mapping Only the Positive jω-Axis
Once the stability of a system is determined by the Nyquist criterion,
continued evaluation of the system can be simplified using just the mapping of
the positive jω-axis. This concept plays a major role in the next two sections,
where we discuss stability margin and the implementation of the Nyquist
criterion with Bode plots.

Consider the system shown in Figure 10.32, which is stable at low values of
gain and unstable at high values of gain. Since the contour does not encircle
open-loop poles, the Nyquist criterion tells us that we must have no
encirclements of −1 for the system to be stable. We can see from the Nyquist
diagram that the encirclements of the critical point can be determined from
the mapping of the positive jω-axis alone. If the gain is small, the mapping will
pass to the right of −1, and the system will be stable. If the gain is high, the
mapping will pass to the left of −1, and the system will be unstable. Thus, this
system is stable for the range of loop gain, K, that ensures that the open-loop
magnitude is less than unity at that frequency where the phase angle is 180°
(or, equivalently, −180°). This statement is thus an alternative to the Nyquist
criterion for this system.



FIGURE 10.32 a. Contour and root locus of system that is stable
for small gain and unstable for large gain; b. Nyquist diagram

Now consider the system shown in Figure 10.33, which is unstable at low
values of gain and stable at high values of gain. Since the contour encloses two
open-loop poles, two counterclockwise encirclements of the critical point are
required for stability. Thus, for this case, the system is stable if the open-loop
magnitude is greater than unity at that frequency where the phase angle is
180° (or, equivalently, −180°).

FIGURE 10.33 a. Contour and root locus of system that is
unstable for small gain and stable for large gain; b. Nyquist
diagram

In summary, first determine stability from the Nyquist criterion and the
Nyquist diagram. Next, interpret the Nyquist criterion and determine whether
the mapping of just the positive imaginary axis should have a gain of less than



or greater than unity at 180°. If the Nyquist diagram crosses ±180° at multiple
frequencies, determine the interpretation from the Nyquist criterion.



(10.46)

Example 10.7 Stability Design via Mapping Positive
jω-Axis
PROBLEM:
Find the range of gain for stability and instability, and the gain for
marginal stability, for the unity-feedback system shown in Figure 10.10,
where G(s) = K/[(s2 + 2s + 2) (s + 2)]. For marginal stability, find the
radian frequency of oscillation. Use the Nyquist criterion and the mapping
of only the positive imaginary axis.

SOLUTION:
Since the open-loop poles are only in the left half-plane, the Nyquist
criterion tells us that we want no encirclements of −1 for stability. Hence,
a gain less than unity at ±180° is required. Begin by letting K = 1 and draw
the portion of the contour along the positive imaginary axis as shown in
Figure 10.34(a). In Figure 10.34(b), the intersection with the negative real
axis is found by letting s = jω in G(s)H(s). Set the imaginary part equal to
zero to find the frequency and then substitute the frequency into the real
part of G(jω)H(jω). Thus, for any point on the positive imaginary axis,

G ( jω) H ( jω) = |
s→jω

=

Setting the imaginary part equal to zero, we find ω = √6. Substituting this
value back into Eq. (10.46) yields the real part, −(1/20) = (1/20)∠180°.

1
(s2+2s+2)(s+2)

4(1−ω2)−jω(6−ω2)

16(1−ω2)2+ω2(6−ω2)2



FIGURE 10.34 a. Portion of contour to be mapped for
Example 10.7; b. Nyquist diagram of mapping of positive
imaginary axis

This closed-loop system is stable if the magnitude of the frequency
response is less than unity at 180°. Hence, the system is stable for K < 20,
unstable for K > 20, and marginally stable for K = 20. When the system is
marginally stable, the radian frequency of oscillation is √6.



Skill-Assessment Exercise 10.4
PROBLEM:
For the system shown in Figure 10.10, where

G (s) =

do the following:

a. Plot the Nyquist diagram.

b. Use your Nyquist diagram to find the range of gain, K, for stability.

ANSWERS:

a. See the answer at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

b. Stable for K < 480

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

10.6 Gain Margin and Phase Margin via the Nyquist
Diagram
Now that we know how to sketch and interpret a Nyquist diagram to
determine a closed-loop system's stability, let us extend our discussion to
concepts that will eventually lead us to the design of transient response
characteristics via frequency response techniques.

Using the Nyquist diagram, we define two quantitative measures of how stable
a system is. These quantities are called gain margin and phase margin.
Systems with greater gain and phase margins can withstand greater changes
in system parameters before becoming unstable. In a sense, gain and phase
margins can be qualitatively related to the root locus, in that systems whose
poles are farther from the imaginary axis have a greater degree of stability.

K

(s + 2) (s + 4) (s + 6)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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In the last section, we discussed stability from the point of view of gain at 180°
phase shift. This concept leads to the following definitions of gain margin and
phase margin:

Gain margin, GM. The gain margin is the change in open-loop gain,
expressed in decibels (dB), required at 180° of phase shift to make the
closed-loop system unstable.

Phase margin, ΦM. The phase margin is the change in open-loop phase
shift required at unity gain to make the closed-loop system unstable.

These two definitions are shown graphically on the Nyquist diagram in Figure
10.35.

FIGURE 10.35 Nyquist diagram showing gain and phase margins

Assume a system that is stable if there are no encirclements of −1. Using
Figure 10.35, let us focus on the definition of gain margin. Here a gain
difference between the Nyquist diagram's crossing of the real axis at −1/a and
the −1 critical point determines the proximity of the system to instability.
Thus, if the gain of the system were multiplied by a units, the Nyquist diagram



would intersect the critical point. We then say that the gain margin is a units,
or, expressed in dB, GM = 20 log a. Notice that the gain margin is the
reciprocal of the real-axis crossing expressed in dB.

In Figure 10.35, we also see the phase margin graphically displayed. At point
Q′, where the gain is unity, a represents the system's proximity to instability.
That is, at unity gain, if a phase shift of α degrees occurs, the system becomes
unstable. Hence, the amount of phase margin is α. Later in the chapter, we
show that phase margin can be related to the damping ratio. Thus, we will be
able to relate frequency response characteristics to transient response
characteristics as well as stability. We will also show that the calculations of
gain and phase margins are more convenient if Bode plots are used rather
than a Nyquist diagram, such as that shown in Figure 10.35.

For now, let us look at an example that shows the calculation of the gain and
phase margins.



(10.47)

(10.48)

Example 10.8 Finding Gain and Phase Margins
PROBLEM:
Find the gain and phase margin for the system of Example 10.7 if K = 6.

SOLUTION:
To find the gain margin, first find the frequency where the Nyquist
diagram crosses the negative real axis. Finding G(jω)H(jω), we have

G ( jω) H ( jω) = |
s→jω

=

The Nyquist diagram crosses the real axis at a frequency of √6 rad/s. The
real part is calculated to be −0.3. Thus, the gain can be increased by
(1/0.3) = 3.33 before the real part becomes −1. Hence, the gain margin is

GM = 20 log 3.33 = 10.45 dB

To find the phase margin, find the frequency in Eq. (10.47) for which the
magnitude is unity. As the problem stands, this calculation requires
computational tools, such as a function solver or the program described in
Appendix H.2. Later in the chapter, we will simplify the process using
Bode plots. Equation (10.47) has unity gain at a frequency of 1.253 rad/s.
At this frequency, the phase angle is −112.3°. The difference between this
angle and −180° is 67.7°, which is the phase margin.

 Students who are using MATLAB should now run ch10apB3 in 

Appendix B. You will learn how to use MATLAB to find gain margin, 
phase margin, zero dB frequency, and 180° frequency. This 
exercise solves Example 10.8 using MATLAB.

6
(s2+2s+2)(s+2)

6[4(1−ω2)−jω(6−ω2)]

16(1−ω2)2+ω2(6−ω2)2

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip


 MATLAB's Linear System Analyzer, with the Nyquist diagram 

selected, is another method that may be used to find gain margin, 
phase margin, zero dB frequency, and 180° frequency. You are 
encouraged to study Appendix E, which contains a tutorial on the 
Linear System Analyzer as well as some examples. Example E.2 
solves Example 10.8 using the Linear System Analyzer.

Skill-Assessment Exercise 10.5
PROBLEM:
Find the gain margin and the 180° frequency for the problem in Skill-
Assessment Exercise 10.4 if K = 100.

ANSWERS:
Gain margin = 13.62 dB; 180° frequency = 6.63 rad/s

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 10.3
Use MATLAB, the Control System Toolbox, and the following
statements to find the gain and phase margins of G(s)H(s) =
100/[(s+2)(s+4)(s+6)] using the Nyquist diagram.

G=zpk([],[–2,–4,–6],100)
nyquist(G)

After the Nyquist diagram appears:

1. Right-click in the graph area.

2. Select Characteristics.

3. Select All Stability Margins.

4. Let the mouse rest on the margin points to read the gain and
phase margins.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip


In this section, we defined gain margin and phase margin and calculated them
via the Nyquist diagram. In the next section, we show how to use Bode
diagrams to implement the stability calculations performed in Sections 10.5
and 10.6 using the Nyquist diagram. We will see that the Bode plots reduce
the time and simplify the calculations required to obtain results.

10.7 Stability, Gain Margin, and Phase Margin via Bode
Plots
In this section, we determine stability, gain and phase margins, and the range
of gain required for stability. All of these topics were covered previously in this
chapter, using Nyquist diagrams as the tool. Now we use Bode plots to
determine these characteristics. Bode plots are subsets of the complete
Nyquist diagram but in another form. They are a viable alternative to Nyquist
plots, since they are easily drawn without the aid of the computational devices
or long calculations required for the Nyquist diagram and root locus. You
should remember that all calculations applied to stability were derived from
and based upon the Nyquist stability criterion. The Bode plots are an alternate
way of visualizing and implementing the theoretical concepts.

Determining Stability
Let us look at an example and determine the stability of a system,
implementing the Nyquist stability criterion using Bode plots. We will draw a
Bode log-magnitude plot and then determine the value of gain that ensures
that the magnitude is less than 0 dB (unity gain) at that frequency where the
phase is ±180°.



Example 10.9 Range of Gain for Stability via Bode
Plots
PROBLEM:
Use Bode plots to determine the range of K within which the unity-
feedback system shown in Figure 10.10 is stable. Let G(s) = K/[(s + 2)(s +
4)(s + 5)].

SOLUTION:
Since this system has all of its open-loop poles in the left half-plane, the
open-loop system is stable. Hence, from the discussion of Section 10.5, the
closed-loop system will be stable if the frequency response has a gain less
than unity when the phase is 180°.

Begin by sketching the Bode magnitude and phase diagrams shown in
Figure 10.36. In Section 10.2, we summed normalized plots of each factor
of G(s) to create the Bode plot. We saw that at each break frequency, the
slope of the resultant Bode plot changed by an amount equal to the new
slope that was added. Table 10.6 demonstrates this observation. In this
example, we use this fact to draw the Bode plots faster by avoiding the
sketching of the response of each term.



FIGURE 10.36 Bode log-magnitude and phase diagrams for
the system of Example 10.9

The low-frequency gain of G(s)H(s) is found by setting s to zero. Thus, the
Bode magnitude plot starts at K/40. For convenience, let K = 40 so that
the log-magnitude plot starts at 0 dB. At each break frequency, 2, 4, and 5,
a 20-dB/decade increase in negative slope is drawn, yielding the log-
magnitude plot shown in Figure 10.36.

The phase diagram begins at 0° until a decade below the first break
frequency of 2 rad/s. At 0.2 rad/s, the curve decreases at a rate of
−45°/decade, decreasing an additional 45°/decade at each subsequent
frequency (0.4 and 0.5 rad/s) a decade below each break. At a decade
above each break frequency, the slopes are reduced by 45°/decade at each
frequency.

The Nyquist criterion for this example tells us that we want zero
encirclements of −1 for stability. Thus, we recognize that the Bode log-
magnitude plot must be less than unity when the Bode phase plot is 180°.
Accordingly, we see that at a frequency of 7 rad/s, when the phase plot is
−180°, the magnitude plot is −20 dB. Therefore, an increase in gain of
+20 dB is possible before the system becomes unstable. Since the gain plot
was scaled for a gain of 40, +20 dB (a gain of 10) represents the required



increase in gain above 40. Hence, the gain for instability is 40 × 10 = 400.
The final result is 0 < K < 400 for stability.

This result, obtained by approximating the frequency response by Bode
asymptotes, can be compared to the result obtained from the actual
frequency response, which yields a gain of 378 at a frequency of 6.16
rad/s.

 Students who are using MATLAB should now run ch10apB4 in 

Appendix B. You will learn how to use MATLAB to find the range of 
gain for stability via frequency response methods. This exercise 
solves Example 10.10 using MATLAB.

Evaluating Gain and Phase Margins
Next we show how to evaluate the gain and phase margins using Bode plots
(Figure 10.37). The gain margin is found using the phase plot to find the
frequency, ωGM

, where the phase angle is 180°. At this frequency, we look at
the magnitude plot to determine the gain margin, GM, which is the gain
required to raise the magnitude curve to 0 dB. To illustrate, in the previous
example with K = 40, the gain margin was found to be 20 dB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip


FIGURE 10.37 Gain and phase margins on the Bode diagrams

The phase margin is found using the magnitude curve to find the frequency, 
ωΦM

, where the gain is 0 dB. On the phase curve at that frequency, the phase
margin, ΦM, is the difference between the phase value and 180°.



Example 10.10 Gain and Phase Margins from Bode
Plots
PROBLEM:
If K = 200 in the system of Example 10.9, find the gain margin and the
phase margin.

SOLUTION:
The Bode plot in Figure 10.36 is scaled to a gain of 40. If K = 200 (five
times as great), the magnitude plot would be 20 log 5 = 13.98 dB higher.

To find the gain margin, look at the phase plot and find the frequency
where the phase is 180°. At this frequency, determine from the magnitude
plot how much the gain can be increased before reaching 0 dB. In Figure
10.36, the phase angle is 180° at approximately 7 rad/s. On the magnitude
plot, the gain is −20 + 13.98 = − 6.02 dB. Thus, the gain margin is 6.02
dB.

To find the phase margin, we look on the magnitude plot for the frequency
where the gain is 0 dB. At this frequency, we look on the phase plot to find
the difference between the phase and 180°. This difference is the phase
margin. Again, remembering that the magnitude plot of Figure 10.36 is
13.98 dB lower than the actual plot, the 0 dB crossing (−13.98 dB for the
normalized plot shown in Figure 10.36) occurs at 5.5 rad/s. At this
frequency the phase angle is −165°. Thus, the phase margin is −165° −
(−180°) = 15°.

 MATLAB's Linear System Analyzer, with Bode plots 

selected, is another method that may be used to find gain margin, 
phase margin, zero dB frequency, and 180° frequency. You are 
encouraged to study Appendix E, which contains a tutorial on the 
Linear System Analyzer as well as some examples. Example E.3 
solves Example 10.10 using the Linear System Analyzer.



Skill-Assessment Exercise 10.6
PROBLEM:
For the system shown in Figure 10.10, where

G (s) =

do the following:

a. Draw the Bode log-magnitude and phase plots.

b. Find the range of K for stability from your Bode plots.

c. Evaluate gain margin, phase margin, zero dB frequency, and 180°
frequency from your Bode plots for K = 10, 000.

ANSWERS:

a. See the answer at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

b. K < 96, 270

c. Gain margin = 19.67 dB, phase margin = 92.9°, zero dB frequency =
7.74 rad/s, and 180° frequency = 36.7 rad/s

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

K

(s + 5) (s + 20) (s + 50)
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TryIt 10.4
Use MATLAB, the Control System Toolbox, and the following
statements to solve Skill-Assessment Exercise 10.6(c) using Bode
plots.

G=zpk([],...[−5,−20,−50],10000)
bode(G)
grid on

After the Bode plot appears:

1. Right-click in the graph area.

2. Select Characteristics.

3. Select All Stability Margins.

4. Let the mouse rest on the margin points to read the gain and
phase margins.

We have seen that the open-loop frequency response curves can be used not
only to determine whether a system is stable but also to calculate the range of
loop gain that will ensure stability. We have also seen how to calculate the
gain margin and the phase margin from the Bode diagrams.

Is it then possible to parallel the root locus technique and analyze and design
systems for transient response using frequency response methods? We will
begin to explore the answer in the next section.

10.8 Relation Between Closed-Loop Transient and
Closed-Loop Frequency Responses

Damping Ratio and Closed-Loop Frequency Response
In this section, we will show that a relationship exists between a system's
transient response and its closed-loop frequency response. In particular,
consider the second-order feedback control system of Figure 10.38, which we
have been using since Chapter 4, where we derived relationships between the
closed-loop transient response and the poles of the closed-loop transfer
function,

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip


(10.49)

(10.50)

(10.51)

= T (s) =

We now derive relationships between the transient response of Eq. (10.49)
and characteristics of its frequency response. We define these characteristics
and relate them to damping ratio, natural frequency, settling time, peak time,
and rise time. In Section 10.10, we will show how to use the frequency
response of the open-loop transfer function

G (s) =

shown in Figure 10.38, to obtain the same transient response characteristics.

FIGURE 10.38 Second-order closed-loop system

Let us now find the frequency response of Eq. (10.49), define characteristics of
this response, and relate these characteristics to the transient response.
Substituting s = jω into Eq. (10.49), we evaluate the magnitude of the closed-
loop frequency response as

M = |T ( jω) | =

A representative sketch of the log plot of Eq. (10.51) is shown in Figure 10.39.

C (s)

R (s)

ω2
n

s2 + 2ζωns + ω2
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ω2
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√(ω2
n − ω2)

2
+ 4ζ2ω2

nω2



(10.52)

(10.53)

FIGURE 10.39 Representative log-magnitude plot of Eq. (10.51)

We now show that a relationship exists between the peak value of the closed-
loop magnitude response and the damping ratio. Squaring Eq. (10.51),
differentiating with respect to ω2, and setting the derivative equal to zero
yields the maximum value of M, Mp, where

Mp =

at a frequency, ωp, of

ωp = ωn√1 − 2ζ2

Since ζ is related to percent overshoot, we can plot Mp vs. percent overshoot.
The result is shown in Figure 10.40.

1

2ζ√1−ζ2



FIGURE 10.40 Closed-loop frequency response peak vs. percent
overshoot for a two-pole system

Equation (10.52) shows that the maximum magnitude on the frequency
response curve is directly related to the damping ratio and, hence, the percent
overshoot. Also notice from Eq. (10.53) that the peak frequency, ωp, is not the
natural frequency. However, for low values of damping ratio, we can assume
that the peak occurs at the natural frequency. Finally, notice that there will not
be a peak at frequencies above zero if ζ > 0.707. This limiting value of ζ for
peaking on the magnitude response curve should not be confused with
overshoot on the step response, where there is overshoot for 0 < ζ < 1.

Response Speed and Closed-Loop Frequency
Response
Another relationship between the frequency response and time response is
between the speed of the time response (as measured by settling time, peak
time, and rise time) and the bandwidth of the closed-loop frequency
response. Bandwidth is defined here as the frequency, ωBW, at which the
magnitude response curve is 3 dB down from its value at zero frequency (see
Figure 10.39).

The bandwidth of a two-pole system can be found by finding that frequency
for which M = 1/√2 (i.e., −3 dB) in Eq. (10.51). The derivation is left as an
exercise for the student. The result is



(10.54)

(10.55)

(10.56)

ωBW = ωn√(1 − 2ζ2) + √4ζ 4 − 4ζ2 + 2

To relate ωBW to settling time, we substitute ωn = 4/Tsζ, derived from Eq.
(4.42), into Eq. (10.54) and obtain

ωBW = √(1 − 2ζ2) + √4ζ 4 − 4ζ2 + 2

Similarly, since ωn = π/(Tp√1 − ζ2),

ωBW = √(1 − 2ζ2) + √4ζ 4 − 4ζ2 + 2

To relate the bandwidth to rise time, Tr, we use Figure 10.16, knowing the
desired ζ and Tr. For example, assume ζ = 0.4 and Tr = 0.2 second. Using
Figure 4.16, the ordinate Trωn = 1.463, from which ωn = 1.463/0.2 = 7.315
rad/s. Using Eq. (10.54), ωBW = 10.05 rad/s. Normalized plots of Eqs. (10.55)
and (10.56) and the relationship between bandwidth normalized by rise time
and damping ratio are shown in Figure 10.41.

4
Tsζ

π

Tp√1−ζ2



FIGURE 10.41 Normalized bandwidth vs. damping ratio for a.
settling time; b. peak time; c. rise time

Skill-Assessment Exercise 10.7
PROBLEM:
Find the closed-loop bandwidth required for 20% overshoot and 2-
seconds settling time.

ANSWER:
ωBW = 5.79 rad/s

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we related the closed-loop transient response to the closed-
loop frequency response via bandwidth. We continue by relating the closed-

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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loop frequency response to the open-loop frequency response and explaining
the impetus.

10.9 Relation Between Closed- and Open-Loop
Frequency Responses
At this point, we do not have an easy way of finding the closed-loop frequency
response from which we could determine Mp and thus the transient
response.2 As we have seen, we are equipped to rapidly sketch the open-loop
frequency response but not the closed-loop frequency response. However, if
the open-loop response is related to the closed-loop response, we can combine
the ease of sketching the open-loop response with the transient response
information contained in the closed-loop response.

Constant M Circles and Constant N Circles
Consider a unity-feedback system whose closed-loop transfer function is

T (s) =

The frequency response of this closed-loop function is

T ( jω) =

Since G(jω) is a complex number, let G(jω) = P(ω) + jQ(ω) in Eq. (10.58),
which yields

T ( jω) =

Therefore,

M 2 = |T 2 ( jω) | =

Equation (10.60) can be put into the form

G (s)

1 + G (s)

G ( jω)

1 + G ( jω)

P (ω) + jQ (ω)

[(P (ω) + 1) + jQ (ω)]

P 2 (ω) + Q2 (ω)

[(P (ω) + 1)2 + Q2 (ω)]



(10.61)
(P + )

2

+ Q2 =

which is the equation of a circle of radius M/(M2 − 1) centered at [− M2/(M2 −
1), 0]. These circles, shown plotted in Figure 10.42 for various values of M, are
called constant M circles and are the locus of the closed-loop magnitude
frequency response for unity-feedback systems. Thus, if the polar frequency
response of an open-loop function, G(s), is plotted and superimposed on top
of the constant M circles, the closed-loop magnitude frequency response is
determined by each intersection of this polar plot with the constant M circles.

FIGURE 10.42 Constant M circles

Before demonstrating the use of the constant M circles with an example, let us
go through a similar development for the closed-loop phase plot, the constant
N circles. From Eq. (10.59), the phase angle, ϕ, of the closed-loop response is

M 2

M 2 − 1

M 2

(M 2 − 1)2
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(10.63)

(10.64)

ϕ = tan− 1 − tan− 1

= tan− 1

after using tan (α − β) = (tan α − tan β)/(1 + tan α tan β). Dropping the
functional notation,

tan ϕ = N =

Equation (10.63) can be put into the form of a circle,

(P + )
2

+ (Q − )
2

=

which is plotted in Figure 10.43 for various values of N. The circles of this plot
are called constant N circles. Superimposing a unity feedback, open-loop
frequency response over the constant N circles yields the closed-loop phase
response of the system. Let us now look at an example of the use of the
constant M and N circles.

Q(ω)

P(ω)

Q(ω)

P(ω)+1

−
Q(ω)

P(ω)

Q(ω)

P(ω)+1

1+ ( )Q(ω)

P(ω)

Q(ω)

P(ω)+1

Q

P 2 + P + Q2

1

2

1

2N

N 2 + 1

4N 2



FIGURE 10.43 Constant N circles
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Example 10.11 Closed-Loop Frequency Response
from Open-Loop Frequency Response
PROBLEM:
Find the closed-loop frequency response of the unity-feedback system
shown in Figure 10.10, where G(s) = 50/[s(s + 3)(s + 6)], using the
constant M circles, N circles, and the open-loop polar frequency response
curve.

SOLUTION:
First evaluate the open-loop frequency function and make a polar
frequency response plot superimposed over the constant M and N circles.
The open-loop frequency function is

G ( jω) =

from which the magnitude, |G(jω)|, and phase, ∠G(jω), can be found and
plotted. The polar plot of the open-loop frequency response (Nyquist
diagram) is shown superimposed over the M and N circles in Figure 10.44.

50

−9ω2 + j (18ω − ω3)



FIGURE 10.44 Nyquist diagram for Example 10.11 and
constant M and N circles

The closed-loop magnitude frequency response can now be obtained by
finding the intersection of each point of the Nyquist plot with the M
circles. The closed-loop phase response can be obtained by finding the
intersection of each point of the Nyquist plot with the N circles. The result
is shown in Figure 10.45.3



FIGURE 10.45 Closed-loop frequency response for Example
10.11

 Students who are using MATLAB should now run ch10apB5 in 

Appendix B. You will learn how to use MATLAB to find the closed-
loop frequency response. This exercise solves Example 10.11 using 
MATLAB.

Nichols Charts
A disadvantage of using the M and N circles is that changes of gain in the
open-loop transfer function, G(s), cannot be handled easily. For example, in
the Bode plot, a gain change is handled by moving the Bode magnitude curve
up or down an amount equal to the gain change in dB. Since the M and N
circles are not dB plots, changes in gain require each point of G(jω) to be
multiplied in length by the increase or decrease in gain.

Another presentation of the M and N circles, called a Nichols chart, displays
the constant M circles in dB, so that changes in gain are as simple to handle as
in the Bode plot. A Nichols chart is shown in Figure 10.46. The chart is a plot

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip
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of open-loop magnitude in dB vs. open-loop phase angle in degrees. Every
point on the M circles can be transferred to the Nichols chart. Each point on
the constant M circles is represented by magnitude and angle (polar
coordinates). Converting the magnitude to dB, we can transfer the point to the
Nichols chart, using the polar coordinates with magnitude in dB plotted as the
ordinate, and the phase angle plotted as the abscissa. Similarly, the N circles
also can be transferred to the Nichols chart.

FIGURE 10.46 Nichols chart

For example, assume the function

G (s) =

Superimposing the frequency response of G(s) on the Nichols chart by plotting
magnitude in dB vs. phase angle for a range of frequencies from 0.1 to 1 rad/s,
we obtain the plot in Figure 10.47 for K = 1. If the gain is increased by 10 dB,
simply raise the curve for K = 1 by 10 dB and obtain the curve for K = 3.16 (10
dB). The intersection of the plots of G(jω) with the Nichols chart yields the
frequency response of the closed-loop system.

K

s (s + 1) (s + 2)



FIGURE 10.47 Nichols chart with frequency response for G(s) =
K/[s (s + 1) (s + 2)] superimoposed. Values for K = 1 and K = 3.16
are shown.

 Students who are using MATLAB should now run ch10apB6 in 

Appendix B. You will learn how to use MATLAB to make a Nichols plot. 
This exercise makes a Nichols plot of G(s) = 1/[s(s + 1)(s + 2)] 
using MATLAB.

 MATLAB's Linear System Analyzer is an alternative method of 

obtaining the Nichols chart. You are encouraged to study Appendix E, 
which contains a tutorial on the Linear System Analyzer as well as 
some examples. Example E.4 shows how to obtain Figure 10.47 using 
the Linear System Analyzer.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip


Skill-Assessment Exercise 10.8
PROBLEM:
Given the system shown in Figure 10.10, where

G (s) =

plot the closed-loop log-magnitude and phase frequency response plots
using the following methods:

a. M and N circles

b. Nichols chart

ANSWER:
The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 10.5
Use MATLAB, the Control System Toolbox, and the following
statements to make a Nichols chart of the system given in Skill-
Assessment Exercise 10.8

G=zpk([],...
 [−5,−20,−50],8000)
nichols(G)
grid on

10.10 Relation Between Closed-Loop Transient and
Open-Loop Frequency Responses

Damping Ratio From M Circles
We can use the results of Example 10.11 to estimate the transient response
characteristics of the system. We can find the peak of the closed-loop
frequency response by finding the maximum M curve tangent to the open-
loop frequency response. Then we can find the damping ratio, ζ, and
subsequently the percent overshoot, via Eq. (10.52). The following example

8000

(s + 5) (s + 20) (s + 50)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip
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demonstrates the use of the open-loop frequency response and the M circles
to find the damping ratio or, equivalently, the percent overshoot.

Example 10.12 Percent Overshoot from Open-Loop
Frequency Response
PROBLEM:
Find the damping ratio and the percent overshoot expected from the
system of Example 10.11, using the open-loop frequency response and the
M circles.

SOLUTION:
Equation (10.52) shows that there is a unique relationship between the
closed-loop system's damping ratio and the peak value, MP, of the closed-
loop system's magnitude frequency plot. From Figure 10.44, we see that
the Nyquist diagram is tangent to the 1.8 M circle. We see that this is the
maximum value for the closed-loop frequency response. Thus, Mp = 1.8.

We can solve for ζ by rearranging Eq. (10.52) into the following form:

ζ4 − ζ2 + (1/4M 2
p ) = 0

Since Mp = 1.8, then ζ = 0.29 and 0.96. From Eq. (10.53), a damping ratio
larger than 0.707 yields no peak above zero frequency. Thus, we select ζ =
0.29, which is equivalent to 38.6% overshoot. Care must be taken,
however, to be sure we can make a second-order approximation when
associating the value of percent overshoot to the value of ζ. A computer
simulation of the step response shows 36% overshoot.

So far in this section, we have tied together the system's transient response
and the peak value of the closed-loop frequency response as obtained from the
open-loop frequency response. We used the Nyquist plots and the M and N
circles to obtain the closed-loop transient response. Another association exists
between the open-loop frequency response and the closed-loop transient
response that is easily implemented with the Bode plots, which are easier to
draw than the Nyquist plots.

Damping Ratio from Phase Margin
Let us now derive the relationship between the phase margin and the damping
ratio. This relationship will enable us to evaluate the percent overshoot from
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the phase margin found from the open-loop frequency response.

Consider a unity-feedback system whose open-loop function

G (s) =

yields the typical second-order, closed-loop transfer function

T (s) =

In order to evaluate the phase margin, we first find the frequency for which
|G(jω)| = 1. Hence,

|G ( jω) | = = 1

The frequency, ω1, that satisfies Eq. (10.70) is

ω1 = ωn√−2ζ2 +√1 + 4ζ4

The phase angle of G(jω) at this frequency is

∠G ( jω) = −90 − tan− 1

= −90 − tan− 1

The difference between the angle of Eq. (10.72) and −180° is the phase
margin, ϕM. Thus,

ΦM = 90 − tan− 1

= tan− 1

Equation (10.73), plotted in Figure 10.48, shows the relationship between
phase margin and damping ratio.

ω2
n

s (s + 2ζωn)

ω2
n

s2 + 2ζωns + ω2
n

ω2
n

| − ω2 + j2ζωnω|

ω1

2ζωn

√−2ζ2+√4ζ4+1

2ζ
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2ζ
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FIGURE 10.48 Phase margin vs. damping ratio

As an example, Eq. (10.53) tells us that there is no peak frequency if ζ = 0.707.
Hence, there is no peak to the closed-loop magnitude frequency response
curve for this value of damping ratio and larger. Thus, from Figure 10.48, a
phase margin of 65.52° (ζ = 0.707) or larger is required from the open-loop
frequency response to ensure there is no peaking in the closed-loop frequency
response.

Response Speed from Open-Loop Frequency Response
Equations (10.55) and (10.56) relate the closed-loop bandwidth to the desired
settling or peak time and the damping ratio. We now show that the closed-
loop bandwidth can be estimated from the open-loop frequency response.
From the Nichols chart in Figure 10.46, we see the relationship between the
open-loop gain and the closed-loop gain. The M = 0.707(− 3 dB) curve,
replotted in Figure 10.49 for clarity, shows the open-loop gain when the
closed-loop gain is −3 dB. This relationship typically occurs at ωBW if the low-
frequency closed-loop gain is 0 dB. We can approximate Figure 10.49 by
saying that the closed-loop bandwidth, ωBW (the frequency at which the
closed-loop magnitude response is −3 dB), equals the frequency at which the
open-loop magnitude response is between −6 and − 7.5 dB if the open-loop
phase response is between −135° and −225°. Then, using a second-order
system approximation, Eqs. (10.55) and (10.56) can be used, along with the



desired damping ratio, ζ, to find settling time and peak time, respectively. Let
us look at an example.

FIGURE 10.49 Open-loop gain vs. open-loop phase angle for −3
dB closed-loop gain



Example 10.13 Settling and Peak Times from Open-
Loop Frequency Response
PROBLEM:
Given the system of Figure 10.50(a) and the Bode diagrams of Figure
10.50(b), estimate the settling time and peak time.

FIGURE 10.50 a. Block diagram; b. Bode diagrams for system
of Example 10.13

SOLUTION:



Using Figure 10.50(b), we estimate the closed-loop bandwidth by finding
the frequency where the open-loop magnitude response is in the range of
−6 to − 7.5 dB if the phase response is in the range of −135° to −225°.
Since Figure 10.50(b) shows −6 to − 7.5 dB at approximately 3.7 rad/s
with a phase response in the stated region, ωBW ≅ 3.7 rad/s.

Next find ζ via the phase margin. From Figure 10.50(b), the phase margin
is found by first finding the frequency at which the magnitude plot is 0 dB.
At this frequency, 2.2 rad/s, the phase is about −145°. Hence, the phase
margin is approximately ( −145° − (−180°) ) = 35°. Using Figure 10.48, ζ =
0.32. Finally, using Eqs. (10.55) and (10.56), with the values of ωBW and ζ
just found, Ts = 4.86 seconds and Tp = 129 seconds. Checking the analysis
with a computer simulation shows Ts = 5.5 seconds, and Tp = 1.43
seconds.

Skill-Assessment Exercise 10.9
PROBLEM:
Using the open-loop frequency response for the system in Figure 10.10,
where

G (s) =

estimate the percent overshoot, settling time, and peak time for the
closed-loop step response.

ANSWERS:
% OS = 44 %, Ts = 1.64 s, and TP = 0.33 s

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

10.11 Steady-State Error Characteristics from
Frequency Response
In this section, we show how to use Bode diagrams to find the values of the
static error constants for equivalent unity-feedback systems: Kp for a Type 0

100

s (s + 5)
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system, Kv for a Type 1 system, and Ka for a Type 2 system. The results will be
obtained from unnormalized and unscaled Bode log-magnitude plots.

Position Constant
To find Kp, consider the following Type 0 system:

G (s) = K

A typical unnormalized and unscaled Bode log-magnitude plot is shown in
Figure 10.51(a). The initial value is

20 log M = 20 log K

But for this system

Kp = K

which is the same as the value of the low-frequency axis. Thus, for an
unnormalized and unscaled Bode log-magnitude plot, the low-frequency
magnitude is 20 log Kp for a Type 0 system.
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FIGURE 10.51 Typical unnormalized and unscaled Bode log-
magnitude plots showing the value of static error constants: a.
Type 0; b. Type 1; c. Type 2

Velocity Constant
To find Kv for a Type 1 system, consider the following open-loop transfer
function of a Type 1 system:

G (s) = K

A typical unnormalized and unscaled Bode log-magnitude diagram is shown
in Figure 10.51(b) for this Type 1 system. The Bode plot starts at
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∏
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20 log M = 20 log K

The initial −20 dB/decade slope can be thought of as originating from a
function,

G′ (s) = K

G′(s) intersects the frequency axis when

ω = K

But for the original system [Eq. (10.77)],

Kv = K

which is the same as the frequency-axis intercept, Eq. (10.80). Thus, we can
find Kv by extending the initial −20 dB/decade slope to the frequency axis on
an unnormalized and unscaled Bode diagram. The intersection with the
frequency axis is Kv.

Acceleration Constant
To find Ka for a Type 2 system, consider the following:
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G (s) = K

A typical unnormalized and unscaled Bode plot for a Type 2 system is shown
in Figure 10.51(c). The Bode plot starts at

20 log M = 20 log K

The initial −40 dB/decade slope can be thought of as coming from a function,

G' (s) = K

G′(s) intersects the frequency axis when

ω =

      
⎷

K

But for the original system [Eq. (10.82)],

Ka = K
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Thus, the initial −40 dB/decade slope intersects the frequency axis at √Ka.



Example 10.14 Static Error Constants from Bode
Plots
PROBLEM:
For each unnormalized and unscaled Bode log-magnitude plot shown in
Figure 10.52,

a. Find the system type.

b. Find the value of the appropriate static error constant.

SOLUTION:
Figure 10.52(a) is a Type 0 system, since the initial slope is zero. The value
of Kp is given by the low-frequency asymptote value. Thus, 20 log Kp = 25,
or Kp = 17.78.



FIGURE 10.52 Bode log-magnitude plots for Example 10.14

Figure 10.52(b) is a Type 1 system, since the initial slope is −20
dB/decade. The value of Kv is the value of the frequency that the initial
slope intersects at the zero dB crossing of the frequency axis. Hence, Kv =
0.55.

Figure 10.52(c) is a Type 2 system, since the initial slope is −40
dB/decade. The value of √Ka is the value of the frequency that the initial



slope intersects at the zero dB crossing of the frequency axis. Hence, Ka =
32 = 9.

Skill-Assessment Exercise 10.10
PROBLEM:
Find the static error constants for a stable unity-feedback system whose
open-loop transfer function has the Bode magnitude plot shown in Figure
10.53.

FIGURE 10.53 Bode log-magnitude plot for Skill-Assessment
Exercise 10.10

ANSWERS:
Kp = ∞, Kv = ∞, Ka = 90.25

The complete solution is
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

10.12 Systems with Time Delay
Time delay occurs in control systems when there is a delay between the
commanded response and the start of the output response. For example,
consider a heating system that operates by heating water for pipeline
distribution to radiators at distant locations. Since the hot water must flow
through the line, the radiators will not begin to get hot until after a specified
time delay. In other words, the time between the command for more heat and
the commencement of the rise in temperature at a distant location along the
pipeline is the time delay. Notice that this is not the same as the transient

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(10.87)

(10.88)

response or the time it takes the temperature to rise to the desired level.
During the time delay, nothing is occurring at the output.

Modeling Time Delay
Assume that an input, R(s), to a system, G(s), yields an output, C(s). If another
system, G′(s), delays the output by T seconds, the output response is c(t − T).
From Table 2.2, Item 5, the Laplace transform of c(t − T) is e−sTC(s). Thus, for
the system without delay, C(s) = R(s)G(s), and for the system with delay,
e−sTC(s) = R(s)G′(s). Dividing these two equations, G′(s)/G(s) = e−sT. Thus, a
system with time delay T can be represented in terms of an equivalent system
without time delay as follows:

G' (s) = e−sT G (s)

The effect of introducing time delay into a system can also be seen from the
perspective of the frequency response by substituting s = jω in Eq. (10.87).
Hence,

G' ( jω) = e−jωT G ( jω) = |G ( jω) |∠ {−ωT + ∠G ( jω)}

In other words, the time delay does not affect the magnitude frequency
response curve of G(jω), but it does subtract a linearly increasing phase shift,
ωT, from the phase frequency response plot of G(jω).

The typical effect of adding time delay can be seen in Figure 10.54. Assume
that the gain and phase margins as well as the gain- and phase-margin
frequencies shown in the figure apply to the system without delay. From the
figure, we see that the reduction in phase shift caused by the delay reduces the
phase margin. Using a second-order approximation, this reduction in phase
margin yields a reduced damping ratio for the closed-loop system and a more
oscillatory response. The reduction of phase also leads to a reduced gain-
margin frequency. From the magnitude curve, we can see that a reduced gain-
margin frequency leads to reduced gain margin, thus moving the system
closer to instability.



FIGURE 10.54 Effect of delay upon frequency response

An example of plotting frequency response curves for systems with delay
follows.



Example 10.15 Frequency Response Plots of a
System with Time Delay
PROBLEM:
Plot the frequency response for the system G(s) = K/[s (s + 1) (s + 10)] if
there is a time delay of 1 second through the system. Use the Bode plots.

SOLUTION:
Since the magnitude curve is not affected by the delay, it can be plotted by
the methods previously covered in the chapter and is shown in Figure
10.55(a) for K = 1.

FIGURE 10.55 Frequency response plots for G(s) = K/[s (s + 1)
(s + 10)] with a delay of 1 second and K = 1: a. magnitude plot;
b. phase plot

The phase plot, however, is affected by the delay. Figure 10.55(b) shows
the result. First draw the phase plot for the delay, e−jωT = 1 ∠ − ωT = 1 ∠ −
ω, since T = 1 from the problem statement. Next draw the phase plot of
the system, G(jω), using the methods previously covered. Finally, add the



two phase curves together to obtain the total phase response for
e−jωTG(jω). Be sure to use consistent units for the phase angles of G(jω)
and the delay; either degrees or radians.

Notice that the delay yields a decreased phase margin, since at any
frequency, the phase angle is more negative. Using a second-order
approximation, this decrease in phase margin implies a lower damping
ratio and a more oscillatory response for the closed-loop system.

Further, there is a decrease in the gain-margin frequency. On the
magnitude curve, note that a reduction in the gain-margin frequency
shows up as reduced gain margin, thus moving the system closer to
instability.

 Students who are using MATLAB should now run ch10apB7 in 

Appendix B. You will learn how to use MATLAB to include time 
delay on Bode plots. You will also use MATLAB to make multiple 
plots on one graph and label the plots. This exercise solves 
Example 10.15 using MATLAB.

Let us now use the results of Example 10.15 to design stability and analyze
transient response and compare the results to the system without time delay.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip


Example 10.16 Range of Gain for Stability for System
with Time Delay
PROBLEM:
The open-loop system with time delay in Example 10.15 is used in a unity-
feedback configuration. Do the following:

a. Find the range of gain, K, to yield stability. Use Bode plots and
frequency response techniques.

b. Repeat Part a for the system without time delay.

SOLUTION:

a. From Figure 10.55, the phase angle is −180° at a frequency of 0.81
rad/s for the system with time delay, marked “Total” on the phase
plot. At this frequency, the magnitude curve is at −20.39 dB. Thus, K
can be raised from its current value of unity to 1020.39/20 = 10.46.
Hence, the system is stable for 0 < K ≤ 10.46.

b. If we use the phase curve without delay, marked “System,” −180°
occurs at a frequency of 3.16 rad/s, and K can be raised 40.84 dB or
110.2. Thus, without delay the system is stable for 0 < K ≤ 110.2, an
order of magnitude larger.



Example 10.17 Percent Overshoot for System with
Time Delay
PROBLEM:
The open-loop system with time delay in Example 10.15 is used in a unity-
feedback configuration. Do the following:

a. Estimate the percent overshoot if K = 5. Use Bode plots and frequency
response techniques.

b. Repeat Part a for the system without time delay.

SOLUTION:

a. Since K = 5, the magnitude curve of Figure 10.55 is raised by 13.98
dB. The zero dB crossing then occurs at a frequency of 0.47 rad/s with
a phase angle of −145°, as seen from the phase plot marked “Total.”
Therefore, the phase margin is ( −145° − (−180°) ) = 35°. Assuming a
second-order approximation and using Eq. (10.73) or Figure 10.48,
we find ζ = 0.33. From Eq. (4.38), % OS = 33 %. The time response,
Figure 10.56(a), shows a 38% overshoot instead of the predicted 33%.
Notice the time delay at the start of the curve.

b. The zero dB crossing occurs at a frequency of 0.47 rad/s with a phase
angle of −118°, as seen from the phase plot marked “System.”
Therefore, the phase margin is ( −118° − (−180°) ) = 62°. Assuming a
second-order approximation and using Eq. (10.73) or Figure 10.48,
we find ζ = 0.64. From Eq. (4.38), % OS = 7.3 %. The time response is
shown in Figure 10.56(b). Notice that the system without delay has
less overshoot and a smaller settling time.



FIGURE 10.56 Step response for closed-loop system with G(s)
= 5/[s(s + 1)(s + 10)]: a. with a 1-second delay; b. without
delay



Skill-Assessment Exercise 10.11
PROBLEM:
For the system shown in Figure 10.10, where

G (s) =

find the phase margin if there is a delay in the forward path of

a. 0 s

b. 0.1 s

c. 3 s

ANSWERS:

a. 18.0°

b. 0.35°

c. −151.41°

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

10

s (s + 1)
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TryIt 10.6
Use MATLAB, the Control System Toolbox, and the following
statements to solve Skill-Assessment Exercise 10.11. For each part of
the problem let d = the specified delay.

G=zpk([],[0,−1],10)
d=0
[numGd,denGd]=pade...
 (d,12)
Gd=tf(numGd,denGd)
Ge=G*Gd
bode(Ge)
grid on

After the Bode diagrams appear:

1. Right-click in the graph area.

2. Select Characteristics.
3. Select All Stability Margins.
4. Let the mouse rest on the margin point on the phase plot to read

the phase margin.

In summary, then, systems with time delay can be handled using previously
described frequency response techniques if the phase response is adjusted to
reflect the time delay. Typically, time delay reduces gain and phase margins,
resulting in increased percent overshoot or instability in the closed-loop
response.

10.13 Obtaining Transfer Functions Experimentally
In Chapter 4, we discussed how to obtain the transfer function of a system
through step-response testing. In this section, we show how to obtain the
transfer function using sinusoidal frequency response data.

The analytical determination of a system's transfer function can be difficult.
Individual component values may not be known, or the internal configuration
of the system may not be accessible. In such cases, the frequency response of
the system, from input to output, can be obtained experimentally and used to
determine the transfer function. To obtain a frequency response plot
experimentally, we use a sinusoidal force or signal generator at the input to
the system and measure the output steady-state sinusoid amplitude and phase
angle (see Figure 10.2). Repeating this process at a number of frequencies

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_10.zip


yields data for a frequency response plot. Referring to Figure 10.2(b), the
amplitude response is M(ω) = Mo(ω)/Mi(ω), and the phase response is ϕ(ω) =
ϕo(ω) − ϕi(ω). Once the frequency response is obtained, the transfer function
of the system can be estimated from the break frequencies and slopes.
Frequency response methods can yield a more refined estimate of the transfer
function than the transient response techniques covered in Chapter 4.

Bode plots are a convenient presentation of the frequency response data for
the purpose of estimating the transfer function. These plots allow parts of the
transfer function to be determined and extracted, leading the way to further
refinements to find the remaining parts of the transfer function.

Although experience and intuition are invaluable in the process, the following
steps are still offered as a guideline:

1. Look at the Bode magnitude and phase plots and estimate the pole-zero
configuration of the system. Look at the initial slope on the magnitude
plot to determine system type. Look at phase excursions to get an idea of
the difference between the number of poles and the number of zeros.

2. See if portions of the magnitude and phase curves represent obvious first-
or second-order pole or zero frequency response plots.

3. See if there is any telltale peaking or depressions in the magnitude
response plot that indicate an underdamped second-order pole or zero,
respectively.

4. If any pole or zero responses can be identified, overlay appropriate ±20 or
±40-dB/decade lines on the magnitude curve or ±45°/decade lines on the
phase curve and estimate the break frequencies. For second-order poles
or zeros, estimate the damping ratio and natural frequency from the
standard curves given in Section 10.2.

5. Form a transfer function of unity gain using the poles and zeros found.
Obtain the frequency response of this transfer function and subtract this
response from the previous frequency response (Franklin, 1991). You
now have a frequency response of reduced complexity from which to
begin the process again to extract more of the system's poles and zeros. A
computer program such as MATLAB is of invaluable help for this step.

Let us demonstrate.



Example 10.18 Transfer Function from Bode Plots
PROBLEM:
Find the transfer function of the subsystem whose Bode plots are shown in
Figure 10.57.

FIGURE 10.57 Bode plots for subsystem with undetermined
transfer function

SOLUTION:
Let us first extract the underdamped poles that we suspect, based on the
peaking in the magnitude curve. We estimate the natural frequency to be
near the peak frequency, or approximately 5 rad/s. From Figure 10.57, we
see a peak of about 6.5 dB, which translates into a damping ratio of about
ζ = 0.24 using Eq. (10.52). The unity gain second-order function is thus 
G1 (s) = ω2

n/ (s2 + 2ζωns + ω2
n) = 25/ (s2 + 2.4s + 25). The frequency

response plot of this function is made and subtracted from the previous
Bode plots to yield the response in Figure 10.58.



FIGURE 10.58 Original Bode plots minus response of G1 (s) =
25/(s2 + 2.4s + 25)

Overlaying a −20 -dB/decade line on the magnitude response and a
−45°/decade line on the phase response, we detect a final pole. From the
phase response, we estimate the break frequency at 90 rad/s. Subtracting
the response of G2 (s) = 90/(s + 90) from the previous response yields the
response in Figure 10.59.



(10.89)

FIGURE 10.59 Original Bode plot minus response of
G1(s)G2(s) = [25/(s2 + 2.4s + 25)][90/(s + 90)]

Figure 10.59 has a magnitude and phase curve similar to that generated by
a lag function. We draw a −20-dB/decade line and fit it to the curves. The
break frequencies are read from the figure as 9 and 30 rad/s. A unity gain
transfer function containing a pole at −9 and a zero at −30 is G3(s) = 0.3(s
+ 30)/(s + 9). Upon subtraction of G1(s)G2(s)G3(s), we find the magnitude
frequency response flat ±1 dB and the phase response flat at −3°±5°. We
thus conclude that we are finished extracting dynamic transfer functions.
The low-frequency, or dc, value of the original curve is −19 dB, or 0.11.
Our estimate of the subsystem's transfer function is G(s) =
0.11G1(s)G2(s)G3(s), or

G (s) = 0.11( )(90 )(0.3 )

= 74.25

It is interesting to note that the original curve was obtained from the
function

25
s2+2.4s+25

1
s+90

s+30
s+9

s+30
(s+9)(s+90)(s2+2.4s+25)



(10.90)
G (s) = 70

 Students who are using MATLAB should now run ch10apB8 in 

Appendix B. You will learn how to use MATLAB to subtract Bode 
plots for the purpose of estimating transfer functions through 
sinusoidal testing. This exercise solves a portion of Example 
10.18 using MATLAB.

s + 20

(s + 7) (s + 70) (s2 + 2s + 25)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_10.zip


Skill-Assessment Exercise 10.12
PROBLEM:
Estimate G(s), whose Bode log-magnitude and phase plots are shown in
Figure 10.60.

FIGURE 10.60 Bode plots for Skill-Assessment Exercise 10.12

ANSWER:

G (s) =

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this chapter, we derived the relationships between time response
performance and the frequency responses of the open- and closed-loop
systems. The methods derived, although yielding a different perspective, are
simply alternatives to the root locus and steady-state error analyses previously
covered.

30(s+5)

s(s+20)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(10.91)

Case Study Antenna Control: Stability Design and
Transient Performance

 Our ongoing antenna position control system serves now as an
example that summarizes the major objectives of the chapter. The case
study demonstrates the use of frequency response methods to find the
range of gain for stability and to design a value of gain to meet a percent
overshoot requirement for the closed-loop step response.

PROBLEM:
Given the antenna azimuth position control system shown in Appendix
A2, Configuration 1, use frequency response techniques to find the
following:

a. The range of preamplifier gain, K, required for stability

b. Percent overshoot if the preamplifier gain is set to 30

c. The estimated settling time

d. The estimated peak time

e. The estimated rise time

SOLUTION:
Using the block diagram (Configuration 1) shown in Appendix A2 and
performing block diagram reduction yields the loop gain, G(s)H(s), as

G (s) H (s) = =

Letting K = 1, we have the magnitude and phase frequency response plots
shown in Figure 10.61.

a. In order to find the range of K for stability, we notice from Figure
10.61 that the phase response is −180° at ω = 13.1 rad/s. At this
frequency, the magnitude plot is −68.41 dB. The gain, K, can be raised
by 68.41 dB. Thus, K = 2633 will cause the system to be marginally
stable. Hence, the system is stable if 0 < K < 2633.

b. To find the percent overshoot if K = 30, we first make a second-order
approximation and assume that the second-order transient response

6.63K

s (s + 1.71) (s + 100)

0.0388K

s( + 1) ( + 1)s
1.71

s
100



equations relating percent overshoot, damping ratio, and phase
margin are true for this system. In other words, we assume that Eq.
(10.73), which relates damping ratio to phase margin, is valid. If K =
30, the magnitude curve of Figure 10.61 is moved up by 20 log 30 =
29.54 dB. Therefore, the adjusted magnitude curve goes through zero
dB at ω = 1. At this frequency, the phase angle is −120.9°, yielding a
phase margin of 59.1°. Using Eq. (10.73) or Figure 10.48, ζ = 0.6, or
9.48% overshoot. A computer simulation shows 10%.

c. To estimate the settling time, we make a second-order approximation
and use Eq. (10.55). Since K = 30 (29.54 dB), the open-loop
magnitude response is −7 dB when the normalized magnitude
response of Figure 10.61 is −36.54 dB. Thus, the estimated bandwidth
is 1.8 rad/s. Using Eq. (10.55), Ts = 4.25 seconds. A computer
simulation shows a settling time of about 4.4 seconds.

d. Using the estimated bandwidth found in Part c along with Eq. (10.56)
and the damping ratio found in a, we estimate the peak time to be 2.5
seconds. A computer simulation shows a peak time of 2.8 seconds.

e. To estimate the rise time, we use Figure 4.16 and find that the
normalized rise time for a damping ratio of 0.6 is 1.854. Using Eq.
(10.54), the estimated bandwidth found in c, and ζ = 0.6, we find ωn
= 1.57. Using the normalized rise time and ωn, we find Tr = 1.854/1.57
= 1.18 seconds. A simulation shows a rise time of 1.2 seconds.



FIGURE 10.61 Open-loop frequency response plots for the
antenna control system (K = 1)

CHALLENGE:
You are now given a problem to test your knowledge of this chapter's
objectives. You are given the antenna azimuth position control system
shown in Appendix A2, Configuration 3. Record the block diagram
parameters in the table shown in Appendix A2 for Configuration 3 for use
in subsequent case study challenge problems. Using frequency response
methods, do the following:

a. Find the range of gain for stability.

b. Find the percent overshoot for a step input if the gain, K, equals 3.

c.  Repeat Parts a and b using MATLAB.

Summary
Frequency response methods are an alternative to the root locus for analyzing
and designing feedback control systems. Frequency response techniques can
be used more effectively than transient response to model physical systems in



the laboratory. On the other hand, the root locus is more directly related to the
time response.

The input to a physical system can be sinusoidally varying with known
frequency, amplitude, and phase angle. The system's output, which is also
sinusoidal in the steady state, can then be measured for amplitude and phase
angle at different frequencies. From this data, the magnitude frequency
response of the system, which is the ratio of the output amplitude to the input
amplitude, can be plotted and used in place of an analytically obtained
magnitude frequency response. Similarly, we can obtain the phase response
by finding the difference between the output phase angle and the input phase
angle at different frequencies.

The frequency response of a system can be represented either as a polar plot
or as separate magnitude and phase diagrams. As a polar plot, the magnitude
response is the length of a vector drawn from the origin to a point on the
curve, whereas the phase response is the angle of that vector. In the polar plot,
frequency is implicit and is represented by each point on the polar curve. The
polar plot of G(s)H(s) is known as a Nyquist diagram.

Separate magnitude and phase diagrams, sometimes referred to as Bode plots,
present the data with frequency explicitly enumerated along the abscissa. The
magnitude curve can be a plot of log-magnitude vs. log-frequency. The other
graph is a plot of phase angle vs. log-frequency. An advantage of Bode plots
over the Nyquist diagram is that they can easily be drawn using asymptotic
approximations to the actual curve.

The Nyquist criterion sets forth the theoretical foundation from which the
frequency response can be used to determine a system's stability. Using the
Nyquist criterion and Nyquist diagram, or the Nyquist criterion and Bode
plots, we can determine a system's stability.

Frequency response methods give us not only stability information but also
transient response information. By defining such frequency response
quantities as gain margin and phase margin, the transient response can be
analyzed or designed. Gain margin is the amount that the gain of a system
can be increased before instability occurs if the phase angle is constant at
180°. Phase margin is the amount that the phase angle can be changed
before instability occurs if the gain is held at unity.

While the open-loop frequency response leads to the results for stability and
transient response just described, other design tools relate the closed-loop
frequency response peak and bandwidth to the transient response. Since the
closed-loop response is not as easy to obtain as the open-loop response,
because of the unavailability of the closed-loop poles, we use graphical aids in
order to obtain the closed-loop frequency response from the open-loop
frequency response. These graphical aids are the M and N circles and the



Nichols chart. By superimposing the open-loop frequency response over the M
and N circles or the Nichols chart, we are able to obtain the closed-loop
frequency response and then analyze and design for transient response.

Today, with the availability of computers and appropriate software, frequency
response plots can be obtained without relying on the graphical techniques
described in this chapter. The program used for the root locus calculations
and described in Appendix H.2 is one such program. MATLAB is another.

We concluded the chapter discussion by showing how to obtain a reasonable
estimate of a transfer function using its frequency response, which can be
obtained experimentally. Obtaining transfer functions this way yields more
accuracy than transient response testing.

This chapter primarily has examined analysis of feedback control systems via
frequency response techniques. We developed the relationships between
frequency response and both stability and transient response. In the next
chapter, we apply the concepts to the design of feedback control systems,
using the Bode plots.

Review Questions
1. Name four advantages of frequency response techniques over the root

locus.

2. Define frequency response as applied to a physical system.

3. Name two ways to plot the frequency response.

4. Briefly describe how to obtain the frequency response analytically.

5. Define Bode plots.

6. Each pole of a system contributes how much of a slope to the Bode
magnitude plot?

7. A system with only four poles and no zeros would exhibit what value of
slope at high frequencies in a Bode magnitude plot?

8. A system with four poles and two zeros would exhibit what value of slope
at high frequencies in a Bode magnitude plot?

9. Describe the asymptotic phase response of a system with a single pole at
−2.

10. What is the major difference between Bode magnitude plots for first-
order systems and for second-order systems?

11. For a system with three poles at −4, what is the maximum difference
between the asymptotic approximation and the actual magnitude
response?



12. Briefly state the Nyquist criterion.

13. What does the Nyquist criterion tell us?

14. What is a Nyquist diagram?

15. Why is the Nyquist criterion called a frequency response method?

16. When sketching a Nyquist diagram, what must be done with open-loop
poles on the imaginary axis?

17. What simplification to the Nyquist criterion can we usually make for
systems that are open-loop stable?

18. What simplification to the Nyquist criterion can we usually make for
systems that are open-loop unstable?

19. Define gain margin.

20. Define phase margin.

21. Name two different frequency response characteristics that can be used to
determine a system's transient response.

22. Name three different methods of finding the closed-loop frequency
response from the open-loop transfer function.

23. Briefly explain how to find the static error constant from the Bode
magnitude plot.

24. Describe the change in the open-loop frequency response magnitude plot
if time delay is added to the plant.

25. If the phase response of a pure time delay were plotted on a linear phase
vs. linear frequency plot, what would be the shape of the curve?

26. When successively extracting component transfer functions from
experimental frequency response data, how do you know when you are
finished?

Cyber Exploration Laboratory

EXPERIMENT 10.1
Objectives
To examine the relationships between open-loop frequency response and
stability, open-loop frequency response and closed-loop transient response,
and the effect of additional closed-loop poles and zeros upon the ability to
predict closed-loop transient response



Minimum Required Software Packages
MATLAB, and the Control System Toolbox

Prelab

1. Sketch the Nyquist diagram for a unity-negative-feedback system with a
forward transfer function of G (s) = . From your Nyquist plot,

determine the range of gain, K, for stability.

2. Find the phase margins required for second-order closed-loop step
responses with the following percent overshoots: 5%, 10%, 20%, 30%.

Lab

1. Using the Control System Designer, produce the following plots
simultaneously for the system of Prelab 1: root locus, Nyquist diagram,
and step response. Make plots for the following values of K: 50, 100, the
value for marginal stability found in Prelab 1, and a value above that
found for marginal stability. Use the zoom tools when required to
produce an illustrative plot. Finally, change the gain by grabbing and
moving the closed-loop poles along the root locus and note the changes in
the Nyquist diagram and step response.

2. Using the Control System Designer, produce Bode plots and closed-loop
step responses for a unity-negative-feedback system with a forward
transfer function of G (s) = . Produce these plots for each value

of phase margin found in the Prelab. 2. Adjust the gain to arrive at the
desired phase margin by grabbing the Bode magnitude curve and moving
it up or down. Observe the effects, if any, upon the Bode phase plot. For
each case, record the value of gain and the location of the closed-loop
poles.

3. Repeat Lab 2 for G (s) = .

Postlab

1. Make a table showing calculated and actual values for the range of gain
for stability as found in Prelab 1 and Lab 1.

2. Make a table from the data obtained in Lab 2 itemizing phase margin,
percent overshoot, and the location of the closed-loop poles.

3. Make a table from the data obtained in Lab 3 itemizing phase margin,
percent overshoot, and the location of the closed-loop poles.

K

s(s+2)(s+10)

K

s(s+10)2

K

s(s+10)



4. For each Postlab task 1 to 3, explain any discrepancies between the actual
values obtained and those expected.

EXPERIMENT 10.2
Objectives
To use LabVIEW and Nichols charts to determine the closed-loop time
response performance

Minimum Required Software Packages
LabVIEW, Control Design and Simulation Module, MathScript RT Module,
and MATLAB

Prelab

1. Assume a unity-feedback system with a forward-path transfer function, 
G(s) = . Use MATLAB or any method to determine gain and phase

margins. In addition, find the percent overshoot, settling time, and peak
time of the closed-loop step response.

2. Design a LabVIEW VI that will create a Nichols chart. Adjust the Nichols
chart's scale to estimate gain and phase margins. Then, prompt the user
to enter the values of gain and phase margins found from the Nichols
chart. In response, your VI will produce the percent overshoot, settling
time, and peak time of the closed-loop step response.

Lab
Run your VI for the system given in the Prelab. Test your VI with other
systems of your choice.

Postlab
Compare the closed-loop performance calculated in the Prelab with those
produced by your VI.

Bibliography
Åstrom, K., Klein, R. E., and Lennartsson, A. Bicycle Dynamics and Control.

IEEE Control System, August 2005, pp. 26–47.

Bhambhani, V., and Chen, YQ. Experimental Study of Fractional Order
Proportional Integral (FOPI) Controller for Water Level Control. 47th IEEE
Conference on Decision and Control, 2008, pp. 1791–1796.

100
s(s+5)



Bode, H. W. Network Analysis and Feedback Amplifier Design. Van
Nostrand, Princeton, NJ, 1945.

Camacho, E. F., Berenguel, M., Rubio, F. R., and Martinez, D. Control of Solar
Energy Systems. Springer-Verlag, London, 2012.

Craig, I. K., Xia, X., and Venter, J. W. Introducing HIV/AIDS Education into
the Electrical Engineering Curriculum at the University of Pretoria. IEEE
Transactions on Education, vol. 47, no. 1, February 2004, pp. 65–73.

Dorf, R. C. Modern Control Systems, 5th ed. Addison-Wesley, Reading, MA,
1989.

Franklin, G., Powell, J. D., and Emami-Naeini, A. Feedback Control of
Dynamic Systems, 2d ed. Addison-Wesley, Reading, MA, 1991.

Galvão, R. K. H., Yoneyama, T., and de Araújo, F. M. U. A Simple Technique
for Identifying a Linearized Model for a Didactic Magnetic Levitation
System. IEEE Transactions on Education, vol. 46, no. 1, February 2003,
pp. 22–25.

Hollot, C. V., Misra, V., Towsley, D., and Gong, W. A Control Theoretic
Analysis of RED. Proceedings of IEEE INFOCOM, 2001, pp. 1510–1519.

Hostetter, G. H., Savant, C. J., Jr., and Stefani, R. T. Design of Feedback
Control Systems, 2d ed. Saunders College Publishing, New York, 1989.

Khadraoui, S., Nounou, H., Nounou, M., Datta, A., and Bhattacharyya, S. P. A
measurement-based approach for tuning of reduced-order controllers.
American Control Conference (ACC), June 2013, pp. 3876–3881.

Kim, S.-H., Kim, J. H., Yang, J., Yang, H., Park, J.-Y., and Park, Y.-P. Tilt
Detection and Servo Control Method for the Holographic Data Storage
System. Microsystem Technologies, vol. 15, 2009. pp. 1695–1700.

Kuo, B. C. Automatic Control Systems, 5th ed. Prentice Hall, Upper Saddle
River, NJ, 1987.

Kuo, F. F. Network Analysis and Synthesis. Wiley, New York, 1966.

Lam, P. Y. Gyroscopic Stabilization of a Kid-Size Bicycle. IEEE 5th
International Conference on Cybernetics and Intelligent Systems, 2011,
pp. 247–252.

Mahmood, H., and Jiang, J. Modeling and Control System Design of a Grid
Connected VSC Considering the Effect of the Interface Transformer Type.
IEEE Transactions on Smart Grid, vol. 3, no. 1, March 2012, pp. 122–134.



Nilsson, J. W. Electric Circuits, 3d ed. Addison-Wesley, Reading, MA, 1990.

Nyquist, H. Regeneration Theory. Bell Systems Technical Journal, January
1932, pp. 126–147.

Ogata, K. Modern Control Engineering, 2d ed. Prentice Hall, Upper Saddle
River, NJ, 1990.

Preitl, Z., Bauer, P., and Bokor, J. A Simple Control Solution for Traction
Motor Used in Hybrid Vehicles. Fourth International Symposium on
Applied Computational Intelligence and Informatics. IEEE, 2007, pp.
157–162.

Thomas, B., Soleimani-Mosheni, M., and Fahlén, P. Feed-forward in
Temperature Control of Buildings. Energy and Buildings, vol. 37, 2005,
pp. 755–761.

Thomsen, S., Hoffmann, N., and Fuchs, F. W. PI Control, PI-based State
Space Control, and Model-Based Predictive Control for Drive Systems With
Elastically Coupled Loads—A Comparative Study. IEEE Transactions on
Industrial Electronics, vol. 58, no. 8, August 2011, pp. 3647–3657.

Wang, X.-K., Yang, X.-H., Liu, G., and Qian, H. Adaptive Neuro-Fuzzy
Inference System PID Controller for Steam Generator Water Level of
Nuclear Power Plant, Proceedings of the Eighth International Conference
on Machine Learning and Cybernetics, 2009, pp. 567–572.

Notes
1 Throughout this book, “log” is used to mean log10, or logarithm to the base

10.

2 At the end of this subsection, we will see how to use MATLAB to obtain
closed-loop frequency responses.

3 You are cautioned not to use the closed-loop polar plot for the Nyquist
criterion. The closed-loop frequency response, however, can be used to
determine the closed-loop transient response, as discussed in Section 10.8.
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Chapter 11 Problems
1. For the unity-feedback system of Figure P11.1, find the value
of K required to obtain a gain margin of 10 dB when: [Section:
11.2]

a. G (s) =

b. G (s) =

c. G (s) =

FIGURE P11.1

2. For each of the systems in Problem 1, design the gain, K, for a
phase margin of 40°. [Section: 11.2]

3. Use frequency response methods to find the value of K
necessary to achieve a step response with a 10% overshoot for
the unity-feedback system of Figure P11.1 when: [Section: 11.2]

a. G (s) =

b. G (s) =

c. G (s) =

4. The system of Figure P11.1 is operating with 10% overshoot
when

G (s) =

K

(s+5)(s+15)(s+20)

K

s(s+5)(s+15)

K(s+1)

s(s+3)(s+5)(s+10)

K

s(s+5)(s+10)

K(s+2)

s(s+4)(s+6)(s+10)

K(s+1)(s+5)

s(s+3)(s+6)(s+10)(s+15)

K
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Design a compensator using frequency response techniques to
yield Kv = 50 without significantly changing the
uncompensated system’s phase-margin frequency and phase
margin. [Section: 11.3]

5. The system of Figure P11.1 is operating with 10% overshoot
when

G (s) =

Design a compensator using frequency response techniques to
give a fivefold improvement in steady-state error without
significantly changing the transient response. [Section: 11.3]

6. It is desired to have zero steady-state error for ramp inputs
and a 15% overshoot in the system of Figure 11.2. Design a PI
controller to achieve the specifications. [Section: 11.3]

7.  Write a MATLAB program that will design a PI
controller assuming a second-order approximation as

follows:

a. Allow the user to input from the keyboard the
desired percent overshoot

b. Design a PI controller and gain to yield zero
steady-state error for a closed-loop step response as

well as meet the percent overshoot specification

c. Display the compensated closed-loop step response

Test your program on

G (s) =

and 25% overshoot.

8. Design a compensator for the unity-feedback system of
Figure P11.1 with

K

(s + 2) (s + 8) (s + 15)

K

(s + 5) (s + 10)



G (s) =

to yield a Kv = 4 and a phase margin of 45°. [Section: 11.4]

 9. Consider the unity-feedback system of Figure P11.1 with

G (s) =

The uncompensated system has about 55% overshoot and a
peak time of 0.5 second when Kv = 10. Do the following:
[Section: 11.4]

a. Use frequency response methods to design a lead
compensator to reduce the percent overshoot to 10%, while
keeping the peak time and steady-state error about the
same or less. Make any required second-order
approximations.

b.  Use MATLAB or any other computer program to
test your second-order approximation by simulating the

system for your designed value of K.

Check Answer!

 10. The unity-feedback system of Figure P11.1 with

G (s) =

is operating with 20% overshoot. [Section: 11.4]

a. Find the settling time.

b. Find Kp.

c. Find the phase margin and the phase-margin frequency.

K

s (s + 2) (s + 10) (s + 25)

K

s (s + 5) (s + 20)

K (s + 4)

(s + 2) (s + 5) (s + 12)



d. Using frequency response techniques, design a
compensator that will yield a threefold improvement in Kp
and a twofold reduction in settling time while keeping the
overshoot at 20%.

Check Answer!

11. Repeat Problem 9 using a PD compensator. [Section: 11.4]

12.  Write a MATLAB program that will design a lead
compensator assuming second-order approximations as

follows:

a. Allow the user to input from the keyboard the
desired percent overshoot, peak time, and gain required

to meet a steady-state error specification

b. Display the gain-compensated Bode plot

c. Calculate the required phase margin and bandwidth

d. Display the pole, zero, and gain of the lead
compensator

e. Display the compensated Bode plot

f. Output the step response of the lead-compensated
system to test your second-order approximation

Test your program on a unity-feedback system where

G (s) =

and the following specifications are to be met:

percent overshoot = 10%, peak time = 0.1 second, and 

Kv = 30.

 13. Use frequency response methods to design a lag-lead
compensator for a unity-feedback system where

K (s + 1)

s (s + 2) (s + 6)



G (s) =

and the following specifications are to be met: percent
overshoot = 10%, settling time = 0.2 second, and Kv = 1000.
[Section: 11.4]

Check Answer!

14.  Write a MATLAB program that will design a lag-
lead compensator assuming second-order approximations as

follows: [Section: 11.5]

a. Allow the user to input from the keyboard the
desired percent overshoot, settling time, and gain

required to meet a steady-state error specification

b. Display the gain-compensated Bode plot

c. Calculate the required phase margin and bandwidth

d. Display the poles, zeros, and the gain of the lag-
lead compensator

e. Display the lag-lead-compensated Bode plot

f. Display the step response of the lag-lead compensated
system to test your second-order approximation

Use your program to do Problem 13.

 15. Given a unity-feedback system with

G (s) =

design a PID controller to yield zero steady-state error for a
ramp input, as well as a 20% overshoot, and a peak time less
than 1.8 seconds for a step input. Use only frequency response
methods. [Section: 11.5]

K (s + 5)

s (s + 2) (s + 10)

K

s (s + 1.75) (s + 6)



Check Answer!

16.  A unity-feedback system has

G(s) =

If this system has an associated 0.5 second delay, use

MATLAB to design the value of K for 20% overshoot. Make

any necessary second-order approximations, but test your

assumptions by simulating your design. The delay can be

represented by cascading the MATLAB function padé (T,n)

with G(s), where T is the delay in seconds and n is the

order of the Pade approximation (use 5). Write the program

to do the following:

a. Accept your value of percent overshoot from the
keyboard

b. Display the Bode plot for K = 1

c. Calculate the required phase margin and find the
phase-margin frequency and the magnitude at the phase-

margin frequency

d. Calculate and display the value of K

DESIGN PROBLEMS
 17. An electric ventricular assist device (EVAD) that helps

pump blood concurrently to a defective natural heart in sick
patients can be shown to have a transfer function

G (s) = =

K

s (s + 3) (s + 6)

Pao (s)

Em (s)

1361

s2 + 69s + 70.85



The input, Em(s), is the motor's armature voltage, and the
output is Pao(s), the aortic blood pressure (Tasch, 1990).

The EVAD will be controlled in the closed-loop configuration
shown in Figure P11.1.

a. Design a phase lag compensator to achieve a tenfold
improvement in the steady-state error to step inputs
without appreciably affecting the transient response of the
uncompensated system.

b.  Use MATLAB to simulate the uncompensated and
compensated systems for a unit-step input.

Check Answer!

18. A Tower Trainer 60 Unmanned Aerial Vehicle has a transfer
function

P (s) =

=

where δe (s) is the elevator angle and h(s) is the change in
altitude (Barkana, 2005).

a. Assuming the airplane is controlled in the closed-loop
configuration of Figure P11.1 with G (s) = KP (s), find the
value of K that will result in a 30° phase margin.

b. For the value of K calculated in Part a, obtain the
corresponding gain margin.

c. Obtain estimates for the system's %OS and settling times
Ts for step inputs.

d.  Simulate the step response of the system
using MATLAB.

h(s)

δe(s)

−34.16s3−144.4s2+7047s+557.2

s5+13.18s4+95.93s3+14.61s2+31.94s



e. Explain the simulation results and discuss any
inaccuracies in the estimates obtained in Part c.

19. The transfer function from applied force to arm
displacement for the arm of a hard disk drive has been identified
as

G (s) = =

The position of the arm will be controlled using the feedback
loop shown in Figure P11.1 (Yan, 2003).

a. Design a lead compensator to achieve closed-loop
stability with a transient response of 16% overshoot and a
settling time of 2 msec for a step input.

b.  Verify your design through MATLAB
simulations.

20. For the heat exchange system described in Problem 30,
Chapter 9 (Smith, 2002):

a. Design a passive lag-lead compensator to achieve 5%
steady-state error with a transient response of 10%
overshoot and a settling time of 60 seconds for step inputs.

b.  Use MATLAB to simulate and verify your
design.

 21. Figure P11.2 illustrates a set of booms used for the
delivery of chemicals in agriculture (Sun, 2011). Each of the
booms has equally spaced nozzles, the purpose of which is to
maintain a constant gap between the nozzles and the soil despite
car movements due to road unevenness. The booms are tethered
to a vehicle (not shown in figure), and the gap is measured using
an infrared sensor. This measurement is fed to a controller that
drives two hydraulic cylinders to adjust the boom's positions.
Under certain operating conditions, it was found that the system
can be described by the unity-feedback configuration of Figure
P11.1 where

X (s)

F (s)

3.3333 × 104

s2



G(s) =

a. Design a lag compensator to achieve Kv = 30, and %OS
= 10%.

b. Use a computer program to obtain the step response of
the closed-loop system and verify its performance.

FIGURE P11.21

Check Answer!

22. Problem 41 in Chapter 10 mentioned a measurement-based
technique to design fixed-structure controllers, which does not
require system identification. In that problem, we assumed a
plant transfer function of (Khadraoui, 2013)

G(s) =

Again, the interested reader is directed to the reference for
further study. In this problem, however, we use the design and
analysis techniques developed in this and the previous
chapters.

K

s

2.78 × 10−4

( + + 1)s2

602

s
60

509.3

( + + 1)s2

2132

3s

213

0.1111(4s2 + 5s + 1)

s4 + 3.1s3 + 0.85s2 + 0.87s + 0.1111



 Use MATLAB and Bode plots to design a PID
controller, Gc(s), to yield zero steady-state error for a

step input, an overshoot of 10–20%, and a settling time of

20–50 seconds. Start your design assuming an overshoot of

10% and a settling time of 50 seconds. Consider the design

acceptable if the PID-controlled response satisfies the

above requirements.

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

23. Control of HIV/AIDS. In Chapter 6, the model for an
HIV/AIDS patient treated with RTIs was linearized and shown
to be

P (s) = =

=

It is assumed here that the patient will be treated and
monitored using the closed-loop configuration shown in Figure
P11.1 Since the plant has a negative dc gain, assume for
simplicity that G (s) = Gc (s) P (s) and Gc (0) < 0. Assume
also that the specifications for the design are (1) zero steady-
state error for step inputs, (2) overdamped time-domain
response, and (3) settling time Ts ≈ 100 days (Craig, 2004).

a. The overdamped specification requires a ΦM ≈ 90°.
Find the corresponding bandwidth required to satisfy the
settling time requirement.

b. The zero steady-state error specification implies that the
open-loop transfer function must be augmented to Type 1.
The −0.02 zero of the plant adds too much phase lead at
low frequencies, and the complex conjugate poles, if left
uncompensated within the loop, result in undesired

Y (s)

U1(s)

−520s−10.3844

s3+2.6817s2+0.11s+0.0126

−520(s+0.02)

(s+2.2644)(s2+0.04s+0.0048)



oscillations in the time domain. Thus, as an initial approach
to compensation for this system we can try

Gc (s) =

For K = 1, make a Bode plot of the resulting system.
Obtain the value of K necessary to achieve the design
demands. Check for closed-loop stability.

c.  Simulate the unit-step response of the system
using MATLAB.

Adjust K to achieve the desired response.

24. Hybrid vehicle. In Part b of Problem 43 in Chapter 10, we
used a proportional-plus-integral (PI) speed controller that
resulted in an overshoot of 20% and a settling time, Ts = 3.92
seconds (Preitl, 2007).

a. Now assume that the system specifications require a
steady-state error of zero for a step input, a ramp input
steady-state error ≤2%, a %OS≤ 4.32%, and a settling time 
≤ 4 seconds. One way to achieve these requirements is to
cancel the PI-controller's zero, ZI, with the real pole of the
uncompensated system closest to the origin (located at
−0.0163). Assuming exact cancellation is possible, the plant
and controller transfer function becomes

G(s) =

Design the system to meet the requirements. You may use
the following steps:

i. Set the gain, K, to the value required by the steady-
state error specifications. Plot the Bode magnitude and
phase diagrams.

−K (s2 + 0.04s + 0.0048)

s (s + 0.02)

K(s + 0.6)

s(s + 0.5858)



ii. Calculate the required phase margin to meet the
damping ratio or equivalently the %OS requirement,
using Eq. (10.73). If the phase margin found from the
Bode plot obtained in Step i is greater than the
required value, simulate the system to check whether
the settling time is less than 4 seconds and whether the
requirement of a %OS≤ 4.32% has been met. Redesign
if the simulation shows that the %OS and/or the
steady-state error requirements have not been met. If
all requirements are met, you have completed the
design.

b. In most cases, perfect pole-zero cancellation is not
possible. Assume that you want to check what happens if
the PI-controller's zero changes by ±20%, for example, if ZI
moves to:

Case 1: −0.01304

or to

Case 2: −0.01956.

The plant and controller transfer function in these cases
will be, respectively:

Case 1: G(s) =

Case 2: G(s) =

Set K in each case to the value required by the steady-state
error specifications and plot the Bode magnitude and
phase diagrams. Simulate the closed-loop step response for
each of the three locations of ZI: pole/zero cancellation,
Case 1, and Case 2, given in the problem.

K(s + 0.6)(s + 0.01304)

s(s + 0.0163)(s + 0.5858)

K(s + 0.6)(s + 0.01956)

s(s + 0.0163)(s + 0.5858)



Do the responses obtained resemble a second-order
overdamped, critically damped, or underdamped
response? Is there a need to add a derivative mode?

25. Parabolic trough collector. In order to reduce the
steady-state error of the parabolic trough collector system, a PI
controller is added to the open-loop transfer function so that
(Camacho, 2012)

G(s) = e−39s

a. Draw the new resulting Nyquist diagram when K = 1.

b. Find the range of K for closed-loop stability.

c. Use a phase margin argument to find the value of K that
will yield ζ = 0.5 damping factor.

d. Using the value found in Part a, simulate the system for a
unit-step response using a computer program.

Note
1 Sun, J., and Miao, Y. Modeling and simulation of the agricultural

sprayer boom leveling system. IEEE Third International Conf. on
Measuring Tech. and Mechatronics Automation, 2011, pp. 613–
618. Figure 2, p. 613. 2011 Third International Conference on
Measuring Technology and Mechatronics Automation by IEEE.
Reproduced with permission of IEEE in the format Republish in a
book via Copyright Clearance Center.

137.2 × 10−6K(s + 0.01)

s(s2 + 0.0224s + 196 × 10−6)



Chapter 11 Readings

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Use frequency response techniques to adjust the gain to meet a transient
response specification (Sections 11.1–11.2)

Use frequency response techniques to design cascade compensators to
improve the steady-state error (Section 11.3)

Use frequency response techniques to design cascade compensators to
improve the transient response (Section 11.4)

Use frequency response techniques to design cascade compensators to
improve both the steady-state error and the transient response (Section
11.5)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with
case studies as follows:

Given the antenna azimuth position control system shown in Appendix
A2, you will be able to use frequency response techniques to design the
gain to meet a transient response specification.

Given the antenna azimuth position control system shown in Appendix
A2, you will be able to use frequency response techniques to design a
cascade compensator to meet both transient and steady-state error
specifications.

11.1 Introduction
In Chapter 8, we designed the transient response of a control system by
adjusting the gain along the root locus. The design process consisted of finding
the transient response specification on the root locus, setting the gain
accordingly, and settling for the resulting steady-state error. The disadvantage
of design by gain adjustment is that only the transient response and steady-
state error represented by points along the root locus are available.

In order to meet transient response specifications represented by points not
on the root locus and, independently, steady-state error requirements, we
designed cascade compensators in Chapter 9. In this chapter, we use Bode
plots to parallel the root locus design process from Chapters 8 and 9.

Let us begin by drawing some general comparisons between root locus and
frequency response design.

Stability and transient response design via gain adjustment. Frequency
response design methods, unlike root locus methods, can be implemented
conveniently without a computer or other tool except for testing the design.
We can easily draw Bode plots using asymptotic approximations and read the
gain from the plots. Root locus requires repeated trials to find the desired
design point from which the gain can be obtained. For example, in designing
gain to meet a percent overshoot requirement, root locus requires the search
of a radial line for the point where the open-loop transfer function yields an
angle of 180°. To evaluate the range of gain for stability, root locus requires a
search of the jω-axis for 180°. Of course, if one uses a computer program, such
as MATLAB, the computational disadvantage of root locus vanishes.

Transient response design via cascade compensation. Frequency response
methods are not as intuitive as the root locus, and it is something of an art to



design cascade compensation with the methods of this chapter. With root
locus, we can identify a specific point as having a desired transient response
characteristic. We can then design cascade compensation to operate at that
point and meet the transient response specifications. In Chapter 10, we
learned that phase margin is related to percent overshoot [Eq. (10.73)] and
bandwidth is related to both damping ratio and settling time or peak time
[Eqs. (10.55) and (10.56)]. These equations are rather complicated. When we
design cascade compensation using frequency response methods to improve
the transient response, we strive to reshape the open-loop transfer function's
frequency response to meet both the phase-margin requirement (percent
overshoot) and the bandwidth requirement (settling or peak time). There is no
easy way to relate all the requirements prior to the reshaping task. Thus, the
reshaping of the open-loop transfer function's frequency response can lead to
several trials until all transient response requirements are met.

Steady-state error design via cascade compensation. An advantage of using
frequency design techniques is the ability to design derivative compensation,
such as lead compensation, to speed up the system, and at the same time build
in a desired steady-state error requirement that can be met by the lead
compensator alone. Recall that in using root locus, there are an infinite
number of possible solutions to the design of a lead compensator. One of the
differences between these solutions is the steady-state error. We must make
numerous tries to arrive at the solution that yields the required steady-state
error performance. With frequency response techniques, we build the steady-
state error requirement right into the design of the lead compensator.

You are encouraged to reflect on the advantages and disadvantages of root
locus and frequency response techniques as you progress through this chapter.
Let us take a closer look at frequency response design.

When designing via frequency response methods, we use the concepts of
stability, transient response, and steady-state error that we learned in Chapter
10. First, the Nyquist criterion tells us how to determine if a system is stable.
Typically, an open-loop stable system is stable in closed-loop if the open-loop
magnitude frequency response has a gain of less than 0 dB at the frequency
where the phase frequency response is 180°. Second, percent overshoot is
reduced by increasing the phase margin, and the speed of the response is
increased by increasing the bandwidth. Finally, steady-state error is improved
by increasing the low-frequency magnitude responses, even if the high-
frequency magnitude response is attenuated.

These, then, are the basic facts underlying our design for stability, transient
response, and steady-state error using frequency response methods, where the
Nyquist criterion and the Nyquist diagram compose the underlying theory
behind the design process. Thus, even though we use the Bode plots for ease in
obtaining the frequency response, the design process can be verified with the



Nyquist diagram when questions arise about interpreting the Bode plots. In
particular, when the structure of the system is changed with additional
compensator poles and zeros, the Nyquist diagram can offer a valuable
perspective.

The emphasis in this chapter is on the design of lag, lead, and lag-lead
compensation. General design concepts are presented first, followed by step-
by-step procedures. These procedures are only suggestions, and you are
encouraged to develop other procedures to arrive at the same goals. Although
the concepts in general apply to the design of PI, PD, and PID controllers, in
the interest of brevity, detailed procedures and examples will not be
presented. You are encouraged to extrapolate the concepts and designs
covered and apply them to problems involving PI, PD, and PID compensation
presented at the end of this chapter. Finally, the compensators developed in
this chapter can be implemented with the realizations discussed in Section 9.6.

11.2 Transient Response via Gain Adjustment
Let us begin our discussion of design via frequency response methods by
discussing the link between phase margin, transient response, and gain. In
Section 10.10, the relationship between damping ratio (equivalently percent
overshoot) and phase margin was derived for G (s) = ω2

n/s (s + 2ζωn). Thus,
if we can vary the phase margin, we can vary the percent overshoot. Looking at
Figure 11.1, we see that if we desire a phase margin, ΦM , represented by CD,
we would have to raise the magnitude curve by AB. Thus, a simple gain
adjustment can be used to design phase margin and, hence, percent overshoot.



FIGURE 11.1 Bode plots showing gain adjustment for a desired
phase margin

We now outline a procedure by which we can determine the gain to meet a
percent overshoot requirement using the open-loop frequency response and
assuming dominant second-order closed-loop poles.

Design Procedure
1. Draw the Bode magnitude and phase plots for a convenient value of gain.

2. Using Eqs. (4.39) and (10.73), determine the required phase margin from
the percent overshoot.

3. Find the frequency, ωΦM
, on the Bode phase diagram that yields the

desired phase margin, CD, as shown on Figure 11.1.

4. Change the gain by an amount AB to force the magnitude curve to go
through 0 dB at ωΦM

. The amount of gain adjustment is the additional
gain needed to produce the required phase margin.

We now look at an example of designing the gain of a third-order system for
percent overshoot.



Example 11.1 Transient Response Design via Gain
Adjustment
PROBLEM:

 For the position control system shown in Figure 11.2, find the value
of preamplifier gain, K, to yield a 9.5% overshoot in the transient response
for a step input. Use only frequency response methods.

FIGURE 11.2 System for Example 11.1

SOLUTION:
We will now follow the previously described gain adjustment design
procedure.

1. Choose K = 3.6 to start the magnitude plot at 0 dB at ω = 0.1 in
Figure 11.3.

2. Using Eq. (4.39), a 9.5% overshoot implies ζ = 0.6 for the closed-loop
dominant poles. Equation (10.73) yields a 59.2° phase margin for a
damping ratio of 0.6.

3. Locate on the phase plot the frequency that yields a 59.2° phase
margin. This frequency is found where the phase angle is the
difference between −180° and 59.2°, or −120.8°. The value of the
phase-margin frequency is 14.8 rad/s.

4. At a frequency of 14.8 rad/s on the magnitude plot, the gain is found
to be −44.2 dB. This magnitude has to be raised to 0 dB to yield the
required phase margin. Since the log-magnitude plot was drawn for 
K = 3.6, a 44.2-dB increase, or K = 3.6 × 162.2 = 583.9, would
yield the required phase margin for 9.48% overshoot.



(11.1)

FIGURE 11.3 Bode magnitude and phase plots for Example
11.1

The gain-adjusted open-loop transfer function is

G (s) =

Table 11.1 summarizes a computer simulation of the gain-compensated
system.

TABLE 11.1

Characteristic of gain-compensated system of Example 11.1
Parameter Proposed specification Actual value

Kv — 16.22

Phase margin 59.2° 59.2°
Phase-margin frequency — 14.8 rad/s
Percent overshoot 9.5 8.68
Peak time — 0.18 second

58,390

s (s + 36) (s + 100)



 Students who are using MATLAB should now run ch11apB1 in

Appendix B. You will learn how to use MATLAB to design a gain to

meet a percent overshoot specification using Bode plots. This

exercise solves Example 11.1 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_11.zip


Skill-Assessment Exercise 11.1
PROBLEM:
For a unity-feedback system with a forward transfer function

G (s) =

use frequency response techniques to find the value of gain, K, to yield a
closed-loop step response with 20% overshoot.

ANSWER:

K = 194,200

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 11.1
Use MATLAB, the Control System Toolbox, and the following
statements to solve Skill-Assessment Exercise 11.1.

pos=20
z=(-log(pos/100))/...
 (sqrt(pi^2+...
 log(pos/100)^2))
Pm=atan(2*z/...
 (sqrt(-2*z^2+...
 sqrt(1+4*z^4))))*...
 (180/pi)
G=zpk([],...
 [0,-50,-120],1)
controlSystemDesigner

In the Control System Designer window resulting from running TryIt
11.1:

1. Select Edit Architecture.

2. Click the import arrow for G and click OK.

3. Right-click in the Bode graph area and be sure all selections under
Show are checked.

K

s (s + 50) (s + 120)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_11.zip


4. Raise the magnitude curve until the phase curve shows the phase
margin calculated by the program and shown in the MATLAB
Command Window as Pm.

5. Right-click in the Bode plot area, select Edit Compensator… and
read the gain under Compensator in the resulting window.

In this section, we paralleled our work in Chapter 8 with a discussion of
transient response design through gain adjustment. In the next three sections,
we parallel the root locus compensator design in Chapter 9 and discuss the
design of lag, lead, and lag-lead compensation via Bode diagrams.

11.3 Lag Compensation
In Chapter 9, we used the root locus to design lag networks and PI controllers.
Recall that these compensators permitted us to design for steady-state error
without appreciably affecting the transient response. In this section, we
provide a parallel development using the Bode diagrams.

Visualizing Lag Compensation
The function of the lag compensator as seen on Bode diagrams is to (1)
improve the static error constant by increasing only the low-frequency gain
without any resulting instability, and (2) increase the phase margin of the
system to yield the desired transient response. These concepts are illustrated
in Figure 11.4.



FIGURE 11.4 Visualizing lag compensation

The uncompensated system is unstable, since the gain at 180° is greater than 0
dB. The lag compensator, while not changing the low-frequency gain, does
reduce the high-frequency gain.1 Thus, the low-frequency gain of the system
can be made high to yield a large Kv without creating instability. This
stabilizing effect of the lag network comes about because the gain at 180° of
phase is reduced below 0 dB. Through judicious design, the magnitude curve
can be reshaped, as shown in Figure 11.4, to go through 0 dB at the desired
phase margin. Thus, both Kv and the desired transient response can be
obtained. We now enumerate a design procedure.

Design Procedure
1. Set the gain, K, to the value that satisfies the steady-state error

specification and plot the Bode magnitude and phase diagrams for this
value of gain.

2. Find the frequency where the phase margin is 5°–12° greater than the
phase margin that yields the desired transient response (Ogata, 1990).
This step compensates for the fact that the phase of the lag compensator
may still contribute anywhere from −5° to −12° of phase at the phase-
margin frequency.



(11.2)

3. Select a lag compensator whose magnitude response yields a composite
Bode magnitude diagram that goes through 0 dB at the frequency found
in Step 2 as follows: Draw the compensator's high-frequency asymptote to
yield 0 dB for the compensated system at the frequency found in Step 2.
Thus, if the gain at the frequency found in Step 2 is 20 log KPM, then the
compensator's high-frequency asymptote will be set at −20 log KPM.
Select the upper break frequency to be 1 decade below the frequency
found in Step 2;2 select the low-frequency asymptote to be at 0 dB.
Connect the compensator's high- and low-frequency asymptotes with a 
−20-dB/decade line to locate the lower break frequency.

4. Reset the system gain, K, to compensate for any attenuation in the lag
network in order to keep the static error constant the same as that found
in Step 1.

From these steps, you see that we are relying upon the initial gain setting to
meet the steady-state requirements. Then, we rely upon the lag compensator's 
−20 dB/decade slope to meet the transient response requirement by setting
the 0 dB crossing of the magnitude plot.

The transfer function of the lag compensator is

Gc (s) =

where α > 1.

Figure 11.5 shows the frequency response curves for the lag compensator. The
range of high frequencies shown in the phase plot is where we will design our
phase margin. This region is after the second break frequency of the lag
compensator, where we can rely on the attenuation characteristics of the lag
network to reduce the total open-loop gain to unity at the phase-margin
frequency. Further, in this region, the phase response of the compensator will
have minimal effect on our design of the phase margin. Since there is still
some effect, approximately 5°–12°, we will add this amount to our phase
margin to compensate for the phase response of the lag compensator (see Step
2).

s+ 1
T

s+ 1
αT



FIGURE 11.5 Frequency response plots of a lag compensator, 
Gc (s) = (s + 0.1) / (s + 0.01)
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Example 11.2 Lag Compensation Design
PROBLEM:

 Given the system of Figure 11.2, use Bode diagrams to design a lag
compensator to yield a tenfold improvement in steady-state error over the
gain-compensated system while keeping the percent overshoot at 9.5%.

SOLUTION:
We will follow the previously described lag compensation design
procedure.

1. From Example 11.1 a gain, K, of 583.9 yields a 9.5% overshoot.
Thus, for this system, Kv = 16.22. For a tenfold improvement in
steady-state error, Kv must increase by a factor of 10, or Kv = 162.2.
Therefore, the value of K in Figure 11.2 equals 5839, and the open-
loop transfer function is

G (s) =

The Bode plots for K = 5839 are shown in Figure 11.6.

2. The phase margin required for a 9.5% overshoot (ζ = 0.6) is found
from Eq. (10.73) to be 59.2°. We increase this value of phase margin
by 10° to 69.2° in order to compensate for the phase angle
contribution of the lag compensator. Now find the frequency where
the phase margin is 69.2°. This frequency occurs at a phase angle of 
−180° + 69.2° = −110.8° and is 9.8 rad/s. At this frequency, the
magnitude plot must go through 0 dB. The magnitude at 9.8 rad/s is
now +24 dB (exact, i.e., nonasymptotic). Thus, the lag compensator
must provide −24 dB attenuation at 9.8 rad/s.

3. & 4. We now design the compensator. First draw the high-
frequency asymptote at −24 dB. Arbitrarily select the higher break
frequency to be about one decade below the phase-margin frequency,
or 0.98 rad/s. Starting at the intersection of this frequency with the
lag compensator's high-frequency asymptote, draw a −20-dB/decade
line until 0 dB is reached. The compensator must have a dc gain of
unity to retain the value of Kv that we have already designed by
setting K = 5839. The lower break frequency is found to be 0.062
rad/s. Hence, the lag compensator's transfer function is

583,900

s (s + 36) (s + 100)



(11.4)

(11.5)

Gc (s) =

where the gain of the compensator is 0.063 to yield a dc gain of
unity.

FIGURE 11.6 Bode plots for Example 11.2

The compensated system's forward transfer function is thus

G (s)Gc (s) =

The characteristics of the compensated system, found from a simulation
and exact frequency response plots, are summarized in Table 11.2.

0.063 (s + 0.98)

(s + 0.062)

36,786 (s + 0.98)

s (s + 36) (s + 100) (s + 0.062)



TABLE 11.2

Characteristics of the lag-compensated system of Example
11.2

Parameter Proposed specification Actual value
Kv 162.2 161.5

Phase margin 59.2° 62°
Phase-margin frequency — 11 rad/s
Percent overshoot 9.5 10
Peak time — 0.25 second

 Students who are using MATLAB should now run ch11apB2 in
Appendix B. You will learn how to use MATLAB to design a lag

compensator. You will enter the value of gain to meet the steady-

state error requirement as well as the desired percent overshoot.

MATLAB then designs a lag compensator using Bode plots, evaluates

Kv, and generates a closed-loop step response. This exercise

solves Example 11.2 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_11.zip


Skill-Assessment Exercise 11.2
PROBLEM:
Design a lag compensator for the system in Skill-Assessment Exercise 11.1
that will improve the steady-state error tenfold, while still operating with
20% overshoot.

ANSWER:

Glag (s) = ; G (s) =

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

0.0691(s+2.04)

(s+0.141)

1,942,000

s(s+50)(s+120)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


TryIt 11.2
Use MATLAB, the Control System Toolbox, and the following
statements to solve Skill-Assessment Exercise 11.2.

pos=20
Ts=0.2
z=(−log(pos/100))/(sqrt(pi^2+log(pos/100)^2))
Pm=atan(2*z/(sqrt(−2*z^2+sqrt(1+4*z^4))))*(180/pi)
Wbw=(4/(Ts*z))*sqrt((1−2*z^2)+sqrt(4*z^4-4*z^2+2))
K=1942000
G=zpk([], [0,−50,−120], K)
controlSystemDesigner(G,1)

When the Control System Designer Window appears:

1. Right-click on the Bode plot area and select Grid.
2. Note the phase margin shown in the MATLAB Command

Window.
3. Using the Bode phase plot, estimate the frequency at which the

phase margin from Step 2 occurs.

4. On the Bode Editor tab, click on the red zero.

5. Place the zero of the compensator by clicking on the gain plot at a
frequency that is 1/10 that found in Step 3.

6. On the Bode Editor tab, click on the red pole.

7. Place the pole of the compensator by clicking on the gain plot to
the left of the compensator zero.

8. Grab the pole with the mouse and move it until the phase plot
shows a P.M. equal to that found in Step 2.

9. Right-click in the Bode plot area and select Edit
Compensator…

10. Read the lag compensator in the resulting window.

In this section, we showed how to design a lag compensator to improve the
steady-state error while keeping the transient response relatively unaffected.
We next discuss how to improve the transient response using frequency
response methods.

11.4 Lead Compensation

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_11.zip


For second-order systems, we derived the relationship between phase margin
and percent overshoot as well as the relationship between closed-loop
bandwidth and other time-domain specifications, such as settling time, peak
time, and rise time. When we designed the lag network to improve the steady-
state error, we wanted a minimal effect on the phase diagram in order to yield
an imperceptible change in the transient response. However, in designing lead
compensators via Bode plots, we want to change the phase diagram. We want
to increase the phase margin to reduce the percent overshoot, and increase the
gain crossover to realize a faster transient response.

Visualizing Lead Compensation
The lead compensator increases the bandwidth by increasing the gain
crossover frequency. At the same time, the phase diagram is raised at higher
frequencies. The result is a larger phase margin and a higher phase-margin
frequency. In the time domain, lower percent overshoots (larger phase
margins) with smaller peak times (higher phase-margin frequencies) is the
result. The concepts are shown in Figure 11.7.



FIGURE 11.7 Visualizing lead compensation

The uncompensated system has a small phase margin (B) and a low phase-
margin frequency (A). Using a phase lead compensator, the phase angle plot
(compensated system) is raised for higher frequencies.3 At the same time, the
gain crossover frequency in the magnitude plot is increased from A rad/s to C
rad/s. These effects yield a larger phase margin (D), a higher phase-margin
frequency (C), and a larger bandwidth.

One advantage of the frequency response technique over the root locus is that
we can implement a steady-state error requirement and then design a
transient response. This specification of transient response with the constraint
of a steady-state error is easier to implement with the frequency response
technique than with the root locus. Notice that the initial slope, which
determines the steady-state error, is not affected by the design for the
transient response.
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Lead Compensator Frequency Response
Let us first look at the frequency response characteristics of a lead network
and derive some valuable relationships that will help us in the design process.
Figure 11.8 shows plots of the lead network

FIGURE 11.8 Frequency response of a lead compensator, 
Gc (s) = [1/β] [(s + 1/T ) / (s + 1/βT )]

Gc (s) =

for various values of β, where β < 1. Notice that the peaks of the phase curve
vary in maximum angle and in the frequency at which the maximum occurs.
The dc gain of the compensator is set to unity with the coefficient 1/β, in order
not to change the dc gain designed for the static error constant when the
compensator is inserted into the system.

In order to design a lead compensator and change both the phase margin and
phase-margin frequency, it is helpful to have an analytical expression for the

1
β

s+ 1
T

s+ 1
βT
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(11.8)

(11.9)

(11.10)

(11.11)

(11.12)

maximum value of phase and the frequency at which the maximum value of
phase occurs, as shown in Figure 11.8.

From Eq. (11.6), the phase angle of the lead compensator, ϕc, is

ϕc = tan−1ωT − tan−1ωβT

Differentiating with respect to ω, we obtain

= −

Setting Eq. (11.8) equal to zero, we find that the frequency, ωmax, at which the
maximum phase angle, ϕmax, occurs is

ωmax =

Substituting Eq. (11.9) into Eq. (11.6) with s = jωmax,

Gc ( jωmax) = =

Making use of tan(ϕ1 − ϕ2) = (tan ϕ1 − tan ϕ2) / (1 + tan ϕ1tan ϕ2), the
maximum phase shift of the compensator, ϕmax, is

ϕmax = tan−1 = sin−1

and the compensator's magnitude at ωmax is

|Gc ( jωmax)| =

We are now ready to enumerate a design procedure.

Design Procedure
1. Find the closed-loop bandwidth required to meet the settling time, peak

time, or rise time requirement [see Eqs. (10.54) through (10.56)].

dϕc

dω

T

1 + (ωT )2

βT

1 + (ωβT )2

1

T√β

1

β

jωmax + 1
T

jωmax + 1
βT

j + 11
√β

j√β + 1

1−β

2√β

1−β

1+β

1

√β



2. Since the lead compensator has negligible effect at low frequencies, set
the gain, K, of the uncompensated system to the value that satisfies the
steady-state error requirement.

3. Plot the Bode magnitude and phase diagrams for this value of gain and
determine the uncompensated system’s phase margin.

4. Find the phase margin to meet the damping ratio or percent overshoot
requirement. Then evaluate the additional phase contribution required
from the compensator.4

5. Determine the value of β [see Eqs. (11.6) and (11.11)] from the lead
compensator's required phase contribution.

6. Determine the compensator's magnitude at the peak of the phase curve
[Eq. (11.12)].

7. Determine the new phase-margin frequency by finding where the
uncompensated system's magnitude curve is the negative of the lead
compensator's magnitude at the peak of the compensator's phase curve.

8. Design the lead compensator's break frequencies, using Eqs. (11.6) and
(11.9) to find T and the break frequencies.

9. Reset the system gain to compensate for the lead compensator's gain.

10. Check the bandwidth to be sure the speed requirement in Step 1 has been
met.

11. Simulate to be sure all requirements are met.

12. Redesign, if necessary, to meet requirements.

From these steps, we see that we are increasing both the amount of phase
margin (improving percent overshoot) and the gain crossover frequency
(increasing the speed). Now that we have enumerated a procedure with which
we can design a lead compensator to improve the transient response, let us
demonstrate.



Example 11.3 Lead Compensation Design
PROBLEM:

 Given the system of Figure 11.2, design a lead compensator to yield
a 20% overshoot and Kv = 40, with a peak time of 0.1 second.

SOLUTION:
The uncompensated system is G (s) = 100K/ [s (s + 36) (s + 100)]. We
will follow the outlined procedure.

1. We first look at the closed-loop bandwidth needed to meet the speed
requirement imposed by Tp = 0.1 second. From Eq. (10.56), with 
Tp = 0.1 second and ζ = 0.456 (i.e., 20% overshoot), a closed-loop
bandwidth of 46.6 rad/s is required.

2. In order to meet the specification of Kv = 40, K must be set at 1440,
yielding G (s) = 144,000/ [s (s + 36) (s + 100)].

3. The uncompensated system's frequency response plots for K = 1440
are shown in Figure 11.9.

4. A 20% overshoot implies a phase margin of 48.1°. The
uncompensated system with K = 1440 has a phase margin of 34° at a
phase-margin frequency of 29.6. To increase the phase margin, we
insert a lead network that adds enough phase to yield a 48.1° phase
margin. Since we know that the lead network will also increase the
phase-margin frequency, we add a correction factor to compensate for
the lower uncompensated system's phase angle at this higher phase-
margin frequency. Since we do not know the higher phase-margin
frequency, we assume a correction factor of 10°. Thus, the total phase
contribution required from the compensator is 
48.1° − 34° + 10° = 24.1°. In summary, our compensated system
should have a phase margin of 48.1° with a bandwidth of 46.6 rad/s.
If the system's characteristics are not acceptable after the design, then
a redesign with a different correction factor may be necessary.

5. Using Eq. (11.11), β = 0.42 for ϕmax = 24.1°.

6. From Eq. (11.12), the lead compensator's magnitude is 3.76 dB at 
ωmax.

7. If we select ωmax to be the new phase-margin frequency, the
uncompensated system's magnitude at this frequency must be −3.76
dB to yield a 0-dB crossover at ωmax for the compensated system. The
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(11.14)

uncompensated system passes through −3.76 dB at ωmax = 39 rad/s.
This frequency is thus the new phase-margin frequency.

8. We now find the lead compensator's break frequencies. From Eq.
(11.9), 1/T = 25.3 and 1/βT = 60.2.

9. Hence, the compensator is given by

Gc (s) = = 2.38

where 2.38 is the gain required to keep the dc gain of the
compensator at unity so that Kv = 40 after the compensator is
inserted.

The final, compensated open-loop transfer function is then

Gc (s)G (s) =

10. From Figure 11.9, the lead-compensated open-loop magnitude
response is −7 dB at approximately 68.8 rad/s. Thus, we estimate the
closed-loop bandwidth to be 68.8 rad/s. Since this bandwidth exceeds
the requirement of 46.6 rad/s, we assume the peak time specification
is met. This conclusion about the peak time is based upon a second-
order and asymptotic approximation that will be checked via
simulation.

11. Figure 11.9 summarizes the design and shows the effect of the
compensation. Final results, obtained from a simulation and the
actual (nonasymptotic) frequency response, are shown in Table 11.3.
Notice the increase in phase margin, phase-margin frequency, and
closed-loop bandwidth after the lead compensator was added to the
gain-adjusted system. The peak time and the steady-state error
requirements have been met, although the phase margin is less than
that proposed and the percent overshoot is 2.6% larger than
proposed. Finally, if the performance is not acceptable, a redesign is
necessary.

1

β

s + 1
T

s + 1
βT

s + 25.3

s + 60.2

342,600(s + 25.3)

s (s + 36) (s + 100) (s + 60.2)



FIGURE 11.9 Bode plots for lead compensation in
Example 11.3



TABLE 11.3

Characteristic of the lead-compensated system of
Example 11.3
Parameter Proposed

specification
Actual gain-

compensated
value

Actual lead-
compensated

value
Kv 40 40 40

Phase
margin

48.1° 34° 45.5°

Phase-
margin
frequency

— 29.6 rad/s 39 rad/s

Closed-loop
bandwidth

46.6 rad/s 50 rad/s 68.8 rad/s

Percent
overshoot

20 37 22.6

Peak time 0.1 second 0.1 second 0.075 second

 Students who are using MATLAB should now run ch11apB3 in
Appendix B. You will learn how to use MATLAB to design a lead

compensator. You will enter the desired percent overshoot, peak

time, and Kv. MATLAB then designs a lead compensator using Bode

plots, evaluates Kv, and generates a closed-loop step response.

This exercise solves Example 11.3 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_11.zip


Skill-Assessment Exercise 11.3
PROBLEM:
Design a lead compensator for the system in Skill-Assessment Exercise
11.1 to meet the following specifications: %OS = 20%, Ts = 0.2 s and 
Kv = 50.

ANSWER:

Glead (s) = ; G (s) =

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

2.27(s+33.2)

(s+75.4)

300,000

s(s+50)(s+120)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


TryIt 11.3
Use MATLAB, the Control System Toolbox, and the following
statements to solve Skill-Assessment Exercise 11.3.

pos=20
Ts=0.2
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2))
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)
Wbw=(4/(Ts*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2))
K=50*50*120
G=zpk([], [0,-50,-120],K)
controlSystemDesigner(G,1)

When the Control System Designer Window appears:

1. Right-click on the Bode plot area and select Grid.
2. Note the phase margin and bandwidth shown in the MATLAB

Command Window.
3. On the Bode Editor tab, click on the red pole.

4. Place the pole of the compensator by clicking on the gain plot at a
frequency that is to the right of the desired bandwidth found in
Step 2.

5. On the Bode Editor tab, click on the red zero.

6. Place the zero of the compensator by clicking on the gain plot to
the left of the desired bandwidth.

7. Reshape the Bode plots: alternately grab the pole and the zero
with the mouse and alternately move them along the phase plot
until the phase plot shows a P.M. equal to that found in Step 2 and
a phase-margin frequency close to the bandwidth found in Step 2.

8. Right-click in the Bode plot area and select Edit Compensator…

9. Read the lead compensator in the resulting window.

Keep in mind that the previous examples were designs for third-order systems
and must be simulated to ensure the desired transient results. In the next
section, we look at lag-lead compensation to improve steady-state error and
transient response.

11.5 Lag-Lead Compensation

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_11.zip


In Section 9.4, using root locus, we designed lag-lead compensation to
improve the transient response and steady-state error. Figure 11.10 is an
example of a system to which lag-lead compensation can be applied. In this
section, we repeat the design, using frequency response techniques. One
method is to design the lag compensation to lower the high-frequency gain,
stabilize the system, and improve the steady-state error and then design a lead
compensator to meet the phase-margin requirements. Let us look at another
method.





(11.15)

FIGURE 11.10 a. The National Advanced Driving Simulator at the
University of Iowa; b. test driving the simulator with its realistic
graphics

Section 9.6 describes a passive lag-lead network that can be used in place of
separate lag and lead networks. It may be more economical to use a single,
passive network that performs both tasks, since the buffer amplifier that
separates the lag network from the lead network may be eliminated. In this
section, we emphasize lag-lead design, using a single, passive lag-lead
network.

The transfer function of a single, passive lag-lead network is

Gc (s) = GLead (s)GLag (s) = ( )⎛
⎝

⎞
⎠

where γ > 1. The first term in parentheses produces the lead compensation,
and the second term in parentheses produces the lag compensation. The
constraint that we must follow here is that the single value γ replaces the
quantity α for the lag network in Eq. (11.2) and the quantity β for the lead
network in Eq. (11.6). For our design, α and β must be reciprocals of each
other. An example of the frequency response of the passive lag-lead is shown
in Figure 11.11.

s + 1
T1

s +
γ

T1

s + 1
T2

s + 1
γT2



FIGURE 11.11 Sample frequency response curves for a lag-lead
compensator, Gc (s) = [(s + 1) (s + 0.1)] / [(s + γ)(s + )]

We are now ready to enumerate a design procedure.

Design Procedure
1. Using a second-order approximation, find the closed-loop bandwidth

required to meet the settling time, peak time, or rise time requirement
[see Eqs. (10.55) and (10.56)].

2. Set the gain, K, to the value required by the steady-state error
specification.

3. Plot the Bode magnitude and phase diagrams for this value of gain.

4. Using a second-order approximation, calculate the phase margin to meet
the damping ratio or percent overshoot requirement, using Eq. (10.73).

5. Select a new phase-margin frequency near ωBW.

6. At the new phase-margin frequency, determine the additional amount of
phase lead required to meet the phase-margin requirement. Add a small

0.1
γ



contribution that will be required after the addition of the lag
compensator.

7. Design the lag compensator by selecting the higher break frequency one
decade below the new phase-margin frequency. The design of the lag
compensator is not critical, and any design for the proper phase margin
will be relegated to the lead compensator. The lag compensator simply
provides stabilization of the system with the gain required for the steady-
state error specification. Find the value of γ from the lead compensator's
requirements. Using the phase required from the lead compensator, the
phase response curve of Figure 11.8 can be used to find the value of 
γ = 1/β. This value, along with the previously found lag's upper break
frequency, allows us to find the lag's lower break frequency.

8. Design the lead compensator. Using the value of γ from the lag
compensator design and the value assumed for the new phase-margin
frequency, find the lower and upper break frequencies for the lead
compensator, using Eq. (11.9) and solving for T.

9. Check the bandwidth to be sure the speed requirement in Step 1 has been
met.

10. Redesign if phase-margin or transient specifications are not met, as
shown by analysis or simulation.

Let us demonstrate the procedure with an example.



Example 11.4 Lag-Lead Compensation Design
PROBLEM:
Given a unity-feedback system where G (s) = K/ [s (s + 1) (s + 4)],
design a passive lag-lead compensator using Bode diagrams to yield a
13.25% overshoot, a peak time of 2 seconds, and Kv = 12.

SOLUTION:
We will follow the steps previously mentioned in this section for lag-lead
design.

1. The bandwidth required for a 2-seconds peak time is 2.29 rad/s.

2. In order to meet the steady-state error requirement, Kv = 12, the
value of K is 48.

3. The Bode plots for the uncompensated system with K = 48 are
shown in Figure 11.12. We can see that the system is unstable.

4. The required phase margin to yield a 13.25% overshoot is 55°.

5. Let us select ω = 1.8 rad/s as the new phase-margin frequency.

6. At this frequency, the uncompensated phase is −176° and would
require, if we add a −5° contribution from the lag compensator, a 56°
contribution from the lead portion of the compensator.

7. The design of the lag compensator is next. The lag compensator
allows us to keep the gain of 48 required for Kv = 12 and not have to
lower the gain to stabilize the system. As long as the lag compensator
stabilizes the system, the design parameters are not critical, since the
phase margin will be designed with the lead compensator. Thus,
choose the lag compensator so that its phase response will have
minimal effect at the new phase-margin frequency. Let us choose the
lag compensator's higher break frequency to be 1 decade below the
new phase-margin frequency, at 0.18 rad/s. Since we need to add 56°
of phase shift with the lead compensator at ω = 1.8 rad/s, we
estimate from Figure 11.8 that, if γ = 10.6 (since γ = 1/β, β = 0.094
), we can obtain about 56° of phase shift from the lead compensator.
Thus with γ = 10.6 and a new phase-margin frequency of 
ω = 1.8 rad/s, the transfer function of the lag compensator is
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Glag (s) = =

where the gain term, 1/γ, keeps the dc gain of the lag compensator at
0 dB. The lag-compensated system's open-loop transfer function is

Glag−comp (s) =

8. Now we design the lead compensator. At ω = 1.8, the lag-
compensated system has a phase angle of 180°. Using the values of 
ωmax = 1.8 and β = 0.094, Eq. (11.9) yields the lower break, 
1/T1 = 0.56 rad/s. The higher break is then 1/βT1 = 5.96 rad/s.The
lead compensator is

Glead (s) = γ = 10.6

The lag-lead-compensated system's open-loop transfer function is

Glag−lead−comp (s) =

9. Now check the bandwidth. The closed-loop bandwidth is equal to that
frequency where the open-loop magnitude response is approximately
−7 dB. From Figure 11.12, the magnitude is −7 dB at approximately 3
rad/s. This bandwidth exceeds that required to meet the peak time
requirement.

The design is now checked with a simulation to obtain actual
performance values. Table 11.4 summarizes the system's
characteristics. The peak time requirement is also met. Again, if the
requirements were not met, a redesign would be necessary.

1

γ

(s + )1
T2
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(s + 0.0172)
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s (s + 1) (s + 4) (s + 0.0172)
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(s + 0.56)

(s + 5.96)

48 (s + 0.183) (s + 0.56)

s (s + 1) (s + 4) (s + 0.0172) (s + 5.96)



FIGURE 11.12 Bode plots for lag-lead compensation in
Example 11.4

TABLE 11.4

Characteristics of gain-compensated system of Example 11.4
Parameter Proposed specification Actual value

Kv 12 12

Phase margin 55° 59.3°
Phase-margin frequency — 1.63 rad/s
Closed-loop bandwidth 2.29 rad/s 3 rad/s
Percent overshoot 13.25 10.2
Peak time 2.0 seconds 1.61 seconds



 Students who are using MATLAB should now run ch11apB4 in
Appendix B. You will learn how to use MATLAB to design a lag-lead

compensator. You will enter the desired percent overshoot, peak

time, and Kv. MATLAB then designs a lag-lead compensator using

Bode plots, evaluates Kv, and generates a closed-loop step

response. This exercise solves Example 11.4 using MATLAB.

For a final example, we include the design of a lag-lead compensator using a
Nichols chart. Recall from Chapter 10 that the Nichols chart contains a
presentation of both the open-loop frequency response and the closed-loop
frequency response. The axes of the Nichols chart are the open-loop
magnitude and phase (y and x axis, respectively). The open-loop frequency
response is plotted using the coordinates of the Nichols chart at each
frequency. The open-loop plot is overlaying a grid that yields the closed-loop
magnitude and phase. Thus, we have a presentation of both the open- and
closed-loop responses. Thus, a design can be implemented that reshapes the
Nichols plot to meet both open-and closed-loop frequency specifications.

From a Nichols chart, we can see simultaneously the following frequency
response specifications that are used to design a desired time response: (1)
phase margin, (2) gain margin, (3) closed-loop bandwidth, and (4) closed-loop
peak amplitude.

In the following example, we first specify the following: (1) maximum
allowable percent overshoot, (2) maximum allowable peak time, and (3)
minimum allowable static error constant. We first design the lead
compensator to meet the transient requirements followed by the lag
compensator design to meet the steady-state error requirement. Although
calculations could be made by hand, we will use MATLAB and Control System
Designer to make and shape the Nichols plot.

Let us first outline the steps that we will take in the example:

1. Calculate the damping ratio from the percent overshoot requirement
using Eq. (4.39)

2. Calculate the peak amplitude, Mp, of the closed-loop response using Eq.
(10.52) and the damping ratio found in (1).

3. Calculate the minimum closed-loop bandwidth to meet the peak time
requirement using Eq. (10.56), with peak time and the damping ratio
from (1).

4. Plot the open-loop response on the Nichols chart.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_11.zip


5. Raise the open-loop gain until the open-loop plot is tangent to the
required closed-loop magnitude curve, yielding the proper Mp.

6. Place the lead zero at this point of tangency and the lead pole at a higher
frequency. Zeros and poles are added in the Control System Designer by
right-clicking on the graph and then clicking the position on the open-
loop frequency response curve where you desire to add the zero or pole.

7. Adjust the positions of the lead zero and pole until the open-loop
frequency response plot is tangent to the same Mp curve, but at the
approximate frequency found in (3). This yields the proper closed-loop
peak and proper bandwidth to yield the desired percent overshoot and
peak time, respectively.

8. Evaluate the open-loop transfer function, which is the product of the
plant and the lead compensator, and determine the static error constant.

9. If the static error constant is lower than required, a lag compensator must
now be designed. Determine how much improvement in the static error
constant is required.

10. Recalling that the lag pole is at a frequency below that of the lag zero,
place a lag pole and zero at frequencies below the lead compensator and
adjust to yield the desired improvement in static error constant. As an
example, recall from Eq. (9.5) that the improvement in static error
constant for a Type 1 system is equal to the ratio of the lag zero value
divided by the lag pole value. Readjust the gain if necessary.



Example 11.5  Lag-Lead Design Using the
Nichols Chart, MATLAB, and SISOTOOL
PROBLEM:

 Design a lag-lead compensator for the plant, G(s) = ,

to meet the following requirements: (1) a maximum of 20% overshoot, (2)
a peak time of no more than 0.5 seconds, and (3) a static error constant of
no less than 6.

Note; MATLAB 8.3 was used for this example. Similar steps can be used
with MATLAB 9.3.

SOLUTION:
We follow the steps enumerated immediately above,

1. Using Eq. (4.39), ζ = 0.456 for 20% overshoot.

2. Using Eq. (10.52), Mp = 1.23 = 1.81 dB for ζ = 0.456.

3. Using Eq. (10.56), ωBW = 9.3 rad/s for ζ = 0.456 and Tp = 0.5.

4. Plot the open-loop frequency response curve on the Nichols chart for
K = 1.

5. Raise the open-loop frequency response curve until it is tangent to the
closed-loop peak of 1.81 dB curve as shown in Figure 11.13. The
frequency at the tangent point is approximately 3 rad/s, which can be
found by letting your mouse rest on the point of tangency. On the
menu bar, select Designs/Edit Compensator… and find the gain
added to the plant. Thus, the plant is now G(s) = . The

gain-adjusted closed-loop step response is shown in Figure 11.14.
Notice that the peak time is about 1 second and must be decreased.

6. Place the lead zero at this point of tangency and the lead pole at a
higher frequency.

7. Adjust the positions of the lead zero and pole until the open-loop
frequency response plot is tangent to the same Mp curve, but at the
approximate frequency found in 3.

8. Checking Designs/Edit Compensator… shows 
G(s)Glead(s) = , which yields a Kv = 3.

K

s(s+5)(s+10)

150
s(s+5)(s+10)

1286(s+1.4)

s(s+5)(s+10)(s+12)



9. We now add lag compensation to improve the static error constant by
at least 2.

10. Now add a lag pole at −0.004 and a lag zero at −0.008. Readjust the
gain to yield the same tangency as after the insertion of the lead. The
final forward path is found to be 
G(s)Glead(s)Glag(s) = . The final Nichols

chart is shown in Figure 11.15, and the compensated time response is
shown in Figure 11.16. Notice that the time response has the expected
slow climb to the final value that is typical of lag compensation. If
your design requirements require a faster climb to the final response,
then redesign the system with a larger bandwidth or attempt a design
only with lead compensation. A problem at the end of the chapter
provides the opportunity for practice.

1381(s+1.4)(s+0.008)

s(s+5)(s+10)(s+12)(s+0.004)



FIGURE 11.13 Nichols chart after gain adjustment



FIGURE 11.14 Gain-adjusted closed-loop step response



FIGURE 11.15 Nichols chart after lag-lead compensation



FIGURE 11.16 Lag-lead compensated closed-loop step
response



Skill-Assessment Exercise 11.4
PROBLEM:
Design a lag-lead compensator for a unity-feedback system with the
forward-path transfer function

G (s) =

to meet the following specifications: %OS = 10%, Tp = 0.6 s, and 
Kv = 10. Use frequency response techniques.

ANSWER:

Glag (s) = 0.456 ; Glead (s) = 2.19 ; K = 2400.

The complete solution is at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

K

s (s + 8) (s + 30)

(s + 0.602)

(s + 0.275)

(s + 4.07)

(s + 8.93)
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Case Studies Antenna Control: Gain Design
Our ongoing antenna azimuth position control system serves now as an
example to summarize the major objectives of the chapter. The following
cases demonstrate the use of frequency response methods to (1) design a
value of gain to meet a percent overshoot requirement for the closed-loop
step response and (2) design cascade compensation to meet both transient
and steady-state error requirements.

PROBLEM:

 Given the antenna azimuth position control system shown in
Appendix A2, Configuration 1, use frequency response techniques to do
the following:

a. Find the preamplifier gain required for a closed-loop response of 20%
overshoot for a step input.

b. Estimate the settling time.

SOLUTION:
The block diagram for the control system is shown in Appendix A2
(Configuration 1). The loop gain, after block diagram reduction, is

G (s) = =

Letting K = 1, the magnitude and phase frequency response plots are
shown in Figure 10.61.

a. To find K to yield a 20% overshoot, we first make a second-order
approximation and assume that the second-order transient response
equations relating percent overshoot, damping ratio, and phase
margin are true for this system. Thus, a 20% overshoot implies a
damping ratio of 0.456. Using Eq. (10.73), this damping ratio implies
a phase margin of 48.1°. The phase angle should therefore be 
(−180° + 48.1°) = −131.9°. The phase angle is −131.9° at 
ω = 1.49 rad/s, where the gain is −34.1 dB. Thus 
K = 34.1 dB = 50.7 for a 20% overshoot. Since the system is third-
order, the second-order approximation should be checked. A
computer simulation shows a 20% overshoot for the step response.

6.63K

s (s + 1.71) (s + 100)

0.0388K

s( + 1) ( + 1)s
1.71

s
100
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b. Adjusting the magnitude plot of Figure 10.61 for K = 50.7, we find −7
dB at ω = 2.5 rad/s, which yields a closed-loop bandwidth of 2.5
rad/s. Using Eq. (10.55) with ζ = 0.456 and ωBW = 2.5, we find 
Ts = 4.63 seconds. A computer simulation shows a settling time of
approximately 5 seconds.

CHALLENGE:
We now give you a problem to test your knowledge of this chapter's
objectives. You are given the antenna azimuth position control system
shown in Appendix A2 (Configuration 3). Using frequency response
methods, do the following:

a. Find the value of K to yield 25% overshoot for a step input.

b.  Repeat Part a using MATLAB.

Antenna Control: Cascade Compensation Design
PROBLEM:

 Given the antenna azimuth position control system block diagram
shown in Appendix A2, Configuration 1, use frequency response
techniques and design cascade compensation for a closed-loop response of
20% overshoot for a step input, a fivefold improvement in steady-state
error over the gain-compensated system operating at 20% overshoot, and
a settling time of 3.5 seconds.

SOLUTION:
Following the lag-lead design procedure, we first determine the value of
gain, K, required to meet the steady-state error requirement.

1. Using Eq. (10.55) with ζ = 0.456, and Ts = 3.5 seconds, the required
bandwidth is 3.3 rad/s.

2. From the preceding case study, the gain-compensated system's open-
loop transfer function was, for K = 50.7,

G (s)H (s) = =

This function yields Kv = 1.97. If K = 254, then Kv = 9.85, a
fivefold improvement.

6.63K

s (s + 1.71) (s + 100)
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(11.24)

3. The frequency response curves of Figure 10.61, which are plotted for 
K = 1, will be used for the solution.

4. Using a second-order approximation, a 20% overshoot requires a
phase margin of 48.1°.

5. Select ω = 3 rad/s to be the new phase-margin frequency.

6. The phase angle at the selected phase-margin frequency is −152°.
This is a phase margin of 28°. Allowing for a 5° contribution from the
lag compensator, the lead compensator must contribute 
(48.1° − 28° + 5°) = 25.1°.

7. The design of the lag compensator now follows. Choose the lag
compensator upper break one decade below the new phase-margin
frequency, or 0.3 rad/s. Figure 11.8 says that we can obtain 25.1°
phase shift from the lead if β = 0.4 or γ = 1/β = 2.5. Thus, the lower
break for the lag is at 1/ (γT ) = 0.3/2.5 = 0.12 rad/s.

Hence,

Glag (s) = 0.4

8. Finally, design the lead compensator. Using Eq. (11.9), we have

T = = = 0.527

Therefore, the lead compensator lower break frequency is 
1/T = 1.9 rad/s, and the upper break frequency is 
1/ (βT ) = 4.75 rad/s. Thus, the lag-lead-compensated forward path
is

Glag−lead−comp (s) =

9. A plot of the open-loop frequency response for the lag-lead-
compensated system shows −7 dB at 5.3 rad/s. Thus, the bandwidth
meets the design requirements for settling time. A simulation of the
compensated system shows a 20% overshoot and a settling time of
approximately 3.2 seconds, compared to a 20% overshoot for the
uncompensated system and a settling time of approximately 5

(s + 0.3)

(s + 0.12)

1

ωmax√β

1

3√0.4

(6.63) (254) (s + 0.3) (s + 1.9)

s (s + 1.71) (s + 100) (s + 0.12) (s + 4.75)



seconds. Kv for the compensated system is 9.85 compared to the
uncompensated system value of 1.97.

CHALLENGE:
We now give you a problem to test your knowledge of this chapter's
objectives. You are given the antenna azimuth position control system
shown in Appendix A2 (Configuration 3). Using frequency response
methods, do the following:

a. Design a lag-lead compensator to yield a 15% overshoot and Kv = 20.
In order to speed up the system, the compensated system's phase-
margin frequency will be set to 4.6 times the phase-margin frequency
of the uncompensated system.

b.  Repeat Part a using MATLAB.

Summary
This chapter covered the design of feedback control systems using frequency
response techniques. We learned how to design by gain adjustment as well as
cascaded lag, lead, and lag-lead compensation. Time response characteristics
were related to the phase margin, phase-margin frequency, and bandwidth.

Design by gain adjustment consisted of adjusting the gain to meet a phase-
margin specification. We located the phase-margin frequency and adjusted the
gain to 0 dB.

A lag compensator is basically a low-pass filter. The low-frequency gain can be
raised to improve the steady-state error, and the high-frequency gain is
reduced to yield stability. Lag compensation consists of setting the gain to
meet the steady-state error requirement and then reducing the high-frequency
gain to create stability and meet the phase-margin requirement for the
transient response.

A lead compensator is basically a high-pass filter. The lead compensator
increases the high-frequency gain while keeping the low-frequency gain the
same. Thus, the steady-state error can be designed first. At the same time, the
lead compensator increases the phase angle at high frequencies. The effect is
to produce a faster, stable system, since the uncompensated phase margin now
occurs at a higher frequency.

A lag-lead compensator combines the advantages of both the lag and the lead
compensator. First, the lag compensator is designed to yield the proper
steady-state error with improved stability. Next, the lead compensator is



designed to speed up the transient response. If a single network is used as the
lag-lead, additional design considerations are applied so that the ratio of the
lag zero to the lag pole is the same as the ratio of the lead pole to the lead zero.

In the next chapter, we return to state space and develop methods to design
desired transient and steady-state error characteristics.

Review Questions
1. What major advantage does compensator design by frequency response

have over root locus design?

2. How is gain adjustment related to the transient response on the Bode
diagrams?

3. Briefly explain how a lag network allows the low-frequency gain to be
increased to improve steady-state error without having the system
become unstable.

4. From the Bode plot perspective, briefly explain how the lag network does
not appreciably affect the speed of the transient response.

5. Why is the phase margin increased above that desired when designing a
lag compensator?

6. Compare the following for uncompensated and lag-compensated systems
designed to yield the same transient response: low-frequency gain, phase-
margin frequency, gain curve value around the phase-margin frequency,
and phase curve values around the phase-margin frequency.

7. From the Bode diagram viewpoint, briefly explain how a lead network
increases the speed of the transient response.

8. Based upon your answer to Question 7, explain why lead networks do not
cause instability.

9. Why is a correction factor added to the phase margin required to meet the
transient response?

10. When designing a lag-lead network, what difference is there in the design
of the lag portion as compared to a separate lag compensator?

Cyber Exploration Laboratory

EXPERIMENT 11.1
Objectives



To design a PID controller using MATLAB's SISO Design Tool; To observe the
effect of a PI and a PD controller on the magnitude and phase responses at
each step of the design of a PID controller

Minimum Required Software Packages
MATLAB, and the Control System Toolbox

Prelab

1. What is the phase margin required for 12% overshoot?

2. What is the bandwidth required for 12% overshoot and a peak time of 2
seconds?

3. Given a unity-feedback system with G (s) = , what is the gain,

K, required to yield the phase margin found in Prelab 1? What is the
phase-margin frequency?

4. Design a PI controller to yield a phase margin 5° more than that found in
Prelab 1.

5. Complete the design of a PID controller for the system of Prelab 3.

Lab

1. Using MATLAB's Control System Designer, set up the system of Prelab 3
and display the open-loop Bode plots and the closed-loop step response.

2. Drag the Bode magnitude plot in a vertical direction until the phase
margin found in Prelab 1 is obtained. Record the gain K, the phase
margin, the phase-margin frequency, the percent overshoot, and the peak
time. Move the magnitude curve up and down and note the effect upon
the phase curve, the phase margin, and the phase-margin frequency.

3. Design the PI controller by adding a pole at the origin and a zero one
decade below the phase-margin frequency found in Lab 2. Readjust the
gain to yield a phase margin 5° higher than that found in Prelab 1. Record
the gain K, the phase margin, the phase-margin frequency, the percent
overshoot, and the peak time. Move the zero back and forth in the vicinity
of its current location and note the effect on the magnitude and phase
curve. Move the magnitude curve up and down and note its effect on the
phase curve, the phase margin, and the phase-margin frequency.

4. Design the PD portion of the PID controller by first adjusting the
magnitude curve to yield a phase-margin frequency slightly below the
bandwidth calculated in Prelab 2. Add a zero to the system and move it

K

s(s+1)(s+4)



until you obtain the phase margin calculated in Prelab 1. Move the zero
and note its effect. Move the magnitude curve and note its effect.

Postlab

1. Compare the Prelab PID design with that obtained via the Control System
Designer. In particular, compare the gain K, the phase margin, the phase-
margin frequency, the percent overshoot, and the peak time.

2. For the uncompensated system, describe the effect of changing gain on
the phase curve, the phase margin, and the phase-margin frequency.

3. For the PI-compensated system, describe the effect of changing gain on
the phase curve, the phase margin, and the phase-margin frequency.
Repeat for changes in the zero location.

4. For the PID-compensated system, describe the effect of changing gain on
the phase curve, the phase margin, and the phase-margin frequency.
Repeat for changes in the PD zero location.
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Notes
1 The name lag compensator comes from the fact that the typical phase angle

response for the compensator, as shown in Figure 11.4, is always negative,
or lagging in phase angle.

2 This value of break frequency ensures that there will be only −5° to −12°
phase contribution from the compensator at the frequency found in Step 2.

3 The name lead compensator comes from the fact that the typical phase angle
response shown in Figure 11.7 is always positive, or leading in phase angle.

4 We know that the phase-margin frequency will be increased after the
insertion of the compensator. At this new phase-margin frequency, the
system's phase will be smaller than originally estimated, as seen by



comparing points B and D in Figure 11.7. Hence, an additional phase should
be added to that provided by the lead compensator to correct for the phase
reduction caused by the original system.



Chapter 12
Design via State Space



Chapter 12 Problems
1. Consider the following open-loop transfer functions, where 
G (s) = Y (s) /U (s). Y(s) is the Laplace transform of the
output, and U(s) is the Laplace transform of the input control
signal:

i. G (s) =

 ii. G (s) =

Check Answer!

iii. G (s) =

iv. G (s) =

v. G (s) =

For each of these transfer functions, do the following: [Section:
12.2]

a. Draw the signal-flow graph in phase-variable form.

b. Add state-variable feedback to the signal-flow graph.

c. For each closed-loop signal-flow graph, write the state
equations.

d. Write, by inspection, the closed-loop transfer function,
T(s), for your closed-loop signal-flow graphs.

e. Verify your answers for T(s) by finding the closed-loop
transfer functions from the state equations and Eq. (3.73).

2. Assume that each of the following open-loop transfer
functions is represented in signal-flow cascade form.

i. G (s) =

(s+3)

(s+4)2

s

(s+5)(s+7)

20s(s+7)

(s+3)(s+7)(s+9)
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(s+4)(s+5)(s+6)

s2+8s+15
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ii. G (s) =

For each, do the following: [Section: 12.4]

a. Sketch the signal-flow graph showing state-variable
feedback.

b. Obtain the closed-loop transfer function with state-
variable feedback.

3. For each of the following open-loop transfer functions
represented in signal-flow parallel form: [Section: 12.4]

a. Sketch the signal-flow graph showing state-variable
feedback.

b. Obtain the closed-loop transfer function with state-
variable feedback.

i. G (s) =

ii. G (s) =

 4. Given the following open-loop plant: [Section: 12.2]

G (s) =

design a controller to yield 10% overshoot with a peak time of
0.5 second. Use the controller canonical form for state-variable
feedback.

Check Answer!

5. Design a controller using phase variables for state-variable
feedback that will result in 15% overshoot and a settling time of 1
second when the plant is: [Section: 12.2]

70(s2+2s+9)

(s+3)(s2+s+10)

70(s2+5s+80)

s(s+20)(s+30)

40(s+4)(s+10)

(s+1)(s+2)(s+3)

100 (s + 2) (s + 25)

(s + 1) (s + 3) (s + 5)



G (s) =

Place the third pole 10 times farther from the imaginary axis as
the dominant pole pair.

6. Repeat Problem 5 but represent the plant in parallel form
without converting to phase-variable form. [Section: 12.4]

7.
a. Given the plant shown in Figure P12.1, what relationship
exists between b1 and b2 to make the system
uncontrollable?

b. What values of b2 will make the system uncontrollable if
b1 = 1? [Section: 12.3]

FIGURE P12.1

 8. For each of the plants represented by signal-flow graphs
in Figure P12.2, determine the controllability. If the
controllability can be determined by inspection, state that it can

30 (s + 1)

s (s + 3) (s + 5)



and then verify your conclusions using the controllability
matrix. [Section: 12.3]

FIGURE P12.2

Check Answer!

9.  Use MATLAB to determine the controllability of
the systems of Figure P12.2(d) and (f).

10. Consider the following transfer function:



G (s) =

If the system is represented in cascade form, as shown in Figure
P12.3, design a controller to yield a closed-loop response of 10%
overshoot with a settling time of 1 second. Design the controller
by first transforming the plant to phase variables. [Section: 12.4]

FIGURE P12.3

11.  Use MATLAB to design the controller gains for the
system given in Problem 10.

12. If an open-loop plant

G (s) =

is represented in parallel form, design a controller to yield a
closed-loop response of 20% overshoot and a peak time of 0.2
second. Design the controller by first transforming the plant to
controller canonical form. [Section: 12.4]

 13. Assume for the plant

G (s) =

that the state variables are not accessible for measurement.
Using observer canonical variables, design an observer that will
have a ζ = 0.5 and ωn = 40. Choose the third pole 10 times
farther to the left than the dominant poles. [Section: 12.5]

Check Answer!
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 14. Design an observer for the plant

G (s) =

operating with 10% overshoot and 2 seconds peak time. Design
the observer to respond 10 times as fast as the plant. Place the
observer third pole 20 times as far from the imaginary axis as
the observer dominant poles. Assume the plant is represented in
observer canonical form. [Section: 12.5]

Check Answer!

15. Consider the plant

G (s) =

whose phase variables are not available. Design an observer for
the phase variables with a transient response described by 
ζ = 0.6 and ωn = 120. Do not convert to observer canonical
form. [Section: 12.7]

16. Determine whether or not each of the systems shown in
Figure P12.2 is observable. [Section: 12.6]

17.  Use MATLAB to determine the observability of the
systems of Figure P12.2(a) and (f).

18. Design an observer for the plant

G (s) =

represented in cascade form. Transform the plant to observer
canonical form for the design. Then transform the design back
to cascade form. The characteristic polynomial for the observer
is to be s3 + 600s2 + 40,000s + 1,500,000.
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19.  Use MATLAB to design the observer gains for the
system given in Problem 19.

20. Design an observer for

G (s) =

represented in phase-variable form with a desired performance
of 10% overshoot and a settling time of 0.5 second. The observer
will be 10 times as fast as the plant, and the observer's
nondominant pole will be 10 times as far from the imaginary
axis as the observer's dominant poles. Design the observer by
first converting to observer canonical form. [Section: 12.7]

 21. Observability and controllability properties depend on
the state-space representation chosen for a given system. In
general, observability and controllability are affected when pole-
zero cancellations are present in the transfer function. Consider
the following two systems with representations:

ẋi = Aixi = Bir

y = Cixi;

A1= [ 0 1

−2 −3
] ; B1 = [ 0

1
] ; C1 = [ 2 0 ]

A2=
⎡
⎢
⎣

0 1 0

0 0 1

−6 −11 −6

⎤
⎥
⎦

; B2 =
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦

; C2 = [ 6 2 0 ]

a. Show that both systems have the same transfer function 
Gi (s) =  after pole-zero cancellations.

b. Evaluate the observability of both systems.

Check Answer!

45

(s + 3) (s + 5) (s + 10)

Y (s)

R(s)



 22. Given the plant

ẋ =[ −1 1

0 2
]x +[ 0

1
]u; y =[ 1 1 ]x

design an integral controller to yield a 15% overshoot, 0.6-
second settling time, and zero steady-state error for a step input.
[Section: 12.8]

Check Answer!

DESIGN PROBLEMS
23. Figure P12.4 shows a continuous stirred tank reactor in
which an aqueous solution of sodium acetate (CH3COONa) is
neutralized in the mixing tank with hydrochloric acid (HCl) to
maintain a particular pH in the mixing tank.

FIGURE P12.41



The amount of acid in the mix is controlled by varying the
rotational speed of a feeding peristaltic pump. A nominal
linearized transfer function from HCl flowrate to pH has been
shown to be (Tadeo, 2000)

G (s) =

a. Write the system in state-space phase-variable form.

b. Use state-feedback methods to design a matrix K that
will yield an overdamped output pH response with a
settling time of Ts ≈ 5 min for a step input change in pH.

c.  Simulate the step response of the resulting
closed-loop system using MATLAB.

24.
a. Design an observer for the neutralization system using
the continuous stirred tank reactor of Problem 24. The
observer should have time constants 10 times smaller than
those of the original system. Assume that the original state
variables are those obtained in the phase-variable
representation.

b.  Simulate your system and observer for a unit-
step input using Simulink. Assume that the initial

conditions for the original system are x (0) =
⎡
⎢
⎣

−1

−10

3

⎤
⎥
⎦

.

The observer should have initial conditions 

x̂ (0) =
⎡
⎢
⎣

0

0

0

⎤
⎥
⎦

.

25. The use of feedback control to vary the pitch angle in the
blades of a variable speed wind turbine allows power generation

−0.9580 × 10−4s − 0.01197 × 10−4

s3 + 0.5250s2 + 0.01265s + 0.000078



optimization under variable wind conditions (Liu, 2008). At a
specific operating point, it is possible to linearize turbine
models. For example, the model of a three-blade turbine with a
15 m radius working in 12 m/s wind-speed and generating 220 V
can be expressed as

ẋ =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

−5 0 0 0 0

0 0 1 0 0

−10.5229 −1066.67 −3.38028 23.5107 0

0 993.804 3.125 −23.5107 0

0 0 0 10 −10

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

x

+

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

5

0

0

0

0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

u

y =[ 0 0 0 1.223x105 0 ]x

where the state variable vector is given by

x =[β ξ ξ̇ ωg ωgm ]

Here, β = pitch angle of the wind turbine blades, ξ = relative
angle of the secondary shaft, ωg = generator speed, and ωgm =
generator measurement speed. The system input is u, the pitch
angle reference, and the output is y, the active power generated.

a. Find a state feedback vector gain such that the system
responds with a 10% overshoot and a settling time of 2
seconds for a step input.

b.  Use MATLAB to verify the operation of the
system under state feedback.



26. The study of the flexible links, such as the one shown in
Figure P12.5, is important because of their application to the
control of flexible lightweight robots (Saini, 2012). The flexible
link angle is deflected by a servomotor. It is assumed that the
base angle, θ(t), and the tip angular deflection relative to the
undeformed link, α(t), can be measured. For a specific setup, a
state-space model of the system was developed. The state vector
is x = [ θ α ω α̇ ]

T , where ω(t) = θ̇(t) and input u(t) is the
voltage applied to the servomotor. Thus the system is
represented as ẋ = Ax + Bu, y = Cx where

A =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 0 1 0

0 0 0 1

0 673.07 −35.1667 0

0 −1023.07 35.1667 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

B =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

0

61.7325

−61.7325

⎤
⎥ ⎥ ⎥ ⎥
⎦

C =[ 1 1 0 0 ]

It is desired to build state-feedback compensation around this
system so that the system's characteristic equation becomes 
D(s) = (s + 10)

4. In order to do this:

a. Find the system's controllability matrix CMO and show
that the system is controllable.

b. Find the original system's characteristic equation and use
it to find a phase-variable representation of the system.

c. Find the phase-variable system's controllability matrix
CMP and then find the transformation matrix 
P = CMO

C
−1
MP

.



d. Use the phase-variable representation to find a feedback
gain matrix KP =[ k1p k2p k3p k4p ] that will place the
closed-loop poles in the desired positions.

e. Find the corresponding feedback gain matrix 
KO = KP P

−1.

FIGURE P12.52

27. We want to use an observer in a textile machine to estimate
the state variables. The 2-input, 1-output system's model is 
ẋ = Ax + Bu; y = Cx, where (Cardona, 2010)

A =
⎡
⎢
⎣

0 1 0

−52.6532 −4.9353 −2768.1557

−0.001213 0 −0.06106

⎤
⎥
⎦

B =
⎡
⎢
⎣

0 0

0 0

0.001613 −0.001812

⎤
⎥
⎦

C =[ 1 0 0 ]

a. Find the system's observability matrix OMz and show
that the system is observable.

b. Find the original system's characteristic equation and use
it to find an observable canonical representation of the



system.

c. Find the observable canonical system's observability
matrix OMx and then find the transformation matrix 
P = O

−1
Mz

OMx.

d. Use the observable canonical representation to find an
observer gain matrix Lx = [ l1x l2x l3x l4x ]

T  so that the
observer characteristic polynomial is 
D(s) = s3 + 30s2 + 316s + 1160.

e. Find the corresponding observer gain matrix Lz = PLx.

28. An inverted pendulum mounted on a motor-driven cart was
presented in Problem 25, Chapter 3. Its state-space model was
linearized (Prasad, 2012) around a stationary point, (x0 = 0),
corresponding to the pendulum point-mass, m, being in the
upright position at t = 0. Its model was then modified in
Problem 37, Chapter 6, to have two output variables: the
pendulum angle relative to the y-axis, θ(t), and the horizontal
position of the cart, x(t). Noting that the unit requires
stabilization, you were asked in Problem 26, Chapter 9, to
develop Simulink models for two feedback systems: one to
control the cart position, x(t), and the second to control the
pendulum angle, θ(t).

Modify the second model, using state-feedback amplifiers with
appropriate gains (in addition to the rate feedback amplifier and
the PD controller), to improve the unit-impulse response of the
angle control loop. Compare the response you get here with that
obtained for Problem 26, Chapter 9.

29. Let the plant in the drive system with an elastically coupled
load (Thomsen, 2011) shown in Figure P8.13 be

Gp(s) = =
Y (s)

M(s)

250 (s2 + 1.2s + 12500)

s3 + 8.1s2 + 62003s + 31250



where Y (s) = ΩL(s), the load speed. Represent Gp(s) in
observer canonical form. Then design an observer for it, such
that it responds 10 times faster than the output, y(t), if 
GC(s) = KP . [Section: 12.5]

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

30. Control of HIV/AIDS. The linearized model of HIV
infection when RTIs are used for treatment was introduced in
Chapter 4 and repeated here for convenience (Craig, 2004):

⎡
⎢ ⎢
⎣

Ṫ

Ṫ
∗

v̇

⎤
⎥ ⎥
⎦

=
⎡
⎢
⎣

−0.04167 0 −0.0058

0.0217 −0.24 0.0058

0 100 −2.4

⎤
⎥
⎦

⎡
⎢
⎣

T

T ∗

v

⎤
⎥
⎦

+
⎡
⎢
⎣

5.2

−5.2

0

⎤
⎥
⎦

u1

y =[ 0 0 1 ]
⎡
⎢
⎣

T

T ∗

v

⎤
⎥
⎦

T represents the number of healthy T-cells, T* the number of
infected cells, and v the number of free viruses.

a. Design a state-feedback scheme to obtain

(1) zero steady-state error for step inputs

(2) 10% overshoot

(3) a settling time of approximately 100 days

(Hint: the system's transfer function has an open-loop zero
at approximately −0.02. Use one of the poles in the desired
closed-loop-pole polynomial to eliminate this zero. Place



the higher-order pole 6.25 times farther than the dominant
pair.)

b.  Simulate the unit-step response of your design
using Simulink.

31. Hybrid vehicle. In Problem 27, Chapter 3, we introduced
the idea that when an electric motor is the sole motive force
provider for a hybrid electric vehicle (HEV), the forward paths of
all HEV topologies are similar. It was noted that, in general, the
forward path of an HEV cruise control system can be
represented by a block diagram similar to that of Figure P3.16
(Preitl, 2007). The diagram is shown in Figure P12.6, with the
parameters substituted by their numerical values from Problem
51, Chapter 6; the motor armature represented as a first-order
system with a unity steady-state gain and a time constant of 50
ms; and the power amplifier gain set to 50. Whereas the state
variables remain as the motor angular speed, ω(t), and armature
current, Ia(t), we assume now that we have only one input
variable, uc(t), the command voltage from the electronic control
unit, and one output variable, car speed, 
v = rω/itot = 0.06154ω. The change in the load torque, Tc(t), is
represented as an internal feedback proportional to ω(t).

FIGURE P12.6

Looking at the diagram, the state equations may be written as



[ İ a

ω̇
]=[ −20 −40

0.2491 −0.0191
][ Ia

ω
]+[ 0

1000
]uc(t)

y(t) = v(t) = [0 0.05154][ Ia

ω
]

a. Design an integral controller for %OS≤ 4.32%, a settling
time, Ts ≤ 4.4 sec, and a zero steady-state error for a step
input (Hint: To account for the effect of the integral
controller on the transient response, use Ts = 4 seconds in
your calculation of the value of the natural frequency, ωn, of
the required dominant poles).

b.  Use MATLAB to verify that the design
requirements are met.

32. Parabolic trough collector. A parabolic trough collector
can be designed using state-space techniques. For simplicity,
pure time delay will be ignored here, although it could be
handled in several different ways. Consider the open-loop
transfer function (Camacho, 2012):

G(s) =

Design a state feedback controller with integral control to yield
zero steady-state error, such that the system transient response
results in a damping factor of ζ = 0.5 with a settling time 
Ts = 200 sec. Simulate the step response of your designed
system using a computer program.

Notes
1 Tadeo F., Perez, Loepez O., and Alvarez T. Control of Neutralization

Processes by Robust Loopsharing. IEEE Trans. on Cont. Syst.
Tech., vol. 8, no. 2, 2000. Fig. 2, p. 239. IEEE Transactions on
Control Systems Technology by Institute of Electrical and
Electronics Engineers; IEEE Control Systems Society Reproduced

137.2 × 10−6K

s2 + 0.0224s + 196 × 10−6



with permission of Institute of Electrical and Electronics
Engineers, in the format Republish in a book via Copyright
Clearance Center.

2 Saini, S. C., Sharma, Y., Bhandari, M., and Satija, U. Comparison of
Pole Placement and LQR Applied to Single Link Flexible
Manipulator, International Conference on Communication
Systems and Network Technologies, IEEE Computer Society,
2012, pp. 843–847, Figure 3, p. 844.



Chapter 12 Readings

 This chapter covers only state-space methods.

Chapter Learning Outcomes
After completing this chapter, the student will be able to:

Design a state-feedback controller using pole placement for systems represented in phase-
variable form to meet transient response specifications (Sections 12.1–12.2)

Determine if a system is controllable (Section 12.3)

Design a state-feedback controller using pole placement for systems not represented in
phase-variable form to meet transient response specifications (Section 12.4)

Design a state-feedback observer using pole placement for systems represented in observer
canonical form (Section 12.5)

Determine if a system is observable (Section 12.6)

Design a state-feedback observer using pole placement for systems not represented in
observer canonical form (Section 12.7)

Design steady-state error characteristics for systems represented in state space (Section
12.8)



Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with case studies as
follows:

Given the antenna azimuth position control system shown in Appendix A2, you will be able
to specify all closed-loop poles and then design a state-feedback controller to meet transient
response specifications.

Given the antenna azimuth position control system shown in Appendix A2, you will be able
to design an observer to estimate the states.

Given the antenna azimuth position control system shown in Appendix A2, you will be able
to combine the controller and observer designs into a viable compensator for the system.

12.1 Introduction
Chapter 3 introduced the concepts of state-space analysis and system modeling. We showed that
state-space methods, like transform methods, are simply tools for analyzing and designing
feedback control systems. However, state-space techniques can be applied to a wider class of
systems than transform methods. Systems with nonlinearities, such as that shown in Figure 12.1,
and multiple-input, multiple-output systems are just two of the candidates for the state-space
approach. In this book, however, we apply the approach only to linear systems.

FIGURE 12.1 A robot in a hospital pharmacy selects medications by bar code1

In Chapters 9 and 11, we applied frequency domain methods to system design. The basic design
technique is to create a compensator in cascade with the plant or in the feedback path that has
the correct additional poles and zeros to yield a desired transient response and steady-state
error.



(12.1)

(12.2b)

(12.2a)

One of the drawbacks of frequency domain methods of design, using either root locus or
frequency response techniques, is that after designing the location of the dominant second-order
pair of poles, we keep our fingers crossed, hoping that the higher-order poles do not affect the
second-order approximation. What we would like to be able to do is specify all closed-loop poles
of the higher-order system. Frequency domain methods of design do not allow us to specify all
poles in systems of order higher than 2 because they do not allow for a sufficient number of
unknown parameters to place all of the closed-loop poles uniquely. One gain to adjust, or
compensator pole and zero to select, does not yield a sufficient number of parameters to place all
the closed-loop poles at desired locations. Remember, to place n unknown quantities, you need n
adjustable parameters. State-space methods solve this problem by introducing into the system
(1) other adjustable parameters and (2) the technique for finding these parameter values, so that
we can properly place all poles of the closed-loop system.2

On the other hand, state-space methods do not allow the specification of closed-loop zero
locations, which frequency domain methods do allow through placement of the lead
compensator zero. This is a disadvantage of state-space methods, since the location of the zero
does affect the transient response. Also, a state-space design may prove to be very sensitive to
parameter changes.

Finally, there is a wide range of computational support for state-space methods; many software
packages support the matrix algebra required by the design process. However, as mentioned
before, the advantages of computer support are balanced by the loss of graphic insight into a
design problem that the frequency domain methods yield.

This chapter should be considered only an introduction to state-space design; we introduce one
state-space design technique and apply it only to linear systems. Advanced study is required to
apply state-space techniques to the design of systems beyond the scope of this textbook.

12.2 Controller Design
This section shows how to introduce additional parameters into a system so that we can control
the location of all closed-loop poles. An nth-order feedback control system has an nth-order
closed-loop characteristic equation of the form

sn + an−1s
n−1 + ⋯ + a1s + a0 = 0

Since the coefficient of the highest power of s is unity, there are n coefficients whose values
determine the system's closed-loop pole locations. Thus, if we can introduce n adjustable
parameters into the system and relate them to the coefficients in Eq. (12.1), all of the poles of the
closed-loop system can be set to any desired location.

Topology for Pole Placement
In order to lay the groundwork for the approach, consider a plant represented in state space by

ẋ = Ax + Bu

y = Cx

and shown pictorially in Figure 12.2(a), where light lines are scalars and the heavy lines are
vectors.



(12.3a)

(12.3b)

FIGURE 12.2 a. State-space representation of a plant; b. plant with state-variable
feedback

In a typical feedback control system, the output, y, is fed back to the summing junction. It is now
that the topology of the design changes. Instead of feeding back y, what if we feed back all of the
state variables? If each state variable is fed back to the control, u, through a gain, ki, there would
be n gains, ki, that could be adjusted to yield the required closed-loop pole values. The feedback
through the gains, ki, is represented in Figure 12.2(b) by the feedback vector −K.

The state equations for the closed-loop system of Figure 12.2(a) can be written by inspection as

ẋ = Ax + Bu = Ax + B (−Kx + r) = (A − BK) x + Br

y = Cx

Before continuing, you should have a good idea of how the feedback system of Figure 12.2(b) is
actually implemented. As an example, assume a plant signal-flow graph in phase-variable form,
as shown in Figure 12.3(a). Each state variable is then fed back to the plant's input, u, through a
gain, ki, as shown in Figure 12.3(b). Although we will cover other representations later in the
chapter, the phase-variable form, with its typical lower companion system matrix, or the
controller canonical form, with its typical upper companion system matrix, yields the simplest
evaluation of the feedback gains. In the ensuing discussion, we use the phase-variable form to
develop and demonstrate the concepts. End-of-chapter problems will give you an opportunity to
develop and test the concepts for the controller canonical form.



FIGURE 12.3 a. Phase-variable representation for plant; b. plant with state-
variable feedback

The design of state-variable feedback for closed-loop pole placement consists of equating the
characteristic equation of a closed-loop system, such as that shown in Figure 12.3(b), to a desired
characteristic equation and then finding the values of the feedback gains, ki.

If a plant like that shown in Figure 12.3(a) is of high order and not represented in phase-variable
or controller canonical form, the solution for the ki's can be intricate. Thus, it is advisable to
transform the system to either of these forms, design the ki's, and then transform the system
back to its original representation. We perform this conversion in Section 12.4, where we develop
a method for performing the transformations. Until then, let us direct our attention to plants
represented in phase-variable form.



(12.4)

(12.5)

(12.7)

(12.8)

(12.9)

(12.6)

Pole Placement for Plants in Phase-Variable Form
To apply pole-placement methodology to plants represented in phase-variable form, we take the
following steps:

1. Represent the plant in phase-variable form.

2. Feedback each phase variable to the input of the plant through a gain, ki.

3. Find the characteristic equation for the closed-loop system represented in Step 2.

4. Decide upon all closed-loop pole locations and determine an equivalent characteristic
equation.

5. Equate like coefficients of the characteristic equations from Steps 3 and 4 and solve for ki.

Following these steps, the phase-variable representation of the plant is given by Eq. (12.2), with

A=

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
−a0 −a1 −a2 ⋯ −an−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

;B =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0
0

⋮
1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

;

C= [ c1 c2 ⋯ cn ]

The characteristic equation of the plant is thus

sn + an−1s
n−1 + ⋯ + a1s + a0 = 0

Now form the closed-loop system by feeding back each state variable to u, forming

u = −Kx

where

K = [ k1 k2 ⋯ kn ]

The ki's are the phase variables' feedback gains.

Using Eq. (12.3a) with Eqs. (12.4) and (12.7), the system matrix, A − BK, for the closed-loop
system is

A − BK =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

− (a0 + k1) − (a1 + k2) − (a2 + k3) ⋯ − (an−1 + kn)

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Since Eq. (12.8) is in phase-variable form, the characteristic equation of the closed-loop system
can be written by inspection as

det(sI − (A − BK) ) = sn + (an−1 + kn) sn−1 + (an−2 + kn−1) sn−2

+ ⋯ (a1 + k2) s + (a0 + k1) = 0



(12.10)

(12.11)

(12.12)

Notice the relationship between Eqs. (12.5) and (12.9). For plants represented in phase-variable
form, we can write by inspection the closed-loop characteristic equation from the open-loop
characteristic equation by adding the appropriate ki to each coefficient.

Now assume that the desired characteristic equation for proper pole placement is

sn + dn−1s
n−1 + dn−2s

n−2 + ⋯ + d2s
2 + d1s + d0 = 0

where the di's are the desired coefficients. Equating Eqs. (12.9) and (12.10), we obtain

di = ai + ki+1 i = 0, 1, 2, … , n − 1

from which

ki+1 = di − ai

Now that we have found the denominator of the closed-loop transfer function, let us find the
numerator. For systems represented in phase-variable form, we learned that the numerator
polynomial is formed from the coefficients of the output coupling matrix, C. Since Figures
12.3(a) and (b) are both in phase-variable form and have the same output coupling matrix, we
conclude that the numerators of their transfer functions are the same. Let us look at a design
example.



(12.13)

Example 12.1 Controller Design for Phase-Variable Form
PROBLEM:
Given the plant

G (s) =

design the phase-variable feedback gains to yield 9.5% overshoot and a settling time of 0.74
second.

SOLUTION:
We begin by calculating the desired closed-loop characteristic equation. Using the transient
response requirements, the closed-loop poles are −5.4 ± j7.2. Since the system is third-
order, we must select another closed-loop pole. The closed-loop system will have a zero at
−5, the same as the open-loop system. We could select the third closed-loop pole to cancel
the closed-loop zero. However, to demonstrate the effect of the third pole and the design
process, including the need for simulation, let us choose −5.1 as the location of the third
closed-loop pole.

Now draw the signal-flow diagram for the plant. The result is shown in Figure 12.4(a). Next
feedback all state variables to the control, u, through gains ki, as shown in Figure 12.4(b).

20 (s + 5)
s (s + 1) (s + 4)



(12.14a)

(12.14b)

(12.15)

FIGURE 12.4 a. Phase-variable representation for plant of Example 12.1; b.
plant with state-variable feedback

Writing the closed-loop system's state equations from Figure 12.4(b), we have

ẋ =
⎡
⎢
⎣

0 1 0
0 0 1

−k1 − (4 + k2) − (5 + k3)

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

y = [ 100 20 0 ] x

Comparing Eqs. (12.14) to Eqs. (12.3), we identify the closed-loop system matrix as

A − BK =
⎡
⎢
⎣

0 1 0
0 0 1

−k1 − (4 + k2) − (5 + k3)

⎤
⎥
⎦

To find the closed-loop system's characteristic equation, form



(12.16)

(12.17)

(12.18)

(12.19a)

(12.19b)

(12.20)

det(sI − (A − BK) ) = s3 + (5 + k3) s2 + (4 + k2) s + k1 = 0

This equation must match the desired characteristic equation

s3 + 15.9s2 + 136.08s + 413.1 = 0

formed from the poles −5.4 + j7.2, −5.4 − j7.2, and −5.1, which were previously
determined.

Equating the coefficients of Eqs. (12.16) and (12.17), we obtain

k1 = 413.1; k2 = 132.08; k3 = 10.9

Finally, the zero term of the closed-loop transfer function is the same as the zero term of the
open-loop system, or (s + 5).

Using Eqs. (12.14), we obtain the following state-space representation of the closed-loop
system:

ẋ =
⎡
⎢
⎣

0 1 0
0 0 1

−413.1 −136.08 −15.9

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

y = [ 100 20 0 ] x

The transfer function is

T (s) =

Figure 12.5, a simulation of the closed-loop system, shows 11.5% overshoot and a settling
time of 0.8 second. A redesign with the third pole canceling the zero at −5 will yield
performance equal to the requirements.

20 (s + 5)

s3 + 15.9s2 + 136.08s + 413.1



FIGURE 12.5 Simulation of closed-loop system of Example 12.1

Since the steady-state response approaches 0.24 instead of unity, there is a large steady-
state error. Design techniques to reduce this error are discussed in Section 12.8.

 Students who are using MATLAB should now run ch12apB1 in Appendix B. You 

will learn how to use MATLAB to design a controller for phase variables using 
pole placement. MATLAB will plot the step response of the designed system. This 
exercise solves Example 12.1 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


Skill-Assessment Exercise 12.1
PROBLEMS:
For the plant

G (s) =

represented in the state space in phase-variable form by

ẋ= Ax + Bu =
⎡
⎢
⎣

0 1 0
0 0 1
0 −36 −15

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y= Cx =[ 1000 100 0 ]x

design the phase-variable feedback gains to yield 5% overshoot and a peak time of 0.3
second.

ANSWER:

K = [ 2094 373.1 14.97 ]

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 12.1
Use MATLAB, the Control System Toolbox, and the following statements to solve for
the phase-variable feedback gains to place the poles of the system in Skill-Assessment
Exercise 12.1 at −3 + j5, −3 − j5, and −10.

A=[0 1 0
   0 0 1
   0 −36 −15]
B=[0;0;1]
poles=[−3+5j,...
 −3−5j,−10]
K=acker(A,B,poles)

In this section, we showed how to design feedback gains for plants represented in phase-variable
form in order to place all of the closed-loop system's poles at desired locations on the s-plane. On
the surface, it appears that the method should always work for any system. However, this is not
the case. The conditions that must exist in order to uniquely place the closed-loop poles where
we want them is the topic of the next section.

12.3 Controllability
Consider the parallel form shown in Figure 12.6(a). To control the pole location of the closed-
loop system, we are saying implicitly that the control signal, u, can control the behavior of each
state variable in x. If any one of the state variables cannot be controlled by the control u, then we

100 (s + 10)
s (s + 3) (s + 12)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_12.zip


cannot place the poles of the system where we desire. For example, in Figure 12.6(b), if x1 were
not controllable by the control signal and if x1 also exhibited an unstable response due to a
nonzero initial condition, there would be no way to effect a state-feedback design to stabilize x1.
State variable x1 would perform in its own way regardless of the control signal, u. Thus, in some
systems, a state-feedback design is not possible.

FIGURE 12.6 Comparison of a. controllable and b. uncontrollable systems

We now make the following definition based upon the previous discussion:

If an input to a system can be found that takes every state variable from a desired initial
state to a desired final state, the system is said to be controllable; otherwise, the system
is uncontrollable.



(12.21)

(12.22a)

(12.22b)

(12.22c)

(12.23)

(12.24b)

(12.24c)

(12.24a)

Pole placement is a viable design technique only for systems that are controllable. This section
shows how to determine, a priori, whether pole placement is a viable design technique for a
controller.

Controllability by Inspection
We can explore controllability from another viewpoint: that of the state equation itself. When the
system matrix is diagonal, as it is for the parallel form, it is apparent whether or not the system is
controllable. For example, the state equation for Figure 12.6(a) is

ẋ =
⎡
⎢
⎣

−a1 0 0
0 −a2 0
0 0 −a3

⎤
⎥
⎦

x +
⎡
⎢
⎣

1
1
1

⎤
⎥
⎦
u

or

ẋ1 = −a1x1 + u

ẋ2 = −a2x2 +u

ẋ3 = −a3x3 + u

Since each of Eqs. (12.22) is independent and decoupled from the rest, the control u affects each
of the state variables. This is controllability from another perspective.

Now let us look at the state equations for the system of Figure 12.6(b):

ẋ =
⎡
⎢
⎣

−a4 0 0
0 −a5 0
0 0 −a6

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
1
1

⎤
⎥
⎦
u

or

ẋ1 = −a4x1

ẋ2 = −a5x2 +u

ẋ3 = −a6x3 + u

From the state equations in (12.23) or (12.24), we see that state variable x1 is not controlled by
the control u. Thus, the system is said to be uncontrollable.

In summary, a system with distinct eigenvalues and a diagonal system matrix is controllable if
the input coupling matrix B does not have any rows that are zero.

The Controllability Matrix
Tests for controllability that we have so far explored cannot be used for representations of the
system other than the diagonal or parallel form with distinct eigenvalues. The problem of
visualizing controllability gets more complicated if the system has multiple poles, even though it
is represented in parallel form. Further, one cannot always determine controllability by
inspection for systems that are not represented in parallel form. In other forms, the existence of



(12.26)

(12.25)

paths from the input to the state variables is not a criterion for controllability since the equations
are not decoupled.

In order to be able to determine controllability or, alternatively, to design state feedback for a
plant under any representation or choice of state variables, a matrix can be derived that must
have a particular property if all state variables are to be controlled by the plant input, u. We now
state the requirement for controllability, including the form, property, and name of this matrix.3

An nth-order plant whose state equation is

ẋ = Ax + Bu

is completely controllable4 if the matrix

CM = [ B AB A2B ⋯ An−1B ]

is of rank n, where CM is called the controllability matrix.5 As an example, let us choose a
system represented in parallel form with multiple roots.



(12.27)

(12.28)

Example 12.2 Controllability via the Controllability Matrix
PROBLEM:
Given the system of Figure 12.7, represented by a signal-flow diagram, determine its
controllability.

FIGURE 12.7 System for Example 12.2

SOLUTION:
The state equation for the system written from the signal-flow diagram is

ẋ = Ax + Bu =
⎡
⎢
⎣

−1 1 0
0 −1 0
0 0 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
1
1

⎤
⎥
⎦
u

At first, it would appear that the system is not controllable because of the zero in the B
matrix. Remember, though, that this configuration leads to uncontrollability only if the
poles are real and distinct. In this case, we have multiple poles at −1.

The controllability matrix is

CM =[ B AB A2B ]=
⎡
⎢
⎣

0 1 −2
1 −1 1
1 −2 4

⎤
⎥
⎦

The rank of CM equals the number of linearly independent rows or columns. The rank can
be found by finding the highest-order square submatrix that is nonsingular. The
determinant of CM = −1. Since the determinant is not zero, the 3 × 3 matrix is
nonsingular, and the rank of CM is 3. We conclude that the system is controllable since the
rank of CM equals the system order. Thus, the poles of the system can be placed using state-
variable feedback design.



(12.29)

(12.30)

 Students who are using MATLAB should now run ch12apB2 in Appendix B. You 

will learn how to use MATLAB to test a system for controllability. This exercise 
solves Example 12.2 using MATLAB.

In the previous example, we found that even though an element of the input coupling matrix was
zero, the system was controllable. If we look at Figure 12.7, we can see why. In this figure, all of
the state variables are driven by the input u.

On the other hand, if we disconnect the input at either dx1/dt, dx2/dt, or dx3/dt, at least one
state variable would not be controllable. To see the effect, let us disconnect the input at dx2/dt.
This causes the B matrix to become

B =
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦

We can see that the system is now uncontrollable, since x1 and x2 are no longer controlled by the
input. This conclusion is borne out by the controllability matrix, which is now

CM =[ B AB A2B ]=
⎡
⎢
⎣

0 0 0
0 0 0
1 −2 4

⎤
⎥
⎦

Not only is the determinant of this matrix equal to zero, but also is the determinant of any 2 × 2
submatrix. Thus, the rank of Eq. (12.30) is 1. The system is uncontrollable because the rank of
CM is 1, which is less than the order, 3, of the system.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


Skill-Assessment Exercise 12.2
PROBLEM:
Determine whether the system

ẋ = Ax + Bu =
⎡
⎢
⎣

−1 1 2
0 −1 5
0 3 −4

⎤
⎥
⎦

x +
⎡
⎢
⎣

2
1
1

⎤
⎥
⎦
u

is controllable.

ANSWER:
Controllable

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 12.2
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 12.2.

A=[−1   1  2
    0 −1  5
    0  3 −4]
B=[2;1;1]
Cm=ctrb(A,B)
Rank=rank(Cm)

In summary, then, pole-placement design through state-variable feedback is simplified by using
the phase-variable form for the plant's state equations. However, controllability, the ability for
pole-placement design to succeed, can be visualized best in the parallel form, where the system
matrix is diagonal with distinct roots. In any event, the controllability matrix will always tell the
designer whether the implementation is viable for state-feedback design.

The next section shows how to design state-variable feedback for systems not represented in
phase-variable form. We use the controllability matrix as a tool for transforming a system to
phase-variable form for the design of state-variable feedback.

12.4 Alternative Approaches to Controller Design
Section 12.2 showed how to design state-variable feedback to yield desired closed-loop poles. We
demonstrated this method using systems represented in phase-variable form and saw how
simple it was to calculate the feedback gains. Many times the physics of the problem requires
feedback from state variables that are not phase variables. For these systems we have some
choices for a design methodology.

The first method consists of matching the coefficients of det (sI − (A − BK)) with the
coefficients of the desired characteristic equation, which is the same method we used for systems
represented in phase variables. This technique, in general, leads to difficult calculations of the
feedback gains, especially for higher-order systems not represented with phase variables. Let us
illustrate this technique with an example.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_12.zip


(12.31a)

(12.31b)

(12.32)

(12.33)

Example 12.3 Controller Design by Matching Coefficients
PROBLEM:
Given a plant, Y (s) /U (s) = 10/ [(s + 1) (s + 2)], design state feedback for the plant
represented in cascade form to yield a 15% overshoot with a settling time of 0.5 second.

SOLUTION:
The signal-flow diagram for the plant in cascade form is shown in Figure 12.8(a). Figure
12.8(b) shows the system with state feedback added. Writing the state equations from
Figure 12.8(b), we have

ẋ =[ −2 1
−k1 − (k2 + 1)

]x +[ 0
1
]r

y = [ 10 0 ] x

where the characteristic equation is

s2 + (k2 + 3) s + (2k2 + k1 + 2) = 0

Using the transient response requirements stated in the problem, we obtain the desired
characteristic equation

s2 + 16s + 239.5 = 0

Equating the middle coefficients of Eqs. (12.32) and (12.33), we find k2 = 13. Equating the
last coefficients of these equations along with the result for k2 yields k1 = 211.5.



(12.34b)

(12.35)

(12.36)

(12.37a)

(12.37b)

(12.34a)

FIGURE 12.8 a. Signal-flow graph in cascade form for 
G (s) = 10/ [(s + 1) (s + 2)]; b. system with state feedback added

The second method consists of transforming the system to phase variables, designing the
feedback gains, and transforming the designed system back to its original state-variable
representation.6 This method requires that we first develop the transformation between a system
and its representation in phase-variable form.

Assume a plant not represented in phase-variable form

ż = Az + Bu

y = Cz

whose controllability matrix is

CMz = [ B AB A2B ⋯ An−1B ]

Assume that the system can be transformed into the phase-variable (x) representation with the
transformation

z = Px

Substituting this transformation into Eqs. (12.34), we get

ẋ = P−1APx + P−1Bu

y = CPx



(12.38)

(12.39)

(12.40a)

(12.40b)

(12.41a)

(12.41b)

(12.42)

whose controllability matrix is

CMx = [P−1B (P−1AP) (P−1B) (P−1AP)
2
(P−1B) ⋯ (P−1AP)

n−1
(P−1B)]

= [P−1B (P−1AP) (P−1B) (P−1AP) (P−1AP) (P−1B) ⋯ (P−1AP)

(P−1AP) (P−1AP) ⋯ (P−1AP) (P−1B)]

= P−1 [B AB A2B ⋯ An−1B]

Substituting Eq. (12.35) into (12.38) and solving for P, we obtain

P = CMzC −1
Mx

Thus, the transformation matrix, P, can be found from the two controllability matrices.

After transforming the system to phase variables, we design the feedback gains as in Section
12.2. Hence, including both feedback and input, u = −Kxx + r, Eqs. (12.37) becomes

ẋ= P−1APx − P−1BKxx + P−1Br

= (P−1AP − P−1BKx)x + P−1Br

y = CPx

Since this equation is in phase-variable form, the zeros of this closed-loop system are determined
from the polynomial formed from the elements of CP, as explained in Section 12.2.

Using x = P−1z, we transform Eqs. (12.40) from phase variables back to the original
representation and get

ż = Az − BKxP−1z + Br = (A − BKxP−1) z + Br

y = Cz

Comparing Eqs. (12.41) with (12.3), the state variable feedback gain, Kz, for the original system
is

Kz = KxP−1

The transfer function of this closed-loop system is the same as the transfer function for Eqs.
(12.40), since Eqs. (12.40) and (12.41) represent the same system. Thus, the zeros of the closed-
loop transfer function are the same as the zeros of the uncompensated plant, based upon the
development in Section 12.2. Let us demonstrate with a design example.



(12.43)

(12.44a)

(12.44b)

(12.45)

(12.46)

Example 12.4 Controller Design by Transformation
PROBLEM:
Design a state-variable feedback controller to yield a 20.8% overshoot and a settling time of
4 seconds for a plant,

G (s) =

that is represented in cascade form as shown in Figure 12.9.

FIGURE 12.9 Signal-flow graph for plant of Example 12.4

SOLUTION:
First find the state equations and the controllability matrix. The state equations written
from Figure 12.9 are

ż = Azz + Bzu =
⎡
⎢
⎣

−5 1 0
0 −2 1
0 0 −1

⎤
⎥
⎦

z +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y = Czz = [ −1 1 0 ] z

from which the controllability matrix is evaluated as

CMz =[ Bz AzBz A2
zBz ]=

⎡
⎢
⎣

0 0 1
0 1 −3
1 −1 1

⎤
⎥
⎦

Since the determinant of CMz is −1, the system is controllable.

We now convert the system to phase variables by first finding the characteristic equation
and using this equation to write the phase-variable form. The characteristic equation, 
det (sI − Az), is

det (sI − Az) = s3 + 8s2 + 17s + 10 = 0

Using the coefficients of Eq. (12.46) and our knowledge of the phase-variable form, we write
the phase-variable representation of the system as

(s + 4)
(s + 1) (s + 2) (s + 5)



(12.47a)

(12.47b)

(12.48)

(12.49)

(12.50)

(12.51a)

(12.51b)

(12.52)

(12.53)

ẋ = Axx + Bxu =
⎡
⎢
⎣

0 1 0
0 0 1

−10 −17 −8

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y = [ 4 1 0 ] x

The output equation was written using the coefficients of the numerator of Eq. (12.43),
since the transfer function must be the same for the two representations. The controllability
matrix, CMx, for the phase-variable system is

CMx =[ Bx AxBx A2
xBx ]=

⎡
⎢
⎣

0 0 1
0 1 −8
1 −8 47

⎤
⎥
⎦

Using Eq. (12.39), we can now calculate the transformation matrix between the two systems
as

P = CMzC−1
Mx

=
⎡
⎢
⎣

1 0 0
5 1 0

10 7 1

⎤
⎥
⎦

We now design the controller using the phase-variable representation and then use Eq.
(12.49) to transform the design back to the original representation. For a 20.8% overshoot
and a settling time of 4 seconds, a factor of the characteristic equation of the designed
closed-loop system is s2 + 2s + 5. Since the closed-loop zero will be at s = −4, we choose
the third closed-loop pole to cancel the closed-loop zero. Hence, the total characteristic
equation of the desired closed-loop system is

D (s) = (s + 4) (s2 + 2s + 5) = s3 + 6s2 + 13s + 20 = 0

The state equations for the phase-variable form with state-variable feedback are

ẋ = (Ax − BxKx) x =
⎡
⎢
⎣

0 1 0
0 0 1

− (10 + k1x) − (17 + k2x) − (8 + k3x)

⎤
⎥
⎦

x

y = [ 4 1 0 ] x

The characteristic equation for Eqs. (12.51) is

det (sI − (Ax − BxKx))= s3 + (8 + k3x) s
2 + (17 + k2x) s + (10 + k1x)

= 0

Comparing Eq. (12.50) with (12.52), we see that

Kx = [ k1x k2x k3x ] = [ 10 −4 −2 ]



(12.54)

(12.55a)

(12.55b)

(12.56)

Using Eqs. (12.42) and (12.49), we can transform the controller back to the original system
as

Kz = KxP−1 = [ −20 10 −2 ]

The final closed-loop system with state-variable feedback is shown in Figure 12.10, with the
input applied as shown.

FIGURE 12.10 Designed system with state-variable feedback for Example
12.4

Let us now verify our design. The state equations for the designed system shown in Figure
12.10 with input r are

ż = (Az − BzKz) z + Bzr =
⎡
⎢
⎣

−5 1 0
0 −2 1

20 −10 1

⎤
⎥
⎦

z +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

y = Czz = [ −1 1 0 ] z

Using Eq. (3.73) to find the closed-loop transfer function, we obtain

T (s) = =

The requirements for our design have been met.

 Students who are using MATLAB should now run ch12apB3 in Appendix B. You 

will learn how to use MATLAB to design a controller for a plant not represented 
in phase-variable form. You will see that MATLAB does not require transformation 
to phase-variable form. This exercise solves Example 12.4 using MATLAB.

(s + 4)

s3 + 6s2 + 13s + 20
1

s2 + 2s + 5

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


Skill-Assessment Exercise 12.3
PROBLEM:
Design a linear state-feedback controller to yield 20% overshoot and a settling time of 2
seconds for a plant

G (s) =

that is represented in state space in cascade form by

ż= Az + Bu =
⎡
⎢
⎣

−7 1 0
0 −8 1
0 0 −9

⎤
⎥
⎦

z +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y= Cz =[ −1 1 0 ]z

ANSWER:

Kz = [ −40.23 62.24 −14 ]

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we saw how to design state-variable feedback for plants not represented in phase-
variable form. Using controllability matrices, we were able to transform a plant to phase-variable
form, design the controller, and finally transform the controller design back to the plant's
original representation. The design of the controller relies on the availability of the states for
feedback. In the next section, we discuss the design of state-variable feedback when some or all
of the states are not available.

12.5 Observer Design
Controller design relies upon access to the state variables for feedback through adjustable gains.
This access can be provided by hardware. For example, gyros can measure position and velocity
on a space vehicle. Sometimes it is impractical to use this hardware for reasons of cost, accuracy,
or availability. For example, in powered flight of space vehicles, inertial measuring units can be
used to calculate the acceleration. However, their alignment deteriorates with time; thus, other
means of measuring acceleration may be desirable (Rockwell International, 1984). In other
applications, some of the state variables may not be available at all, or it is too costly to measure
them or send them to the controller. If the state variables are not available because of system
configuration or cost, it is possible to estimate the states. Estimated states, rather than actual
states, are then fed to the controller. One scheme is shown in Figure 12.11(a). An observer,
sometimes called an estimator, is used to calculate state variables that are not accessible from
the plant. Here the observer is a model of the plant.

(s + 6)
(s + 9) (s + 8) (s + 7)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(12.57b)

(12.58a)

(12.58b)

(12.57a)

FIGURE 12.11 State-feedback design using an observer to estimate unavailable
state variables: a. open-loop observer; b. closed-loop observer; c. exploded view
of a closed-loop observer, showing feedback arrangement to reduce state-
variable estimation error

Let us look at the disadvantages of such a configuration. Assume a plant,

ẋ = Ax + Bu

y = Cx

and an observer,

˙̂x = Ax̂ + Bu

ŷ = Cx̂

Subtracting Eqs. (12.58) from (12.57), we obtain



(12.59a)

(12.59b)

ẋ − ˙̂x = A (x − x̂)

y − ŷ = C (x − x̂)

Thus, the dynamics of the difference between the actual and estimated states is unforced, and if
the plant is stable, this difference, due to differences in initial state vectors, approaches zero.
However, the speed of convergence between the actual state and the estimated state is the same
as the transient response of the plant since the characteristic equation for Eq. (12.59a) is the
same as that for Eq. (12.57a). Since the convergence is too slow, we seek a way to speed up the
observer and make its response time much faster than that of the controlled closed-loop system,
so that, effectively, the controller will receive the estimated states instantaneously.

To increase the speed of convergence between the actual and estimated states, we use feedback,
shown conceptually in Figure 12.11(b) and in more detail in Figure 12.11(c). The error between
the outputs of the plant and the observer is fed back to the derivatives of the observer's states.
The system corrects to drive this error to zero. With feedback we can design a desired transient
response into the observer that is much quicker than that of the plant or controlled closed-loop
system.

When we implemented the controller, we found that the phase-variable or controller canonical
form yielded an easy solution for the controller gains. In designing an observer, it is the observer
canonical form that yields the easy solution for the observer gains. Figure 12.12(a) shows an
example of a third-order plant represented in observer canonical form. In Figure 12.12(b), the
plant is configured as an observer with the addition of feedback, as previously described.



FIGURE 12.12 Third-order observer in observer canonical form: a. before the
addition of feedback; b. after the addition of feedback

The design of the observer is separate from the design of the controller. Similar to the design of
the controller vector, K, the design of the observer consists of evaluating the constant vector, L,
so that the transient response of the observer is faster than the response of the controlled loop in
order to yield a rapidly updated estimate of the state vector. We now derive the design
methodology.

We will first find the state equations for the error between the actual state vector and the
estimated state vector, (x − x̂). Then we will find the characteristic equation for the error system
and evaluate the required L to meet a rapid transient response for the observer.

Writing the state equations of the observer from Figure 12.11(c), we have



(12.60a)

(12.60b)

(12.61b)

(12.62a)

(12.62b)

(12.63a)

(12.63b)

(12.64a)

(12.64b)

(12.65)

(12.61a)

˙̂x = Ax̂ + Bu + L (y − ŷ)

ŷ = Cx̂

But the state equations for the plant are

ẋ = Ax + Bu

y = Cx

Subtracting Eqs. (12.60) from (12.61), we obtain

(ẋ − ˙̂x) = A (x − x̂) − L (y − ŷ)

(y − ŷ) = C (x − x̂)

where x − x̂ is the error between the actual state vector and the estimated state vector, and 
y − ŷ  is the error between the actual output and the estimated output.

Substituting the output equation into the state equation, we obtain the state equation for the
error between the estimated state vector and the actual state vector:

(ẋ − ˙̂x) = (A − LC) (x − x̂)

(y − ŷ) = C (x − x̂)

Letting ex = (x − x̂), we have

ėx = (A − LC) ex

y − ŷ = Cex

Equation (12.64a) is unforced. If the eigenvalues are all negative, the estimated state vector
error, ex, will decay to zero. The design then consists of solving for the values of L to yield a
desired characteristic equation or response for Eqs. (12.64). The characteristic equation is found
from Eqs. (12.64) to be

det [λI − (A − LC)] = 0

Now we select the eigenvalues of the observer to yield stability and a desired transient response
that is faster than the controlled closed-loop response. These eigenvalues determine a
characteristic equation that we set equal to Eq. (12.65) to solve for L.

Let us demonstrate the procedure for an nth-order plant represented in observer canonical form.
We first evaluate A − LC. The form of A, L, and C can be derived by extrapolating the form of
these matrices from a third-order plant, which you can derive from Figure 12.12. Thus,



(12.66)

(12.67)

(12.68)

(12.69)

(12.70)

A − LC=

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

−an−1 1 0 0 ⋯ 0
−an−2 0 1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
−a1 0 0 0 ⋯ 1
−a0 0 0 0 ⋯ 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

−

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

l1

l2

⋮
ln−1

ln

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

[ 1 0 0 0 ⋯ 0 ]

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

− (an−1 + l1) 1 0 0 ⋯ 0

− (an−2 + l2) 0 1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
− (a1 + ln−1) 0 0 0 ⋯ 1

− (a0 + ln) 0 0 0 ⋯ 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

The characteristic equation for A − LC is

sn + (an−1 + l1) sn−1 + (an−2 + l2) sn−2 + ⋯ + (a1 + ln−1) s + (a0 + ln) = 0

Notice the relationship between Eq. (12.67) and the characteristic equation, det (sI − A) = 0,
for the plant, which is

sn + an−1s
n−1 + an−2s

n−2 + ⋯ + a1s + a0 = 0

Thus, if desired, Eq. (12.67) can be written by inspection if the plant is represented in observer
canonical form. We now equate Eq. (12.67) with the desired closed-loop observer characteristic
equation, which is chosen on the basis of a desired transient response. Assume the desired
characteristic equation is

sn + dn−1s
n−1 + dn−2s

n−2 + ⋯ + d1s + d0 = 0

We can now solve for the li's by equating the coefficients of Eqs. (12.67) and (12.69):

li = dn−i − an−i i = 1, 2, … , n

Let us demonstrate the design of an observer using the observer canonical form. In subsequent
sections, we will show how to design the observer for other than observer canonical form.



(12.71)

(12.72a)

(12.72b)

(12.73)

(12.74)

(12.75)

Example 12.5 Observer Design for Observer Canonical Form
PROBLEM:
Design an observer for the plant

G (s) = =

which is represented in observer canonical form. The observer will respond 10 times faster
than the controlled loop designed in Example 12.4.

SOLUTION:

1. First represent the estimated plant in observer canonical form. The result is shown in
Figure 12.13(a).

2. Now form the difference between the plant's actual output, y, and the observer's
estimated output, ŷ , and add the feedback paths from this difference to the derivative
of each state variable. The result is shown in Figure 12.13(b).

3. Next find the characteristic polynomial. The state equations for the estimated plant
shown in Figure 12.13(a) are

˙̂x = Ax̂ + Bu =
⎡
⎢
⎣

−8 1 0
−17 0 1
−10 0 0

⎤
⎥
⎦

x̂ +
⎡
⎢
⎣

0
1
4

⎤
⎥
⎦
u

ŷ = Cx̂ = [ 1 0 0 ] x̂

From Eqs. (12.64) and (12.66), the observer error is

ėx = (A − LC) ex =
⎡
⎢
⎣

− (8 + l1) 1 0

− (17 + l2) 0 1

− (10 + l3) 0 0

⎤
⎥
⎦

ex

Using Eq. (12.65), we obtain the characteristic polynomial

s3 + (8 + l1) s2 + (17 + l2) s + (10 + l3)

4. Now evaluate the desired polynomial, set the coefficients equal to those of Eq. (12.74),
and solve for the gains, li. From Eq. (12.50), the closed-loop controlled system has
dominant second-order poles at −1 ± j2. To make our observer 10 times faster, we
design the observer poles to be at −10 ± j20. We select the third pole to be 10 times
the real part of the dominant second-order poles, or −100. Hence, the desired
characteristic polynomial is

(s + 100) (s2 + 20s + 500) = s3 + 120s2 + 2500s + 50,000

Equating Eqs. (12.74) and (12.75), we find l1 = 112, l2 = 2483, and l3 = 49,990.

(s + 4)
(s + 1) (s + 2) (s + 5)

s + 4
s3 + 8s2 + 17s + 10



FIGURE 12.13 a. Signal-flow graph of a system using observer canonical form
variables; b. additional feedback to create observer

A simulation of the observer with an input of r (t) = 100t is shown in Figure 12.14. The
initial conditions of the plant were all zero, and the initial condition of x̂1 was 0.5.



FIGURE 12.14 Simulation showing response of observer: a. closed-loop; b.
open-loop with observer gains disconnected

Since the dominant pole of the observer is −10 ± j20, the expected settling time should be
about 0.4 second. It is interesting to note the slower response in Figure 12.14(b), where the
observer gains are disconnected, and the observer is simply a copy of the plant with a
different initial condition.

 Students who are using MATLAB should now run ch12 apB4 in Appendix B. 

You will learn how to use MATLAB to design an observer using pole placement. 
This exercise solves Example 12.5 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


Skill-Assessment Exercise 12.4
PROBLEM:
Design an observer for the plant

G (s) =

whose estimated plant is represented in state space in observer canonical form as

˙̂x= Ax̂ + Bu =
⎡
⎢
⎣

−24 1 0
−191 0 1
−504 0 0

⎤
⎥
⎦

x̂ +
⎡
⎢
⎣

0
1
6

⎤
⎥
⎦
u

ŷ= Cx̂ =[ 1 0 0 ]x̂

The observer will respond 10 times faster than the controlled loop designed in Skill-
Assessment Exercise 12.3.

ANSWER:

L = [ 216 9730 383, 696 ]T , where T signifies vector transpose.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 12.3
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 12.4.

A=[−24  1  0
   −191  0  1
   −504  0  0]
C=[1  0  0]
pos=20
Ts=2
z=(−log(pos/100))/...
  (sqrt(pi^2 +...
  log(pos/100)^2));
wn=4/(z*Ts);
r=roots([1,2*z*wn,...
 wn^2]);
poles=10*[r' 10*...
 real(r(1))]
l=acker(A',C',poles)'

In this section, we designed an observer in observer canonical form that uses the output of a
system to estimate the state variables. In the next section, we examine the conditions under
which an observer cannot be designed.

12.6 Observability

(s + 6)
(s + 7) (s + 8) (s + 9)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_12.zip


Recall that the ability to control all of the state variables is a requirement for the design of a
controller. State-variable feedback gains cannot be designed if any state variable is
uncontrollable. Uncontrollability can be viewed best with diagonalized systems. The signal-flow
graph showed clearly that the uncontrollable state variable was not connected to the control
signal of the system.

A similar concept governs our ability to create a design for an observer. Specifically, we are using
the output of a system to deduce the state variables. If any state variable has no effect upon the
output, then we cannot evaluate this state variable by observing the output.

The ability to observe a state variable from the output is best seen from the diagonalized system.
Figure 12.15(a) shows a system where each state variable can be observed at the output since
each is connected to the output. Figure 12.15(b) is an example of a system where all state
variables cannot be observed at the output. Here x1 is not connected to the output and could not
be estimated from a measurement of the output. We now make the following definition based
upon the previous discussion:

If the initial-state vector, x(t0), can be found from u(t) and y(t) measured over a finite interval
of time from t0, the system is said to be observable; otherwise the system is said to be
unobservable.



(12.76)

FIGURE 12.15 Comparison of a. observable, and b. unobservable systems

Simply stated, observability is the ability to deduce the state variables from a knowledge of the
input, u(t), and the output, y(t). Pole placement for an observer is a viable design technique only
for systems that are observable. This section shows how to determine, a priori, whether or not
pole placement is a viable design technique for an observer.

Observability by Inspection
We can also explore observability from the output equation of a diagonalized system. The output
equation for the diagonalized system of Figure 12.15(a) is

y = Cx = [ 1 1 1 ] x

On the other hand, the output equation for the unobservable system of Figure 12.15(b) is



(12.77)

(12.78b)

(12.79)

(12.78a)

y = Cx = [ 0 1 1 ] x

Notice that the first column of Eq. (12.77) is zero. For systems represented in parallel form with
distinct eigenvalues, if any column of the output coupling matrix is zero, the diagonal system is
not observable.

The Observability Matrix
Again, as for controllability, systems represented in other than diagonalized form cannot be
reliably evaluated for observability by inspection. In order to determine observability for systems
under any representation or choice of state variables, a matrix can be derived that must have a
particular property if all state variables are to be observed at the output. We now state the
requirements for observability, including the form, property, and name of this matrix.

An nth-order plant whose state and output equations are, respectively,

ẋ = Ax + Bu

y = Cx

is completely observable7 if the matrix

OM =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

C

CA

⋮

CAn−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

is of rank n, where OM is called the observability matrix.8

The following two examples illustrate the use of the observability matrix.



(12.80a)

(12.80b)

(12.81)

Example 12.6 Observability via the Observability Matrix
PROBLEM:
Determine if the system of Figure 12.16 is observable.

FIGURE 12.16 System of Example 12.6

SOLUTION:
The state and output equations for the system are

ẋ = Ax + Bu =
⎡
⎢
⎣

0 1 0
0 0 1

−4 −3 −2

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y = Cx = [ 0 5 1 ] x

Thus, the observability matrix, OM, is

OM =
⎡
⎢
⎣

C

CA

CA
2

⎤
⎥
⎦

=
⎡
⎢
⎣

0 5 1
−4 −3 3

−12 −13 −9

⎤
⎥
⎦

Since the determinant of OM equals −344, OM is of full rank equal to 3. The system is thus
observable.

You might have been misled and concluded by inspection that the system is unobservable
because the state variable x1 is not fed directly to the output. Remember that conclusions
about observability by inspection are valid only for diagonalized systems that have distinct
eigenvalues.



 Students who are using MATLAB should now run ch12 apB5 in Appendix B. 

You will learn how to use MATLAB to test a system for observability. This 
exercise solves Example 12.6 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


(12.82a)

(12.82b)

(12.83)

Example 12.7 Unobservability via the Observability Matrix
PROBLEM:
Determine whether the system of Figure 12.17 is observable.

FIGURE 12.17 System of Example 12.7

SOLUTION:
The state and output equations for the system are

ẋ = Ax + Bu =[ 0 1
−5 −21/4

]x +[ 0
1
]u

y = Cx = [ 5 4 ] x

The observability matrix, OM, for this system is

OM =[ C

CA
]=[ 5 4

−20 −16
]

The determinant for this observability matrix equals 0. Thus, the observability matrix does
not have full rank, and the system is not observable.

Again, you might conclude by inspection that the system is observable because all states
feed the output. Remember that observability by inspection is valid only for a diagonalized
representation of a system with distinct eigenvalues.



Skill-Assessment Exercise 12.5
PROBLEM:
Determine whether the system

ẋ = Ax + Bu =
⎡
⎢
⎣

−2 −1 −3
0 −2 1

−7 −8 −9

⎤
⎥
⎦

x +
⎡
⎢
⎣

2
1
2

⎤
⎥
⎦
u

y = Cx = [ 4 6 8 ] x

is observable.

ANSWER:
Observable

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 12.4
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 12.5.

A=[−2  1  3
    0 −2  1
   −7 −8 −9]
C=[4 6 8]
Om=obsv(A,C)
Rank=rank(Om)

Now that we have discussed observability and the observability matrix, we are ready to talk
about the design of an observer for a plant not represented in observer canonical form.

12.7 Alternative Approaches to Observer Design
Earlier in the chapter, we discussed how to design controllers for systems not represented in
phase-variable form. One method is to match the coefficients of det [sI − (A − BK)] with the
coefficients of the desired characteristic polynomial. This method can yield difficult calculations
for higher-order systems. Another method is to transform the plant to phase-variable form,
design the controller, and transfer the design back to its original representation. The
transformations were derived from the controllability matrix.

In this section, we use a similar idea for the design of observers not represented in observer
canonical form. One method is to match the coefficients of det [sI − (A − LC)] with the
coefficients of the desired characteristic polynomial. Again, this method can yield difficult
calculations for higher-order systems. Another method is first to transform the plant to observer
canonical form so that the design equations are simple, then perform the design in observer
canonical form, and finally transform the design back to the original representation.

Let us pursue this second method. First we will derive the transformation between a system
representation and its representation in observer canonical form. Assume a plant not

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_12.zip


(12.84b)

(12.85)

(12.87a)

(12.87b)

(12.88)

(12.89)

(12.90a)

(12.84a)

(12.86)

represented in observer canonical form,

ż = Az + Bu

y = Cz

whose observability matrix is

OMz =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

C

CA

CA2

⋮

CAn−2

CAn−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

Now assume that the system can be transformed to the observer canonical form, x, with the
transformation

z = Px

Substituting Eq. (12.86) into Eqs. (12.84) and premultiplying the state equation by P−1, we find
that the state equations in observer canonical form are

ẋ = P−1APx + P−1Bu

y = CPx

whose observability matrix, OMx, is

OMx =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

CP

CP (P−1AP)

CP (P−1AP) (P−1AP)

⋮

CP (P−1AP) (P−1AP) ⋯ (P−1AP)

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

C

CA

CA2

⋮

CAn−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

P

Substituting Eq. (12.85) into (12.88) and solving for P, we obtain

P = O −1
Mz

OMx

Thus, the transformation, P, can be found from the two observability matrices.

After transforming the plant to observer canonical form, we design the feedback gains, Lx, as in
Section 12.5. Using the matrices from Eqs. (12.87) and the form suggested by Eqs. (12.64), we
have

ėx = (P−1AP − LxCP) ex



(12.90b)

(12.91a)

(12.91b)

(12.92)

y − ŷ = CPex

Since x = P−1z, and x̂ = P−1ẑ, then ex = x − x̂ = P−1ez. Substituting ex = P−1ez into Eqs.
(12.90) transforms Eqs. (12.90) back to the original representation. The result is

ėz = (A − PLxC) ez

y − ŷ = Cez

Comparing Eq. (12.91a) to (12.64a), we see that the observer gain vector is

Lz = LPx

We now demonstrate the design of an observer for a plant not represented in observer canonical
form. The first example uses transformations to and from observer canonical form. The second
example matches coefficients without the transformation. This method, however, can become
difficult if the system order is high.



(12.93)

(12.94a)

(12.94b)

(12.95)

(12.96)

(12.97b)

(12.98)

(12.97a)

Example 12.8 Observer Design by Transformation
PROBLEM:
Design an observer for the plant

G (s) =

represented in cascade form. The closed-loop performance of the observer is governed by
the characteristic polynomial used in Example 12.5: s3 + 120s2 + 2500s + 50,000.

SOLUTION:
First represent the plant in its original cascade form.

ż = Az + Bu =
⎡
⎢
⎣

−5 1 0
0 −2 1
0 0 −1

⎤
⎥
⎦

z +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

y = Cz = [ 1 0 0 ] z

The observability matrix, OMz, is

OMz =
⎡
⎢
⎣

C

CA

CA2

⎤
⎥
⎦

=
⎡
⎢
⎣

1 0 0
−5 1 0
25 −7 1

⎤
⎥
⎦

whose determinant equals 1. Hence, the plant is observable.

The characteristic equation for the plant is

det (sI − A) = s3 + 8s2 + 17s + 10 = 0

We can use the coefficients of this characteristic polynomial to form the observer canonical
form

ẋ = Axx + Bxu

y = Cxx

where

Ax =
⎡
⎢
⎣

−8 1 0
−17 0 1
−10 0 0

⎤
⎥
⎦

; Cx =[ 1 0 0 ]

The observability matrix for the observer canonical form is

1
(s + 1) (s + 2) (s + 5)



(12.99)

(12.100)

(12.101)

(12.102)

(12.103)

(12.104)

OMx =
⎡
⎢
⎣

Cx

CxAx

CxA2
x

⎤
⎥
⎦

=
⎡
⎢
⎣

1 0 0
−8 1 0
47 −8 1

⎤
⎥
⎦

We now design the observer for the observer canonical form. First form (Ax − LxCx),

Ax − LxCx =
⎡
⎢
⎣

−8 1 0
−17 0 1
−10 0 0

⎤
⎥
⎦

−
⎡
⎢
⎣

l1

l2

l3

⎤
⎥
⎦

[ 1 0 0 ]=
⎡
⎢
⎣

− (8 + l1) 1 0

− (17 + l2) 0 1

− (10 + l3) 0 0

⎤
⎥
⎦

whose characteristic polynomial is

det [sI − (Ax − LxCx)] = s3 + (8 + l1) s2 + (17 + l2) s + (10 + l3)

Equating this polynomial to the desired closed-loop observer characteristic equation, 
s3 + 120s2 + 2500s + 50,000, we find

Lx =
⎡
⎢
⎣

112
2483

49,990

⎤
⎥
⎦

Now transform the design back to the original representation. Using Eq. (12.89), the
transformation matrix is

P = O −1
Mz

OMx =
⎡
⎢
⎣

1 0 0
−3 1 0

1 −1 1

⎤
⎥
⎦

Transforming Lx to the original representation, we obtain

Lz = PLx =
⎡
⎢
⎣

112
2147

47,619

⎤
⎥
⎦

The final configuration is shown in Figure 12.18.



FIGURE 12.18 Observer design

A simulation of the observer is shown in Figure 12.19(a). To demonstrate the effect of the
observer design, Figure 12.19(b) shows the reduced speed if the observer is simply a copy of
the plant and all observer feedback paths are disconnected.



FIGURE 12.19 Observer design step response simulation: a. closed-loop
observer; b. open-loop observer with observer gains disconnected

 Students who are using MATLAB should now run ch12apB6 in Appendix B. You 

will learn how to use MATLAB to design an observer for a plant not represented 
in observer canonical form. You will see that MATLAB does not require 
transformation to observer canonical form. This exercise solves Example 12.8 
using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip


(12.105)

Example 12.9 Observer Design by Matching Coefficients
PROBLEM:
A time-scaled model for the body's blood glucose level is shown in Eq. (12.105). The output
is the deviation in glucose concentration from its mean value in mg/100 ml, and the input is
the intravenous glucose injection rate in g/kg/hr (Milhorn, 1966).

G (s) =

Design an observer for the phase variables with a transient response described by ζ = 0.7
and ωn = 100.

SOLUTION:
We can first model the plant in phase-variable form. The result is shown in Figure 12.20(a).

407 (s + 0.916)
(s + 1.27) (s + 2.69)



(12.106)

(12.107)

FIGURE 12.20 a. Plant; b. designed observer for Example 12.9

For the plant,

A =[ 0 1
−3.42 −3.96

]; C =[ 372.81 407 ]

Calculation of the observability matrix, OM = [ C CA ]T , shows that the plant is
observable and we can proceed with the design. Next find the characteristic equation of the
observer. First we have

A − LC=[ 0 1
−3.42 −3.96

]−[ l1
l2
][ 372.81 407 ]

=[
−372.81l1 (1 − 407l1)

−(3.42 + 372.81l2) − (3.96 + 407l2)
]



(12.108)

(12.109)

(12.110)

Now evaluate det [λI − (A − LC)] = 0 in order to obtain the characteristic equation:

det[λI − (A − LC)]= det[
(λ + 372.81l1) − (1 − 407l1)

(3.42 + 372.81l2) (λ + 3.96 + 407l2)
]

= λ2 + (3.96 + 372.81l1 + 407l2)λ + (3.42 + 84.39l1 + 372.81l2)

= 0

From the problem statement, we want ζ = 0.7 and ωn = 100. Thus,

λ2 + 140λ + 10,000 = 0

Comparing the coefficients of Eqs. (12.108) and (12.109), we find the values l1 and l2 to be
−38.397 and 35.506, respectively. Using Eq. (12.60), where

A=[ 0 1
−3.42 −3.96

];B =[ 0
1
];C =[ 372.81 407 ];

L =[−38.397
35.506

]

the observer is implemented and shown in Figure 12.20(b).



Skill-Assessment Exercise 12.6
PROBLEM:
Design an observer for the plant

G (s) =

whose estimated plant is represented in state space in cascade form as

˙̂z= Aẑ + Bu =
⎡
⎢
⎣

−7 1 0
0 −8 1
0 0 −9

⎤
⎥
⎦

ẑ +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u

ŷ= Cx̂ =[ 1 0 0 ]ẑ

The closed-loop step response of the observer is to have 10% overshoot with a 0.1 second
settling time.

ANSWER:

Lz =
⎡
⎢
⎣

456
28,640

1.54 × 106

⎤
⎥
⎦

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Now that we have explored transient response design using state-space techniques, let us turn to
the design of steady-state error characteristics.

12.8 Steady-State Error Design via Integral Control
In Section 7.8, we discussed how to analyze systems represented in state space for steady-state
error. In this section, we discuss how to design systems represented in state space for steady-
state error.

Consider Figure 12.21. The previously designed controller discussed in Section 12.2 is shown
inside the dashed box. A feedback path from the output has been added to form the error, e,
which is fed forward to the controlled plant via an integrator. The integrator increases the system
type and reduces the previous finite error to zero. We will now derive the form of the state
equations for the system of Figure 12.21 and then use that form to design a controller. Thus, we
will be able to design a system for zero steady-state error for a step input as well as design the
desired transient response.

1
(s + 7) (s + 8) (s + 9)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(12.112c)

(12.113a)

(12.113b)

(12.114)

(12.115a)

(12.115b)

(12.111)

(12.112a)

(12.112b)

FIGURE 12.21 Integral control for steady-state error design

An additional state variable, xN, has been added at the output of the leftmost integrator. The
error is the derivative of this variable. Now, from Figure 12.21,

ẋN = r − Cx

Writing the state equations from Figure 12.21, we have

ẋ = Ax + Bu

ẋN = −Cx + r

y = Cx

Equations (12.112) can be written as augmented vectors and matrices. Hence,

[ ẋ

ẋN
]=[ A 0

−C 0
][ x

xN
]+[B

0
]u +[ 0

1
]r

y =[ C 0 ][ x

xN
]

But

u = −Kx + KexN = −[ K −Ke ][ x

xN
]

Substituting Eq. (12.114) into (12.113a) and simplifying, we obtain

[ ẋ

ẋN
]=[ (A − BK) BKe

−C 0
][ x

xN
]+[ 0

1
]r

y =[ C 0 ][ x

xN
]



Thus, the system type has been increased, and we can use the characteristic equation associated
with Eq. (12.115a) to design K and Ke to yield the desired transient response. Realize, we now
have an additional pole to place. The effect on the transient response of any closed-loop zeros in
the final design must also be taken into consideration. One possible assumption is that the
closed-loop zeros will be the same as those of the open-loop plant. This assumption, which of
course must be checked, suggests placing higher-order poles at the closed-loop zero locations.
Let us demonstrate with an example.



(12.116a)

(12.116b)

(12.117)

(12.118)

(12.119)

(12.120a)

(12.120b)

(12.121)

Example 12.10 Design of Integral Control
PROBLEM:
Consider the plant of Eqs. (12.116):

ẋ =[ 0 1
−3 −5

]x +[ 0
1
]u

y = [ 1 0 ] x

a. Design a controller without integral control to yield a 10% overshoot and a settling time
of 0.5 second. Evaluate the steady-state error for a unit-step input.

b. Repeat the design of Part a using integral control. Evaluate the steady-state error for a
unit-step input.

SOLUTION:

a. Using the requirements for settling time and percent overshoot, we find that the
desired characteristic polynomial is

s2 + 16s + 183.1

Since the plant is represented in phase-variable form, the characteristic polynomial for
the controlled plant with state-variable feedback is

s2 + (5 + k2) s + (3 + k1)

Equating the coefficients of Eqs. (12.117) and (12.118), we have

K = [ k1 k2 ] = [ 180.1 11 ]

From Eqs. (12.3), the controlled plant with state-variable feedback represented in
phase-variable form is

ẋ = (A − BK) x + Br =[ 0 1
−183.1 −16

]x +[ 0
1
]r

y = Cx = [ 1 0 ] x

Using Eq. (7.96), we find that the steady-state error for a step input is

e (∞)= 1 + C(A − BK)−1
B

= 1 +[ 1 0 ][ 0 1
−183.1 −16

]
−1

[ 0
1
]

= 0.995

b. We now use Eqs. (12.115) to represent the integral-controlled plant as follows:



(12.122a)

(12.122b)

(12.123)

(12.124)

(12.125c)

(12.126a)

(12.126b)

(12.125a)

(12.125b)

⎡
⎢
⎣

ẋ1

ẋ2

ẋN

⎤
⎥
⎦

=
⎡
⎢
⎣

([ 0 1
−3 −5

]−[ 0
1
][ k1 k2 ]) [ 0

1
]Ke

−[ 1 0 ] 0

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

xN

⎤
⎥
⎦

+
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

=
⎡
⎢
⎣

0 1 0
− (3 + k1) − (5 + k2) Ke

−1 0 0

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

xN

⎤
⎥
⎦

+
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

y =[ 1 0 0 ]
⎡
⎢
⎣

x1

x2

xN

⎤
⎥
⎦

Using Eq. (3.73) and the plant of Eqs. (12.116), we find that the transfer function of the
plant is G (s) = 1/ (s2 + 5s + 3). The desired characteristic polynomial for the closed-loop
integral-controlled system is shown in Eq. (12.117). Since the plant has no zeros, we assume
no zeros for the closed-loop system and augment Eq. (12.117) with a third pole, (s + 100),
which has a real part greater than five times that of the desired dominant second-order
poles. The desired third-order closed-loop system characteristic polynomial is

(s + 100) (s2 + 16s + 183.1) = s3 + 116s2 + 1783.1s + 18,310

The characteristic polynomial for the system of Eqs. (12.112) is

s3 + (5 + k2) s2 + (3 + k1) s + Ke

Matching coefficients from Eqs. (12.123) and (12.124), we obtain

k1 = 1780.1

k2 = 111

ke = 18,310

Substituting these values into Eqs. (12.122) yields this closed-loop integral-controlled
system:

⎡
⎢
⎣

ẋ1

ẋ2

ẋN

⎤
⎥
⎦

=
⎡
⎢
⎣

0 1 0
−1783.1 −116 18,310

−1 0 0

⎤
⎥
⎦

⎡
⎢
⎣

x1

x2

xN

⎤
⎥
⎦

+
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
r

y =[ 1 0 0 ]
⎡
⎢
⎣

x1

x2

xN

⎤
⎥
⎦

In order to check our assumption for the zero, we now apply Eq. (3.73) to Eqs. (12.126) and
find the closed-loop transfer function to be



(12.127)

(12.128)

T (s) =

Since the transfer function matches our design, we have the desired transient response.

Now let us find the steady-state error for a unit-step input. Applying Eq. (7.96) to Eqs.
(12.126), we obtain

e (∞) = 1 +[ 1 0 0 ]
⎡
⎢
⎣

0 1 0
−1783.1 −116 18,310

−1 0 0

⎤
⎥
⎦

−1
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦

= 0

Thus, the system behaves like a Type 1 system.

Skill-Assessment Exercise 12.7
PROBLEM:
Design an integral controller for the plant

ẋ=[ 0 1
−7 −9

]x +[ 0
1
]u

y=[ 4 1 ]x

to yield a step response with 10% overshoot, a peak time of 2 seconds, and zero steady-state
error.

ANSWER:

K = [ 2.21 −2.7 ] , Ke = 3.79

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Now that we have designed controllers and observers for transient response and steady-state
error, we summarize the chapter with a case study demonstrating the design process.

18,310
s3 + 116s2 + 1783.1s + 18,310

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Case Studies Antenna Control: Design of Controller and Observer

 In this case study, we use our ongoing antenna azimuth position control system to
demonstrate the combined design of a controller and an observer. We will assume that the
states are not available and must be estimated from the output. The block diagram of the
original system is shown in Appendix A2, Configuration 1. Arbitrarily setting the
preamplifier gain to 200 and removing the existing feedback, the forward transfer function
is simplified to that shown in Figure 12.22.

FIGURE 12.22 Simplified block diagram of antenna control system shown in
Appendix A2 (Configuration 1) with K 200

The case study will specify a transient response for the system and a faster transient
response for the observer. The final design configuration will consist of the plant, the
observer, and the controller, as shown conceptually in Figure 12.23. The design of the
observer and the controller will be separate.

FIGURE 12.23 Conceptual state-space design configuration, showing plant,
observer, and controller

PROBLEM:
Using the simplified block diagram of the plant for the antenna azimuthposition control
system shown in Figure 12.22, design a controller to yield a 10% overshoot and a settling



(12.129)

(12.130)

(12.131a)

(12.131b)

(12.132)

time of 1 second. Place the third pole 10 times as far from the imaginary axis as the second-
order dominant pair.

Assume that the state variables of the plant are not accessible and design an observer to
estimate the states. The desired transient response for the observer is a 10% overshoot and
a natural frequency 10 times as great as the system response above. As in the case of the
controller, place the third pole 10 times as far from the imaginary axis as the observer's
dominant second-order pair.

SOLUTION:
Controller Design: We first design the controller by finding the desired characteristic
equation. A 10% overshoot and a settling time of 1 second yield ζ = 0.591 and ωn = 6.77.
Thus, the characteristic equation for the dominant poles is s2 + 8s + 45.8 = 0, where the
dominant poles are located at −4 ± j5.46. The third pole will be 10 times as far from the
imaginary axis, or at −40. Hence, the desired characteristic equation for the closed-loop
system is

(s2 + 8s + 45.8) (s + 40) = s3 + 48s2 + 365.8s + 1832 = 0

Next we find the actual characteristic equation of the closed-loop system. The first step is to
model the closed-loop system in state space and then find its characteristic equation. From
Figure 12.22, the transfer function of the plant is

G (s) = =

Using phase variables, this transfer function is converted to the signal-flow graph shown in
Figure 12.24, and the state equations are written as follows:

ẋ =
⎡
⎢
⎣

0 1 0
0 0 1
0 −171 −101.71

⎤
⎥
⎦

x +
⎡
⎢
⎣

0
0
1

⎤
⎥
⎦
u = Ax + Bu

y = [ 1325 0 0 ] x = Cx

We now pause in our design to evaluate the controllability of the system. The controllability
matrix, CM, is

CM =[ B AB A2B ]
⎡
⎢
⎣

0 0 1
0 1 −101.71
1 −101.71 10,173.92

⎤
⎥
⎦

The determinant of CM is −1; thus, the system is controllable.

1325
s (s + 1.71) (s + 100)

1325
s (s2 + 101.71s + 171)



(12.133)

(12.134)

(12.135a)

(12.135b)

(12.135c)

FIGURE 12.24 Signal-flow graph for G (s) = 1325/ [s (s2 + 101.71s + 171)]

FIGURE 12.25 Plant with state-variable feedback for controller design

Continuing with the design of the controller, we show the controller's configuration with the
feedback from all state variables in Figure 12.25. We now find the characteristic equation of
the system of Figure 12.25. From Eqs. (12.7) and (12.131a), the system matrix, A − BK, is

A − BK =
⎡
⎢
⎣

0 1 0
0 0 1

−k1 − (171 + k2) − (101.71 + k3)

⎤
⎥
⎦

Thus, the closed-loop system's characteristic equation is

det [sI − (A − BK)] = s3 + (101.71 + k3) s2 + (171 + k2) s + k1 = 0

Matching the coefficients of Eq. (12.129) with those of Eq. (12.134), we evaluate the ki's as
follows:

k1 = 1832

k2 = 194.8

k3 = −53.71



(12.136)

(12.137)

(12.138)

(12.139)

(12.140)

(12.141a)

(12.141b)

(12.141c)

Observer Design: Before designing the observer, we test the system for observability.
Using the A and C matrices from Eqs. (12.131), the observability matrix, OM, is

OM =
⎡
⎢
⎣

C

CA

CA
2

⎤
⎥
⎦

=
⎡
⎢
⎣

1325 0 0
0 1325 0
0 0 1325

⎤
⎥
⎦

The determinant of OM is 13253. Thus, OM is of rank 3, and the system is observable.

We now proceed to design the observer. Since the order of the system is not high, we will
design the observer directly without first converting to observer canonical form. From Eq.
(12.64a), we need first to find A − LC. A and C from Eqs. (12.131) along with

L =
⎡
⎢
⎣

l1

l2

l3

⎤
⎥
⎦

are used to evaluate A − LC as follows:

A − LC =
⎡
⎢
⎣

−1325l1 1 0
−1325l2 0 1
−1325l3 −171 −101.71

⎤
⎥
⎦

The characteristic equation for the observer is now evaluated as

det [λI − (A − LC)] = λ3 + (1325l1 + 101.71) λ2

+(134,800l1 + 1325l2 + 171) λ

+ (226,600l1 + 134,800l2 + 1325l3)

= 0

From the problem statement, the poles of the observer are to be placed to yield a 10%
overshoot and a natural frequency 10 times that of the system's dominant pair of poles.
Thus, the observer's dominant poles yield 
[s2 + (2 × 0.591 × 67.7)s + 67.72] = (s2 + 80s + 4583). The real part of the roots of this
polynomial is −40. The third pole is then placed 10 times farther from the imaginary axis at
−400. The composite characteristic equation for the observer is

(s2 + 80s + 4583) (s + 400) = s3 + 480s2 + 36,580s + 1,833,000 = 0

Matching coefficients from Eqs. (12.139) and (12.140), we solve for the observer gains:

l1 = 0.286

l2 = −1.57

l3 = 1494

Figure 12.26, which follows the general configuration of Figure 12.23, shows the completed
design, including the controller and the observer.



FIGURE 12.26 Completed state-space design for the antenna azimuth
position control system, showing controller and observer



FIGURE 12.27 Designed response of antenna azimuth position control
system: a. impulse response—plant and observer with the same initial
conditions, x1 (0) = x̂1 (0) = 0; b. portion of impulse response—plant and
observer with different initial conditions, x̂1 (0) = 0.006 for the plant, 
x̂1 (0) = 0 for the observer

The results of the design are shown in Figure 12.27. Figure 12.27(a) shows the impulse
response of the closed-loop system without any difference between the plant and its
modeling as an observer. The undershoot and settling time approximately meet the
requirements set forth in the problem statement of 10% and 1 second, respectively. In
Figure 12.27(b), we see the response designed into the observer. An initial condition of
0.006 was given to x1 in the plant to make the modeling of the plant and observer different.
Notice that the observer's response follows the plant's response by the time 0.06 second is
reached.

CHALLENGE:



You are now given a case study to test your knowledge of this chapter's objectives: You are
given the antenna azimuth position control system shown in Appendix A2, Configuration 3.
If the preamplifier gain K = 20, do the following:

a. Design a controller to yield 15% overshoot and a settling time of 2 seconds. Place the
third pole 10 times as far from the imaginary axis as the second-order dominant pole
pair. Use physical variables as follows: power amplifier output, motor angular velocity,
and motor displacement.

b. Redraw the schematic shown in Appendix A2, showing a tachometer that yields rate
feedback along with any added gains or attenuators required to implement the state-
variable feedback gains.

c. Assume that the tachometer is not available to provide rate feedback. Design an
observer to estimate the physical variables' states. The observer will respond with 10%
overshoot and a natural frequency 10 times as great as the system response. Place the
observer's third pole 10 times as far from the imaginary axis as the observer's dominant
second-order pole pair.

d. Redraw the schematic in Appendix A2, showing the implementation of the controller
and the observer.

e.  Repeat Parts a and c using MATLAB.

Summary
This chapter has followed the path established by Chapters 9 and 11—control system design.
Chapter 9 used root locus techniques to design a control system with a desired transient
response. Sinusoidal frequency response techniques for design were covered in Chapter 11, and
in this chapter, we used state-space design techniques.

State-space design consists of specifying the system's desired pole locations and then designing a
controller consisting of state-variable feedback gains to meet these requirements. If the state
variables are not available, an observer is designed to emulate the plant and provide estimated
state variables.

Controller design consists of feeding back the state variables to the input, u, of the system
through specified gains. The values of these gains are found by matching the coefficients of the
system's characteristic equation with the coefficients of the desired characteristic equation. In
some cases, the control signal, u, cannot affect one or more state variables. We call such a system
uncontrollable. For this system, a total design is not possible. Using the controllability matrix, a
designer can tell whether or not a system is controllable prior to the design.

Observer design consists of feeding back the error between the actual output and the estimated
output. This error is fed back through specified gains to the derivatives of the estimated state
variables. The values of these gains are also found by matching the coefficients of the observer's
characteristic equation with the coefficients of the desired characteristic equation. The response
of the observer is designed to be faster than that of the controller, so the estimated state
variables effectively appear instantaneously at the controller. For some systems, the state
variables cannot be deduced from the output of the system, as is required by the observer. We
call such systems unobservable. Using the observability matrix, the designer can tell whether or
not a system is observable. Observers can be designed only for observable systems.

Finally, we discussed ways of improving the steady-state error performance of systems
represented in state space. The addition of an integration before the controlled plant yields
improvement in the steady-state error. In this chapter, this additional integration was
incorporated into the controller design.



Three advantages of state-space design are apparent. First, in contrast to the root locus method,
all pole locations can be specified to ensure a negligible effect of the nondominant poles upon the
transient response. With the root locus, we were forced to justify an assumption that the
nondominant poles did not appreciably affect the transient response. We were not always able to
do so. Second, with the use of an observer, we are no longer forced to acquire the actual system
variables for feedback. The advantage here is that sometimes the variables cannot be physically
accessed, or it may be too expensive to provide that access. Finally, the methods shown lend
themselves to design automation using the digital computer.

A disadvantage of the design methods covered in this chapter is the designer's inability to design
the location of open- or closed-loop zeros that may affect the transient response. In root locus or
frequency response design, the zeros of the lag or lead compensator can be specified. Another
disadvantage of state-space methods concerns the designer's ability to relate all pole locations to
the desired response; this relationship is not always apparent. Also, once the design is
completed, we may not be satisfied with the sensitivity to parameter changes.

Finally, as previously discussed, state-space techniques do not satisfy our intuition as much as
root locus techniques, where the effect of parameter changes can be immediately seen as changes
in closed-loop pole locations.

In the next chapter, we return to the frequency domain and design digital systems using gain
adjustment and cascade compensation.

Review Questions
1. Briefly describe an advantage that state-space techniques have over root locus techniques in

the placement of closed-loop poles for transient response design.

2. Briefly describe the design procedure for a controller.

3. Different signal-flow graphs can represent the same system. Which form facilitates the
calculation of the variable gains during controller design?

4. In order to effect a complete controller design, a system must be controllable. Describe the
physical meaning of controllability.

5. Under what conditions can inspection of the signal-flow graph of a system yield immediate
determination of controllability?

6. In order to determine controllability mathematically, the controllability matrix is formed,
and its rank evaluated. What is the final step in determining controllability if the
controllability matrix is a square matrix?

7. What is an observer?

8. Under what conditions would you use an observer in your state-space design of a control
system?

9. Briefly describe the configuration of an observer.

10. What plant representation lends itself to easier design of an observer?

11. Briefly describe the design technique for an observer, given the configuration you described
in Question 9.

12. Compare the major difference in the transient response of an observer to that of a
controller. Why does this difference exist?

13. From what equation do we find the characteristic equation of the controller-compensated
system?

14. From what equation do we find the characteristic equation of the observer?



15. In order to effect a complete observer design, a system must be observable. Describe the
physical meaning of observability.

16. Under what conditions can inspection of the signal-flow graph of a system yield immediate
determination of observability?

17. In order to determine observability mathematically, the observability matrix is formed and
its rank evaluated. What is the final step in determining observability if the observability
matrix is a square matrix?

Cyber Exploration Laboratory

EXPERIMENT 12.1
Objective
To simulate a system that has been designed for transient response via a state-space controller
and observer.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox

Prelab

1. This experiment is based upon your design of a controller and observer as specified in the
Case Study Challenge problem in Chapter 12. Once you have completed the controller and
observer design in that problem, go on to Prelab 2.

2. What is the controller gain vector for your design of the system specified in the Case Study
Challenge problem in Chapter 12?

3. What is the observer gain vector for your design of the system specified in the Case Study
Challenge problem in Chapter 12?

4. Draw a Simulink diagram to simulate the system. Show the system, the controller, and the
observer using the physical variables specified in the Case Study Challenge problem in
Chapter 12.

Lab

1. Using Simulink and your diagram from Prelab 4, produce the Simulink diagram from which
you can simulate the response.

2. Produce response plots of the system and the observer for a step input.

3. Measure the percent overshoot and the settling time for both plots.

Postlab

1. Make a table showing the design specifications and the simulation results for percent
overshoot and settling time.

2. Compare the design specifications with the simulation results for both the system response
and the observer response. Explain any discrepancies.

3. Describe any problems you had implementing your design.

EXPERIMENT 12.2



Objective
To use LabVIEW to design a controller and observer

Minimum Required Software Packages
LabVIEW, the Control Design and Simulation Module, and the MathScript RT Module.

Prelab
Create a LabVIEW VI that will design the controller and observer for the Antenna Control Case
Study in this chapter. Your VI will have the following inputs: phase-variable form of the plant,
the controller poles, and the observer poles to meet the requirements. Your indicators will
display the following: the phase-variable equation of the plant, whether or not the system is
controllable, the observer canonical equation of the observer, whether or not the system is
observable, the gains for the controller, and the gains for the observer. Also provide the impulse
response and initial response curves shown in Figure 12.27. In addition, provide similar
response curves for the state variables.

Lab
Run your VI and collect the data from which to compare the results of the case study with those
found from your VI.

Postlab
Compare and summarize the results found from your VI with those of the Chapter 12 Antenna
Control Case Study.
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Notes
1 Tadeo F., Perez, Loepez O., and Alvarez T. Control of Neutralization Processes by Robust

Loopsharing. IEEE Trans. on Cont. Syst. Tech., vol. 8, no. 2, 2000. Fig. 2, p. 239. IEEE
Transactions on Control Systems Technology by Institute of Electrical and Electronics
Engineers; IEEE Control Systems Society Reproduced with permission of Institute of
Electrical and Electronics Engineers, in the format Republish in a book via Copyright
Clearance Center.

2 This is an advantage as long as we know where to place the higher-order poles, which is not
always the case. One course of action is to place the higher-order poles far from the dominant
second-order poles or near a closed-loop zero to keep the second-order system design valid.
Another approach is to use optimal control concepts, which are beyond the scope of this text.

3 See the work listed in the Bibliography by Ogata (1990: 699–702) for the derivation.

4 Completely controllable means that all state variables are controllable. This textbook uses
controllable to mean completely controllable.

5 See Appendix G at www.wiley.com/go/Nise/ControlSystemsEngineering8e for the definition
of rank. For single-input systems, instead of specifying rank n, we can say that CM must be
nonsingular, possess an inverse, or have linearly independent rows and columns.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


6 See the discussions of Ackermann's formula in (Franklin, 1994) and (Ogata, 1990), listed in
the Bibliography.

7 Completely observable means that all state variables are observable. This textbook uses
observable to mean completely observable.

8 See Ogata (1990: 706–708) for a derivation.
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Chapter 13 Problems
1. Derive the z-transforms for the time functions listed below.
Do not use any z-transform tables. Use the plan f(t) → f*(t) → F*

(s) → F(z), followed by converting F(z) into closed form making
use of the fact that 1/(1 − z−1) = 1 + z−1 + z−2 + z−3 + ⋯. Assume
ideal sampling. [Section: 13.3]

a. e−atu(t)

b. u(t)

c. t2e−atu(t)

d. cos ωt u(t)

2.  Repeat all parts of Problem 1 using MATLAB and
MATLAB's Symbolic Math Toolbox.

3. Use partial-fraction expansions to find f(kT) for each of the
following transfer functions: [Section: 13.3]

a. F (z) =

b. F (z) =

c. F (z) =

4.  Use MATLAB’s Symbolic Math Toolbox to solve all
parts of Problem 3.

5. Using partial-fraction expansion and Table 13.1, find the z-
transform for each G(s) shown below if T = 0.5 second. [Section:
13.3]

a. G (s) =

 b. G (s) =

z(z+2)(z+4)

(z−0.3)(z−0.5)(z−0.7)

(z+0.3)(z+0.5)

(z−0.2)(z−0.6)(z−0.8)

(z+1)(z+0.2)(z+0.5)

z(z−0.1)(z−0.6)(z−0.9)

(s+4)

(s+2)(s+5)

(s+1)(s+2)

s(s+3)(s+4)



Check Answer!

c. G (s) =

d. G (s) =

6.  Repeat all parts of Problem 5 using MATLAB and
MATLAB's Symbolic Math Toolbox.

 7. Find G(z) = C(z)/R(z) for each of the block diagrams
shown in Figure P13.1 if T = 0.3 second. [Section: 13.4]

FIGURE P13.1

Check Answer!

 8. Find T(z) = C(z)/R(z) for each of the systems shown in
Figure P13.2. [Section: 13.5]

FIGURE P13.2

20
(s+3)(s2+6s+25)

15
s(s+1)(s2+10s+81)



Check Answer!

9. Find the closed-loop transfer function, T(z) = C(z)/R (z), for
the system shown in Figure P13.3. [Section: 13.5]

FIGURE P13.3

10.  Write a MATLAB program that can be used to find
the range of sampling time, T, for stability. The program

will be used for systems of the type represented in Figure

P13.4 and should meet the following requirements:

a. MATLAB will convert G1(s) cascaded with a sample-and-
hold to G(z).

b. The program will calculate the z-plane roots of the
closed-loop system for a range of T and determine the

value of T, if any, below which the system will be

stable. MATLAB will display this value of T along with

the z-plane poles of the closed-loop transfer function.

Test the program on

G1(s) =
20(s + 6)

(s + 1)(s + 3)(s + 4)(s + 8)



FIGURE P13.4

11. Find the range of sampling interval, T, for which the system
in Figure P13.5 is closed-loop stable. [Section: 13.6]

FIGURE P13.5

12. Find the range of gain, K, to make the system shown in
Figure P13.6 stable. [Section: 13.6]

FIGURE P13.6

 13. Find the static error constants and the steady-state
error for each of the digital systems shown in Figure P13.7 if the
inputs are [Section: 13.7]

a. u(t)

b. tu(t)

c. t
2
u (t)1

2



FIGURE P13.7

Check Answer!

14.  Write a MATLAB program that can be used to find
Kp, Kv, and Ka for digital systems. The program will be

used for systems of the type represented in Figure P13.4.

Test your program for

G (z) =
0.04406z3 − 0.03624z2 − 0.03284z + 0.02857

z4 − 3.394z3 + 4.29z2 − 2.393z + 0.4966



where G(z) is the pulse transfer function for G1(s) in

cascade with the z.o.h. and T = 0.1 second.

15. For the digital system shown in Figure P13.4, where G1(s) =
K/[(s + 1) (s + 5)], find the value of K to yield a 15% overshoot.
Also find the range of K for stability. Let T = 0.1 second.
[Section: 13.9]

16.  Use Simulink to simulate the step response for
the system of Problem 15. Set the value of gain, K, to that

designed in Problem 15 for 15% overshoot.

17.  Write a MATLAB program that can be used to design
the gain of a digital control system to meet a percent

overshoot requirement. The program will be used for systems

of the type represented in Figure P13.4 and meet the

following requirements:

a. The user will input the desired percent overshoot.

b. MATLAB will convert G1(s) cascaded with the sample-
and-hold to G(z).

c. MATLAB will display the root locus on the z-plane
along with an overlay of the percent overshoot curve.

d. The user will click with the mouse at the
intersection of the root locus and percent overshoot

overlay and MATLAB will respond with the value of gain

followed by a display of the step response of the

closed-loop system.

Apply your program to Problem 15 and compare results.

18. Let G1 = K/(s(s + 1)) in Figure P13.4. Find the range of K for
closed-loop stability. Also, find the value of K that will result in a
peak time of 1.5 seconds if the sampling interval is T = 0.1
second. [Section: 13.9]

19. In Figure P13.4 assume G1(s) = (K(s + 3))/(s(s + 1) (s + 4)).
It is desired to have a settling time of 10 seconds when the

file:///C:/Users/Gamer/AppData/Local/Temp/calibre_u4bt6w/lqympk_pdf_out/OPS/c13a.xhtml


sampling interval, T, is 0.5 second. Find the required value of K
as well as the range of K for closed-loop stability. [Section: 13.9]

20. A PID controller was designed in Example 9.5 for a
continuous system with unity feedback. The system's plant was

G (s) =

The designed PID controller was

Gc (s) = 4.6

Find the digital transfer function, Gc(z), of the PID controller in
order for the system to be computer controlled if the sampling
interval, T, is 0.005 second. [Section: 13.10]

21. A unity-feedback system has a continuous transfer function

G (s) =

Design a lead compensator so the system is computer
controlled in closed loop with the following specifications:
[Section: 13.10]

Percent overshoot: 10%

Settling time: 2 seconds

Sampling interval: 0.05 second

22.  Solve Problem 21 using MATLAB.

DESIGN PROBLEMS
 23. a. Convert the heading control for the UFSS vehicle

shown in Appendix A3 (Johnson, 1980) into a digitally

(s + 8)

(s + 3) (s + 6) (s + 10)

(s + 55.92) (s + 0.5)

s

1

s (s + 4) (s + 10)



controlled system.

Check Answer!

b. Find the closed-loop pulse transfer function, T(z), if T = 0.1
second.

c. Find the range of heading gain to keep the digital system
stable.

24. In Problem 37, Chapter 9, a steam-driven turbine-governor
system was implemented by a unity-feedback system with a
forward-path transfer function (Khodabakhshian, 2005)

G (s) =

a. Use a sampling period of T = 0.5 s and find a discrete
equivalent for this system.

b.  Use MATLAB to draw the root locus.

c. Find the value of K that will result in a stable system with
a damping factor of ζ = 0.7.

d. Use the root locus found in Part a to predict the step-
response settling time, Ts, and peak time, Tp.

e. Calculate the final value of the closed-loop system unit
step response.

f.  Obtain the step response of the system using
Simulink. Verify the predictions you made in Parts c
and d.

25.  Given

G(s) =

K

(s + 0.08) (s + 2) (s + 5)

8

s + 4



Use the LabVIEW Control Design and Simulation Module to (1)

convert G(s) to a digital transfer function using a

sampling rate of 0.25 second; and (2) plot the step

responses of the discrete and the continuous transfer

functions.

26.  Given

G(z) =

 Use the LabVIEW Control Design and Simulation Module
and the MathScript RT Module to (1) obtain the value of K

that will yield a damping ratio of 0.5 for the closed-loop

system in Figure 13.20, where H(z)=1; and (2) display the

step response of the closed-loop system in Figure 13.20

where H(z) = 1. Compare your results with those of Skill-

Assessment Exercise 13.8.

27. The purpose of an artificial pacemaker is to regulate heart
rate in those patients in which the natural feedback system
malfunctions. Assume a unity-feedback system with a forward
path,

G(s) =

as a simplified model of a pacemaker (Neogi, 2010).

a. Convert the pacemaker model to a discrete system with a
sampling rate of 0.01 second.

b. Draw the root locus of the system using a computer
program.

c. Use the root locus in Part b to find the range of k for
which the system is closed-loop stable.

d. Use the root locus from Part b to find the value of k that
will yield a 5% overshoot for a step input.

K(z + 0.5)

(z − 0.25)(z − 0.75)

1352k

s(s + 8)(s + 20)



e. Simulate the unit step input of your discretized system to
verify your design.

28. A linear model of the α-subsystem of a grid-connected
voltage-source converter with a Y-Y transformer (Mahmood,
2012) was presented in Problem 52, Chapter 8, and Problem 40,
Chapter 10. The system was represented with unity-feedback
and a forward path consisting of the cascading of a compensator
and a plant. The plant is given by

GP (s) = =

This system is now to be digitally controlled with the following
specifications: percent overshoot, %OS = 10%; settling time, TS
= 0.1 second; and sampling interval, T = 0.001 second. Design a
lead compensator for that system to meet these specifications.
[Section: 13.10]

PROGRESSIVE ANALYSIS AND DESIGN
PROBLEMS

29. Control of HIV/AIDS. In Chapter 11, a continuous
cascaded compensator for a unity-feedback system was designed
for the treatment of the HIV-infected patient treated with RTIs
(Craig, 2004). The transfer function of the designed
compensator was

Gc (s) =

The linearized plant was given by

P (s) = =

Vα(s)

Mα(s)

(s + 2200)

(s + 220)(s2 + 120s + 16 × 106)

−2 × 10−4 (s
2 + 0.04s + 0.0048)

s (s + 0.02)

Y (s)

U1 (s)

−520s − 10.3844

s3 + 2.6817s2 + 0.11s + 0.0126



The compensated system is overdamped with an approximate
settling time of 100 seconds. This system must be discretized
for practical reasons: (1) HIV patient cannot be monitored
continuously and (2) medicine dosage cannot be adjusted
continuously.

a. Show that a reasonable sampling period for this system is
T = 8 days (medicine dosage will be updated on a weekly
basis).

b. Use Tustin's method and T = 8 days to find a discrete
equivalent to Gc(s).

c.  Use Simulink to simulate the continuous and
discrete compensated systems for a unit step input.

Plot both responses on the same graph.

30.  Hybrid vehicle. Hybrid vehicle In Problem 50,
Chapter 7 (Figure P7.25), the block diagram of a cascade scheme
for the speed control of an HEV (Preitl, 2007) was represented
as a unity-feedback system. In that diagram the output of the
system is the speed transducer's output voltage, C(s) = KssV(s).
In Part b of Problem 24, Chapter 11, where a compensator was
designed for this problem, we discussed the feasibility of
achieving full pole–zero cancellation when we place a PI speed
controller's zero, ZI, on top of the uncompensated system's real
pole, closest to the origin (located at −0.0163). Noting that
perfect pole–zero cancellation may not be maintained, we
studied a case where the PI-controller's zero changed by +20%,
moving to −0.01304. In that case, the transfer function of the
plant with a PI speed controller, which has a proportional gain =
K, was given by

G(s) =

Assuming that G1(s) in Figure P13.4 equals the transfer
function, G(s), given above for the vehicle with the speed

K(s + 0.6)(s + 0.01304)

s(s + 0.0163)(s + 0.5858)



controller:

a. Develop a MATLAB M-file that would allow you to do
the following: (Hint: Refer to the M-files you

developed for Problems 10 and 17 of this chapter)

(1) Convert G1(s) cascaded with a sample-and-hold

to G(z).

(2) Search over the range 0 < T < 5 seconds for the

largest sampling period Tmax below which the system

is stable. Calculate the z-plane roots of the

closed-loop system for the whole range of the

sampling time, T. Subsequently set T = 0.75Tmax.

(3) Design the gain of a digital control system to

meet a percent overshoot requirement, %OS, allowing

the user to input the value of the desired %OS and

the value of the PI speed controller's proportional

gain, K.

(4) Plot the step response of that digital system

(in per unit, p. u., vs. time in seconds).

b. Run the M-file you developed in Part a and enter the
values of the desired percent overshoot, %OS = 0, and

the PI speed controller's proportional gain, K = 61.

c. Select a point in the graphics window displaying the
root locus, such that all poles of the closed-loop

transfer function, Tz, are inside the unit circle.

d. Write the sampled-data transfer functions obtained,
Gz and Tz, indicating the corresponding value of the

sampling time, T, and all poles, r, of the closed-loop

transfer function, Tz.

e. Plot the step response of that digital system (in
per unit, p. u., vs. time in seconds) noting the

following characteristics: final value, rise time, and

settling time.



31. Parabolic trough collector. In Problem 25, Chapter 11, a
zero steady-state error for a unit step input was achieved
through the design of a lag compensator with integral control. In
that problem, the open-loop transmission can be written as L(s)
= Gc(s)G(s), where the parabolic trough plant is given by
(Camacho, 2012)

G(s) = e
−39s

and the lag compensator is given by

Gc(s) = 1.12

We want to substitute for the continuous compensator with a
digital one.

a. Find a suitable sampling period for the system.

b. Find the equivalent compensator's transfer function in z-
domain.

c.  Use Simulink to simulate the digital
compensator with the continuous plant. Compare the

resulting response with that of the original system

using the continuous compensator on the same graph.

137.2 × 10−6

s2 + 0.0224s + 196 × 10−6

(s + 0.01)

s



Chapter 13 Readings

Chapter Learning Outcomes
After completing this chapter the student will be able to:

Model the digital computer in a feedback system (Sections 13.1–13.2)

Find z- and inverse z-transforms of time and Laplace functions (Section 13.3)

Find sampled-data transfer functions (Section 13.4)

Reduce an interconnection of sampled-data transfer functions to a single sampled-data transfer
function (Section 13.5)

Determine whether a sampled-data system is stable and determine sampling rates for stability
(Section 13.6)

Design digital systems to meet steady-state error specification (Section 13.7)

Design digital systems to meet transient response specifications using gain adjustment (Sections
13.8–13.9)

Design cascade compensation for digital systems (Sections 13.10–13.11)

Case Study Learning Outcomes
You will be able to demonstrate your knowledge of the chapter objectives with a case study as
follows:

Given the analog antenna azimuth position control system shown in Appendix A2 and in Figure
13.1(a), you will be able to convert the system to a digital system as shown in Figure 13.1(b) and
then design the gain to meet a transient response specification.

Given the digital antenna azimuth position control system shown in Figure 13.1(b), you will be
able to design a digital cascade compensator to improve the transient response.



FIGURE 13.1 Conversion of antenna azimuth position control system from a. analog
control to b. digital control

13.1 Introduction
This chapter is an introduction to digital control systems and will cover only frequency-domain
analysis and design. You are encouraged to pursue the study of state-space techniques in an
advanced course in sampled-data control systems. In this chapter, we introduce analysis and design
of stability, steady-state error, and transient response for computer-controlled systems.

With the development of the minicomputer in the mid-1960s and the microcomputer in the mid-
1970s, physical systems need no longer be controlled by expensive mainframe computers. For
example, milling operations that required mainframe computers in the past can now be controlled by
a personal computer.

The digital computer can perform two functions: (1) supervisory—external to the feedback loop; and
(2) control—internal to the feedback loop. Examples of supervisory functions consist of scheduling
tasks, monitoring parameters and variables for out-of-range values, or initiating safety shutdown.
Control functions are of primary interest to us, since a computer that performs within the feedback



loop replaces the methods of compensation heretofore discussed. Examples of control functions are
lead and lag compensation.

Transfer functions, representing compensators built with analog components, are now replaced with
a digital computer that performs calculations that emulate the physical compensator. What
advantages are there to replacing analog components with a digital computer?

Advantages of Digital Computers
The use of digital computers in the loop yields the following advantages over analog systems: (1)
reduced cost, (2) flexibility in response to design changes, and (3) noise immunity. Modern control
systems require control of numerous loops at the same time—pressure, position, velocity, and
tension, for example. In the steel industry, a single digital computer can replace numerous analog
controllers with a subsequent reduction in cost. Where analog controllers implied numerous
adjustments and resulting hardware, digital systems are now installed. Banks of equipment, meters,
and knobs are replaced with computer terminals, where information about settings and performance
is obtained through menus and screen displays. Digital computers in the loop can yield a degree of
flexibility in response to changes in design. Any changes or modifications that are required in the
future can be implemented with simple software changes rather than expensive hardware
modifications. Finally, digital systems exhibit more noise immunity than analog systems by virtue of
the methods of implementation.

Where then is the computer placed in the loop? Remember that the digital computer is controlling
numerous loops; thus, its position in the loop depends upon the function it performs. Typically, the
computer replaces the cascade compensator and is thus positioned at the place shown in Figure
13.2(a).

FIGURE 13.2 a. Placement of the digital computer within the loop; b. detailed block
diagram showing placement of A/D and D/A converters

The signals r, e, f, and c shown in Figure 13.2(a) can take on two forms: digital or analog. Up to this
point we have used analog signals exclusively. Digital signals, which consist of a sequence of binary
numbers, can be found in loops containing digital computers.

Loops containing both analog and digital signals must provide a means for conversion from one form
to the other as required by each subsystem. A device that converts analog signals to digital signals is
called an analog-to-digital (A/D) converter. Conversely, a device that converts digital signals to
analog signals is called a digital-to-analog (D/A) converter. For example, in Figure 13.2(b), if the
plant output, c, and the system input, r, are analog signals, then an analog-to-digital converter must
be provided at the input to the digital computer. Also, if the plant input, f, is an analog signal, then a
digital-to-analog converter must be provided at the output of the digital computer.



Digital-to-Analog Conversion
Digital-to-analog conversion is simple and effectively instantaneous. Properly weighted voltages are
summed together to yield the analog output. For example, in Figure 13.3, three weighted voltages are
summed. The three-bit binary code is represented by the switches. Thus, if the binary number is
1102, the center and bottom switches are on, and the analog output is 6 volts. In actual use, the
switches are electronic and are set by the input binary code.

FIGURE 13.3 Digital-to-analog converter

Analog-to-Digital Conversion
Analog-to-digital conversion, on the other hand, is a two-step process and is not instantaneous.
There is a delay between the input analog voltage and the output digital word. In an analog-to-digital
converter, the analog signal is first converted to a sampled signal and then converted to a sequence of
binary numbers, the digital signal.

The sampling rate must be at least twice the bandwidth of the signal, or else there will be distortion.
This minimum sampling frequency is called the Nyquist sampling rate.1

In Figure 13.4(a), we start with the analog signal. In Figure 13.4(b), we see the analog signal sampled
at periodic intervals and held over the sampling interval by a device called a zero-order sample-
and-hold (z.o.h.) that yields a staircase approximation to the analog signal. Higher-order holds,
such as a first-order hold, generate more complex and more accurate waveshapes between samples.
For example, a first-order hold generates a ramp between the samples. Samples are held before being
digitized because the analog-to-digital converter converts the voltage to a digital number via a digital
counter, which takes time to reach the correct digital number. Hence, the constant analog voltage
must be present during the conversion process.



FIGURE 13.4 Steps in analog-to-digital conversion: a. analog signal; b. analog signal
after sample-and-hold; c. conversion of samples to digital numbers

After sampling and holding, the analog-to-digital converter converts the sample to a digital number
(as shown in Figure 13.4(c)), which is arrived at in the following manner. The dynamic range of the
analog signal's voltage is divided into discrete levels, and each level is assigned a digital number. For
example, in Figure 13.4(b), the analog signal is divided into eight levels. A three-bit digital number
can represent each of the eight levels as shown in the figure. Thus, the difference between
quantization levels is M/8 volts, where M is the maximum analog voltage. In general, for any system,
this difference is M/2n volts, where n is the number of binary bits used for the analog-to-digital
conversion.

Looking at Figure 13.4(b), we can see that there will be an associated error for each digitized analog
value except the voltages at the boundaries such as M/8 and 2M/8. We call this error the
quantization error. Assuming that the quantization process rounds off the analog voltage to the
next higher or lower level, the maximum value of the quantization error is 1/2 the difference between
quantization levels in the range of analog voltages from 0 to 15M/16. In general, for any system using
roundoff, the quantization error will be (1/2) (M/2n) = M/2n+1.

We have now covered the basic concepts of digital systems. We found out why they are used, where
the digital computer is placed in the loop, and how to convert between analog and digital signals.
Since the computer can replace the compensator, we have to realize that the computer is working
with a quantized amplitude representation of the analog signal, formed from values of the analog
signal, at discrete intervals of time. Ignoring the quantization error, we see that the computer
performs just as the compensator does, except that signals pass through the computer only at the
sampled intervals of time. We will find that the sampling of data has an unusual effect upon the
performance of a closed-loop feedback system, since stability and transient response are now



dependent upon the sampling rate. If the sampling rate is too slow, the system can be unstable, since
the values are not being updated rapidly enough. If we are to analyze and design feedback control
systems with digital computers in the loop, we must be able to model the digital computer and
associated digital-to-analog and analog-to-digital converters. The modeling of the digital computer
along with associated converters is covered in the next section.

13.2 Modeling the Digital Computer
If we think about it, the form of the signals in a loop is not as important as what happens to them.
For example, if analog-to-digital conversion could happen instantaneously, and time samples
occurred at intervals of time that approached zero, there would be no need to differentiate between
the digital signals and the analog signals. Thus, previous analysis and design techniques would be
valid regardless of the presence of the digital computer.

The fact that signals are sampled at specified intervals and held causes the system performance to
change with changes in sampling rate. Basically, then, the computer's effect upon the signal comes
from this sampling and holding. Thus, in order to model digital control systems, we must come up
with a mathematical representation of this sample-and-hold process.

Modeling the Sampler
Our objective at this point is to derive a mathematical model for the digital computer as represented
by a sampler and zero-order hold. Our goal is to represent the computer as a transfer function
similar to that for any subsystem. When signals are sampled, however, the Laplace transform that we
have dealt with becomes a bit unwieldy. The Laplace transform can be replaced by another related
transform called the z-transform. The z-transform will arise naturally from our development of the
mathematical representation of the computer.

Consider the models for sampling shown in Figure 13.5. The model in Figure 13.5(a) is a switch
turning on and off at a uniform sampling rate. In Figure 13.5(b), sampling can also be considered to
be the product of the time waveform to be sampled, f(t), and a sampling function, s(t). If s(t) is a
sequence of pulses of width TW, constant amplitude, and uniform rate as shown, the sampled output,
f ∗
TW

(t), will consist of a sequence of sections of f(t) at regular intervals. This view is equivalent to the
switch model of Figure 13.5(a).



(13.1)

(13.2)

FIGURE 13.5 Two views of uniform-rate sampling: a. switch opening and closing; b.
product of time waveform and sampling waveform

We can now write the time equation of the sampled waveform, f ∗
TW

(t). Using the model shown in
Figure 13.5(b), we have

f ∗
TW

(t) = f (t) s (t) = f (t)
∞

∑
k=−∞

u (t − kT ) − u (t − kT − Tw)

where k is an integer between −∞ and +∞, T is the period of the pulse train, and TW is the pulse
width.

Since Eq. (13.1) is the product of two time functions, taking the Laplace transform in order to find a
transfer function is not simple. A simplification can be made if we assume that the pulse width, TW,
is small in comparison to the period, T, such that f(t) can be considered constant during the sampling
interval. Over the sampling interval, then, f(t) = f(kT). Hence,

f ∗
TW

(t) =
∞

∑
k=−∞

f (kT ) [u (t − kT ) − u (t − kT − TW )]

for small TW.

Equation (13.2) can be further simplified through insight provided by the Laplace transform. Taking
the Laplace transform of Eq. (13.2), we have



(13.3)

(13.4)

(13.5)

(13.6)

(13.7)

F ∗
TW

(s) =
∞

∑
k=−∞

f (kT )[ − ]=
∞

∑
k=−∞

f (kT )[ ]e−kTs

Replacing e−TWs with its series expansion, we obtain

F ∗
TW

(s) =
∞

∑
k=−∞

f (kT )

⎡
⎢ ⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥ ⎥
⎦
e−kTs

For small TW, Eq. (13.4) becomes

F ∗
TW

(s) =
∞

∑
k=−∞

f (kT )[ ]e−kTs =
∞

∑
k=−∞

f (kT )TWe−kTs

Finally, converting back to the time domain, we have

f ∗
TW

(t) = TW

∞

∑
k=−∞

f (kT ) δ (t − kT )

where δ(t − kT) are Dirac delta functions.

Thus, the result of sampling with rectangular pulses can be thought of as a series of delta functions
whose area is the product of the rectangular pulse width and the amplitude of the sampled
waveform, or TWf(kT).

Equation (13.6) is portrayed in Figure 13.6. The sampler is divided into two parts: (1) an ideal
sampler described by the portion of Eq. (13.6) that is not dependent upon the sampling waveform
characteristics,

f ∗ (t)
∞

∑
k=−∞

f (kT ) δ (t − kT )

and (2) the portion dependent upon the sampling waveform's characteristics, TW.

FIGURE 13.6 Model of sampling with a uniform rectangular pulse train

Modeling the Zero-Order Hold
The final step in modeling the digital computer is modeling the zero-order hold that follows the
sampler. Figure 13.7 summarizes the function of the zero-order hold, which is to hold the last
sampled value of f(t). If we assume an ideal sampler (equivalent to setting TW = 1), then f*(t) is
represented by a sequence of delta functions. The zero-order hold yields a staircase approximation to
f(t). Hence, the output from the hold is a sequence of step functions whose amplitude is f(t) at the
sampling instant, or f(kT). We have previously seen that the transfer function of any linear system is

e−kTs

s

e−kTs−TWs

s

1 − e−TWs

s

1 −{1 − TWs + − ⋯}(TWs)
2

2!

s

TWs

s



(13.8)

(13.9)

identical to the Laplace transform of the impulse response, since the Laplace transform of a unit
impulse or delta function input is unity. Since a single impulse from the sampler yields a step over
the sampling interval, the Laplace transform of this step, Gh(s), which is the impulse response of the
zero-order hold, is the transfer function of the zero-order hold. Using an impulse at zero time, the
transform of the resulting step that starts at t = 0 and ends at t = T is

Gh (s) =

FIGURE 13.7 Ideal sampling and the zero-order hold

In a physical system, samples of the input time waveform, f(kT), are held over the sampling interval.
We can see from Eq. (13.8) that the hold circuit integrates the input and holds its value over the
sampling interval. Since the area under the delta functions coming from the ideal sampler is f(kT),
we can then integrate the ideal sampled waveform and obtain the same result as for the physical
system. In other words, if the ideal sampled signal, f*(t), is followed by a hold, we can use the ideal
sampled waveform as the input, rather than f ∗

TW
(t).

In this section, we modeled the digital computer by cascading two elements: (1) an ideal sampler and
(2) a zero-order hold. Together, the model is known as a zero-order sample-and-hold. The ideal
sampler is modeled by Eq. (13.7), and the zero-order hold is modeled by Eq. (13.8). In the next
section, we start to create a transform approach to digital systems by introducing the z-transform.

13.3 The z -Transform
The effect of sampling within a system is pronounced. Whereas the stability and transient response
of analog systems depend upon gain and component values, sampled-data system stability and
transient response also depend upon sampling rate. Our goal is to develop a transform that contains
the information of sampling from which sampled-data systems can be modeled with transfer
functions, analyzed, and designed with the ease and insight we enjoyed with the Laplace transform.
We now develop such a transform and use the information from the last section to obtain sampled-
data transfer functions for physical systems.

Equation (13.7) is the ideal sampled waveform. Taking the Laplace transform of this sampled time
waveform, we obtain

F ∗ (s) =
∞

∑
k=0

f (kT ) e−kTs

Now, letting z = eTs, Eq. (13.9) can be written as

1−e−Ts

s



(13.10)

(13.11)

F (z) =
∞

∑
k=0

f (kT ) z−k

Equation (13.10) defines the z-transform. That is, an F(z) can be transformed to f(kT), or an f(kT)
can be transformed to F(z). Alternately, we can write

f (kT ) ⇆ F (z)

Paralleling the development of the Laplace transform, we can form a table relating f(kT), the value of
the sampled time function at the sampling instants, to F(z). Let us look at an example.



(13.12)

(13.13)

(13.14)

(13.15)

(13.16)

(13.17)

(13.18)

Example 13.1 z-Transform of a Time Function
PROBLEM:
Find the z-transform of a sampled unit ramp.

SOLUTION:
For a unit ramp,  f(kT) = kT. Hence, the ideal sampled step can be written from Eq. (13.7) as

f ∗(t) =
∞

∑
k=0

ktδ (t − kT )

Taking the Laplace transform, we obtain

F ∗ (s) =
∞

∑
k=0

kTe−kTs

Converting to the z-transform by letting e−kTs = z−k, we have

F (z) =
∞

∑
k=0

kTz−k = T

∞

∑
k=0

kz−k = T (z−1 + 2z−2 + 3z−3 + ⋯)

Equation (13.14) can be converted to a closed form by forming the series for zF(z) and
subtracting F(z). Multiplying Eq. (13.14) by z, we get

zF (z) = T (1 + 2z−1 + 3z−2 + ⋯)

Subtracting Eq. (13.14) from Eq. (13.15), we obtain

zF (z) − F (z) = (z − 1)F (z) = T (1 + z−1 + z−2 + ⋯)

But

= 1 + z−1 + z−2 + z−3 + ⋯

which can be verified by performing the indicated division. Substituting Eq. (13.17) into (13.16)
and solving for F(z) yields

F (z) = T

as the z-transform of f(kT) = kT.

1

1 − z−1

z

(z − 1)2



 Students who are performing the MATLAB exercises and want to explore the 

added capability of MATLAB's Symbolic Math Toolbox should now run ch13apF1 in 
Appendix F located at www.wiley.com/go/Nise/ControlSystemsEngineering8e. You will 
learn how to find the z-transform of time functions. Example 13.1 will be solved 
using MATLAB and the Symbolic Math Toolbox.

The example demonstrates that any function of s, F*(s), that represents a sampled time waveform
can be transformed into a function of z, F(z). The final result, F(z) = Tz/(z − 1)2, is in a closed form,
unlike F*(s). If this is the case for numerous other sampled time waveforms, then we have the
convenient transform that we were looking for. In a similar way, z-transforms for other waveforms
can be obtained that parallel the table of Laplace transforms in Chapter 2. A partial table of z-
transforms is shown in Table 13.1 and a partial table of z-transform theorems is shown in Table 13.2.
For functions not in the table, we must perform an inverse z-transform calculation similar to the
inverse Laplace transform by partial-fraction expansion. Let us now see how we can work in the
reverse direction and find the time function from its z-transform.

TABLE 13.1

Partial table of z- and s-transforms
f(t) F(s) F(z) f(kT)

1. u(t) u(kT)

2. t kT

3. tn lim
a→0

(−1)
n [ ] (kT)n

4. e−at e−akT

5. tne−at (−1)
n [ ] (kT)ne−akT

6. sin ωt sin ωkT

7. cos ωt cos ωkT

8. e−atsin ωt e−akTsin ωkT

9. e−atcos ωt e−akTcos ωkT

1
s

z

z−1

1
s2

Tz

(z−1)
2

n!
sn+1

dn

dan
z

z−e−aT

1
s+a

z

z−e−aT

n!

(s+a)n+1

dn

dan
z

z−e−aT

ω

s2+ω2

z sin ωT

z2−2z cos ωT+1

s

s2+ω2

z(z−cos ωT )

z2−2z cos ωT+1

ω

(s+a)
2
+ω2

ze−aT sin ωT

z2−2ze−aT cos ωT+e−2aT

s+a

(s+a)2+ω2

z2−ze−aT cos ωT
z2−2ze−aT cos ωT+e−2aT
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(13.19)

(13.20)

TABLE 13.2

z-transform theorems
Theorem Name

1. z{af (t)} = aF(z) Linearity theorem
2. z{f1(t) + f2(t)} = F1(z) + F2(z) Linearity theorem

3. z{e−aTf(t)} = F(eaTz) Complex differentiation

4. z{f(t − nT)} = z−nF(z) Real translation

5. z {tf (t)} = −Tz Complex differentiation

6. f (0) = lim
z→∞

F (z) Initial value theorem

7. f (∞) = lim
z→1

(1 − z−1)F (z) Final value theorem

Note: kT may be substituted for t in the table.

The Inverse z-Transform
Two methods for finding the inverse z-transform (the sampled time function from its z-transform)
will be described: (1) partial-fraction expansion and (2) the power series method. Regardless of the
method used, remember that, since the z-transform came from the sampled waveform, the inverse z-
transform will yield only the values of the time function at the sampling instants. Keep this in mind
as we proceed, because even as we obtain closed-form time functions as results, they are valid only at
sampling instants.

Inverse z-Transforms via Partial-Fraction Expansion
Recall that the Laplace transform consists of a partial fraction that yields a sum of terms leading to
exponentials, that is, A/(s + a). Taking this lead and looking at Table 13.1, we find that sampled
exponential time functions are related to their z-transforms as follows:

e−akT
⇆

We thus predict that a partial-fraction expansion should be of the following form:

F (z) = + + ⋯

Since our partial-fraction expansion of F(s) did not contain terms with s in the numerator of the
partial fractions, we first form F(z)/z to eliminate the z terms in the numerator, perform a partial-
fraction expansion of F(z)/z, and finally multiply the result by z to replace the z's in the numerator.
An example follows.

dF(z)

dz

z

z − eaT

Az

z − z1

Bz

z − z2



(13.21)

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

Example 13.2 Inverse z-Transform via Partial-Fraction Expansion
PROBLEM:
Given the function in Eq. (13.21), find the sampled time function.

F (z) =

SOLUTION:
Begin by dividing Eq. (13.21) by z and performing a partial-fraction expansion.

= = + = +

Next, multiply through by z.

F (z) = = +

Using Table 13.1, we find the inverse z-transform of each partial fraction. Hence, the value of
the time function at the sampling instants is

f (kT ) = −2.5(0.5)
k

+ 2.5(0.7)
k

Also, from Eqs. (13.7) and (13.24), the ideal sampled time function is

f ∗ (t) =
∞

∑
k=−∞

f (kT ) δ (t − kT ) =
∞

∑
k=−∞

[−2.5(0.5)
k

+ 2.5(0.7)
k] δ (t − kT )

If we substitute k = 0, 1, 2, and 3, we can find the first four samples of the ideal sampled time
waveform. Hence,

f ∗ (t) = 0δ (t) + 0.5δ (t − T ) + 0.6δ (t − 2T ) + 0.545δ (t − 3T )

 Students who are performing the MATLAB exercises and want to explore the 

added capability of MATLAB's Symbolic Math Toolbox should now run ch13apF2 in 
Appendix F located at www.wiley.com/go/Nise/ControlSystemsEngineering8e. You will 
learn how to find the inverse z-transform of sampled time functions. Example 13.2 
will be solved using MATLAB and the Symbolic Math Toolbox.

Inverse z -Transform via the Power Series Method
The values of the sampled time waveform can also be found directly from F(z). Although this method
does not yield closed-form expressions for f(kT), it can be used for plotting. The method consists of
performing the indicated division, which yields a power series for F(z). The power series can then be
easily transformed into F*(s) and f*(t).

0.5z

(z − 0.5) (z − 0.7)

F (z)

z

0.5

(z − 0.5) (z − 0.7)

A

z − 0.5

B

z − 0.7

−2.5

z − 0.5

2.5

z − 0.7

0.5z

(z − 0.5) (z − 0.7)

−2.5z

z − 0.5

2.5z

z − 0.7
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(13.27)

(13.28)

(13.29)

(13.30)

Example 13.3 Inverse z-Transform via Power Series
PROBLEM:
Given the function in Eq. (13.21), find the sampled time function.

SOLUTION:
Begin by converting the numerator and denominator of F(z) to polynomials in z.

F (z) = =

Now perform the indicated division.

0.5z−1 + 0.6z−2 + 0.545z−3

z−2 − 1.2z + 0.35 0.5z

0.5z − 0.6 + 0.175z−1

–––––––––––––––––––––––
0.6 − 0.175z−1

0.6 − 0.720z−1 + 0.21
–––––––––––––––––––––––

0.545z−1 − 0.21

Using the numerator and the definition of z, we obtain

F ∗ (s) = 0.5e−Ts + 0.6e−2Ts + 0.545e−3Ts + ⋯

from which

f ∗ (t) = 0.5δ (t − T ) + 0.6δ (t − 2T ) + 0.545δ (t − 3T ) + ⋯

You should compare Eq. (13.30) with Eq. (13.26), the result obtained via partial expansion.

Skill-Assessment Exercise 13.1
PROBLEM:
Derive the z-transform for f(t) = sin ωt u(t).

ANSWER:

F (z) =

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

0.5z

(z − 0.5) (z − 0.7)

0.5z

z2 − 1.2z + 0.35

z−1sin (ωT )

1 − 2z−1cos (ωT ) + z−2

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(13.31)

Skill-Assessment Exercise 13.2
PROBLEM:

Find f(kT) if F (z) = .

ANSWER:

f (kT ) = 46.875(0.5)k − 114.75(0.7)k + 68.875(0.9)k

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

13.4 Transfer Functions
Now that we have established the z-transform, let us apply it to physical systems by finding transfer
functions of sampled-data systems. Consider the continuous system shown in Figure 13.8(a). If the
input is sampled as shown in Figure 13.8(b), the output is still a continuous signal. If, however, we
are satisfied with finding the output at the sampling instants and not in between, the representation
of the sampled-data system can be greatly simplified. Our assumption is visually described in Figure
13.8(c), where the output is conceptually sampled in synchronization with the input by a phantom
sampler. Using the concept described in Figure 13.8(c), we derive the pulse transfer function of G(s).

FIGURE 13.8 Sampled-data systems: a. continuous; b. sampled input; c. sampled
input and output

Derivation of the Pulse Transfer Function
Using Eq. (13.7), we find that the sampled input, r*(t), to the system of Figure 13.8(c) is

r∗ (t) =
∞

∑
n=0

r(nT )δ (t − nT )

z(z+1)(z+2)

(z−0.5)(z−0.7)(z−0.9)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(13.32)

(13.33)

(13.34)

(13.35)

(13.36)

(13.37)

which is a sum of impulses. Since the impulse response of a system, G(s), is g(t), we can write the
time output of G(s) as the sum of impulse responses generated by the input, Eq. (13.31). Thus,

c (t) =
∞

∑
n=0

r(nT )g (t − nT )

From Eq. (13.10),

C (z) =
∞

∑
k=0

c (kT ) z−k

Using Eq. (13.32) with t = kT, we obtain

c (kT ) =
∞

∑
n=0

r(nT )g (kT − nT )

Substituting Eq. (13.34) into Eq. (13.33), we obtain

C (z) =
∞

∑
k=0

∞

∑
n=0

r (nT ) g [(k − n)T ] z−k

Letting m = k − n, we find

C (z) =
∞

∑
m+n=0

∞

∑
n=0

r (nT ) g (mT ) z−(m+n)

={
∞

∑
m=0

g (mT ) z−m}{
∞

∑
n=0

r(nT )z−n}

where the lower limit, m + n, was changed to m. The reasoning is that m + n = 0 yields negative
values of m for all n > 0. But, since g(mT) = 0 for all m < 0, m is not less than zero. Alternately, g(t) =
0 for t < 0. Thus, n = 0 in the first sum's lower limit.

Using the definition of the z-transform, Eq. (13.36) becomes

C (z) =
∞

∑
m=0

g (mT ) z−m
∞

∑
n=0

r (nT ) z−n = G (z) R (z)

Equation (13.37) is a very important result since it shows that the transform of the sampled output is
the product of the transforms of the sampled input and the pulse transfer function of the system.
Remember that although the output of the system is a continuous function, we had to make an
assumption of a sampled output (phantom sampler) in order to arrive at the compact result of Eq.
(13.37).

One way of finding the pulse transfer function, G(z), is to start with G(s), find g(t), and then use
Table 13.1 to find G(z). Let us look at an example.



(13.38)

(13.39)

(13.40)

(13.41)

(13.42)

(13.43)

(13.44)

(13.45)

Example 13.4 Converting G1(s) in Cascade with Zero-Order Hold to
G(z)
PROBLEM:
Given a zero-order hold in cascade with G1(s) = (s + 2)/(s + 1) or

G (s) =

find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5 second.

SOLUTION:
Equation (13.38) represents a common occurrence in digital control systems, namely a transfer
function in cascade with a zero-order hold. Specifically, G1(s) = (s + 2)/(s + 1) is in cascade with
a zero-order hold, (1 − e−Ts)/s. We can formulate a general solution to this type of problem by
moving the s in the denominator of the zero-order hold to G1(s), yielding

G (s) = (1 − e−Ts)

from which

G (z) = (1 − z−1) z{ }= z{ }

Thus, begin the solution by finding the impulse response (inverse Laplace transform) of G1(s)/s.
Hence,

G2 (s) = = = + = −

Taking the inverse Laplace transform, we get

g2 (t) = 2 − e−t

from which

g2 (kT ) = 2 − e−kt

Using Table 13.1, we find

G2 (z) = −

Substituting T = 0.5 yields

G2 (z) = z{ }= − =

1 − e−Ts

s

(s + 2)

(s + 1)

G1 (s)

s

G1 (s)

s

z − 1

z

G1 (s)

s

G1 (s)

s

s + 2

s (s + 1)

A

s

B

s + 1

2

s

1

s + 1

2z

z − 1

z

z − e−T

G1 (s)

s

2z

z − 1

z

z − 0.607

z2 − 0.213z

(z − 1) (z − 0.607)



(13.46)

From Eq. (13.40),

G (z) = G2 (z) =

 Students who are using MATLAB should now run ch13apB1 in Appendix B. You 

will learn how to use MATLAB to convert G1(s) in cascade with a zero-order hold to 
G(z). This exercise solves Example 13.4 using MATLAB.

 Students who are performing the MATLAB exercises and want to explore the 

added capability of MATLAB's Symbolic Math Toolbox should now run ch13apF3 in 
Appendix F located at www.wiley.com/go/Nise/ControlSystemsEngineering8e. MATLAB's 
Symbolic Math Toolbox yields an alternative method of finding the z-transform of a 
transfer function in cascade with a zero-order hold. Example 13.4 will be solved 
using MATLAB and the Symbolic Math Toolbox with a method that follows closely the 
hand calculation shown in that example.

TryIt 13.1
Use MATLAB, the Control System Toolbox, and the following statements to find G1(s) in
Example 13.4 given G(z) in Eq. (13.46)

num=0.213;
den=0.607;
K=1;
T=0.5;
Gz=zpk(num,den,K,T)
Gs=d2c(Gz,'zoh')

 Students who are using MATLAB should now run ch13apB2 in Appendix B. You will 

learn how to use MATLAB to convert G(s) to G(z) when G(s) is not in cascade with a zero-
order hold. This is the same as finding the z-transform of G(s).

 Students who are using MATLAB should now run ch13apB3 in Appendix B. You will 

learn how to create digital transfer functions directly.

 Students who are using MATLAB should now run ch13apB4 in Appendix B. You will 

learn how to use MATLAB to convert G(z) to G(s) when G(s) is not in cascade with a zero-
order hold. This is the same as finding the Laplace transform of G(z).

z − 1

z

z − 0.213

z − 0.607
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Skill-Assessment Exercise 13.3
PROBLEM:
Find G(z) for G(s) = 8/(s + 4) in cascade with a zero-order sample and hold. The sampling
period is 0.25 second.

ANSWER:

G (z) = 1.264/ (z − 0.3679)

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 13.2
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 13.3.

Gs=zpk([],−4,8)
Gz=c2d(Gs,0.25,'zoh')

The major discovery in this section is that once the pulse transfer function, G(z), of a system is
obtained, the transform of the sampled output response, C(z), for a given sampled input can be
evaluated using the relationship C(z) = R(z)G(z). Finally, the time function can be found by taking
the inverse z-transform, as covered in Section 13.3. In the next section, we look at block diagram
reduction for digital systems.

13.5 Block Diagram Reduction
Up to this point, we have defined the z-transform and the sampled-data system transfer function and
have shown how to obtain the sampled response. Basically, we are paralleling our discussions of the
Laplace transform in Chapters 2 and 4. We now draw a parallel with some of the objectives of
Chapter 5, namely block diagram reduction. Our objective here is to be able to find the closed-loop
sampled-data transfer function of an arrangement of subsystems that have a computer in the loop.

When manipulating block diagrams for sampled-data systems, you must be careful to remember the
definition of the sampled-data system transfer function (derived in the last section) to avoid
mistakes. For example, z{G1(s)G2(s)} ≠ G1(z)G2(z), where z{G1(s)G2(s)} denotes the z-transform.
The s-domain functions have to be multiplied together before taking the z-transform. In the ensuing
discussion, we use the notation G1G2(s) to denote a single function that is G1(s)G2(s) after evaluating
the product. Hence, z{G1(s)G2(s)} = z{G1G2(s)} = G1G2(z) ≠ G1(z)G2(z).

Let us look at the sampled-data systems shown in Figure 13.9. The sampled-data systems are shown
under the column marked s. Their z-transforms are shown under the column marked z. The standard
system that we derived earlier is shown in Figure 13.9(a), where the transform of the output, C(z), is
equal to R(z)G(z). This system forms the basis for the other entries in Figure 13.9.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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FIGURE 13.9 Sampled-data systems and their z-transforms

In Figure 13.9(b), there is no sampler between G1(s) and G2(s). Thus, we can think of a single
function, G1(s)G2(s), denoted G1G2(s), existing between the two samplers and yielding a single
transfer function, as shown in Figure 13.9(a). Hence, the pulse transfer function is z{G1G2(s)} =
G1G2(z). The transform of the output, C(z) = R(z)G1G2(z).

In Figure 13.9(c), we have the cascaded two subsystems of the type shown in Figure 13.9(a). For this
case, then, the z-transform is the product of the two z-transforms, or G2(z)G1(z). Hence, the
transform of the output C(z) = R(z)G2(z)G1(z).

Finally, in Figure 13.9(d), we see that the continuous signal entering the sampler is R(s)G1(s). Thus,
the model is the same as Figure 13.9(a) with R(s) replaced by R(s)G1(s), and G2(s) in Figure 13.9(d)
replacing G(s) in Figure 13.9(a). The z-transform of the input to G2(s) is z {R(s)G1(s)} = z {RG1(s)} =
RG1(z). The pulse transfer function for the system G2(s) is G2(z). Hence, the output C(z) =
RG1(z)G2(z).

Using the basic forms shown in Figure 13.9, we can now find the z-transform of feedback control
systems. We have shown that any system, G(s), with sampled input and sampled output, such as that
shown in Figure 13.9(a), can be represented as a sampled-data transfer function, G(z). Thus, we want
to perform block diagram manipulations that result in subsystems, as well as the entire feedback
system, that have sampled inputs and sampled outputs. Then we can make the transformation to
sampled-data transfer functions. An example follows.



Example 13.5 Pulse Transfer Function of a Feedback System
PROBLEM:
Find the z-transform of the system shown in Figure 13.10(a).

FIGURE 13.10 Steps in block diagram reduction of a sampled-data system



SOLUTION:
The objective of the problem is to proceed in an orderly fashion, starting with the block diagram
of Figure 13.10(a) and reducing it to the one shown in Figure 13.10(f).

One operation we can always perform is to place a phantom sampler at the output of any
subsystem that has a sampled input, provided that the nature of the signal sent to any other
subsystem is not changed. For example in Figure 13.10(b), phantom sampler S4 can be added.
The justification for this, of course, is that the output of a sampled-data system can only be
found at the sampling instants anyway, and the signal is not an input to any other block.

Another operation that can be performed is to add phantom samplers S2 and S3 at the input to
a summing junction whose output is sampled. The justification for this operation is that the
sampled sum is equivalent to the sum of the sampled inputs, provided, of course, that all
samplers are synchronized.

Next, move sampler S1 and G(s) to the right past the pickoff point, as shown in Figure 13.10(c).
The motivation for this move is to yield a sampler at the input of G(s)H(s) to match Figure
13.9(b). Also, G(s) with sampler S1 at the input and sampler S4 at the output matches Figure
13.9(a). The closed-loop system now has a sampled input and a sampled output.

G(s)H(s) with samplers S1 and S3 becomes GH(z), and G(s) with samplers S1 and S4 becomes
G(z), as shown in Figure 13.10(d). Also, converting R*(s) to R(z) and C*(s) to C(z), we now have
the system represented totally in the z-domain.

The equations derived in Chapter 5 for transfer functions represented with the Laplace
transform can be used for sampled-data transfer functions with only a change in variables from
s to z. Thus, using the feedback formula, we obtain the first block of Figure 13.10(e). Finally,
multiplication of the cascaded sampled-data systems yields the final result shown in Figure
13.10(f).

Skill-Assessment Exercise 13.4
PROBLEM:
Find T(z) = C(z)/R(z) for the system shown in Figure 13.11.

FIGURE 13.11 Digital system for Skill-Assessment Exercise 13.4

ANSWER:

T (z) =

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

This section paralleled Chapter 5 by showing how to obtain the closed-loop, sampled-data transfer
function for a collection of subsystems. The next section parallels the discussion of stability in
Chapter 6.

G1G2(z)

1 + HG1G2(z)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


(13.47)

13.6 Stability
The glaring difference between analog feedback control systems and digital feedback control
systems, such as the one shown in Figure 13.12, is the effect that the sampling rate has on the
transient response. Changes in sampling rate not only change the nature of the response from
overdamped to underdamped but also can turn a stable system into an unstable one. As we proceed
with our discussion, these effects will become apparent. You are encouraged to be on the lookout.

FIGURE 13.12 A lathe using digital numerical control

We now discuss the stability of digital systems from two perspectives: (1) z-plane and (2) s-plane. We
will see that the Routh–Hurwitz criterion can be used only if we perform our analysis and design on
the s-plane.

Digital System Stability via the z-Plane
In the s-plane, the region of stability is the left half-plane. If the transfer function, G(s), is
transformed into a sampled-data transfer function, G(z), the region of stability on the z-plane can be
evaluated from the definition z = eTs. Letting s = α + jω, we obtain

z = eTs = eT (α+jω) = eαTejωT

= eαT (cos ωT + j sin ωT )

= eαT∠ωT

since (cos ωT + j sin ωT) = 1 ∠ ωT.

Each region of the s-plane can be mapped into a corresponding region on the z-plane (see Figure
13.13). Points that have positive values of α are in the right half of the s-plane, region C. From Eq.
(13.47), the magnitudes of the mapped points are eαT > 1. Thus, points in the right half of the s-plane
map into points outside the unit circle on the z-plane.



FIGURE 13.13 Mapping regions of the s-plane onto the z-plane

Points on the jω-axis, region B, have zero values of α and yield points on the z-plane with magnitude
= 1, the unit circle. Hence, points on the jω-axis in the s-plane map into points on the unit circle on
the z-plane.

Finally, points on the s-plane that yield negative values of α(left–half-plane roots, region A) map into
the inside of the unit circle on the z-plane.

Thus, a digital control system is (1) stable if all poles of the closed-loop transfer function, T(z), are
inside the unit circle on the z-plane; (2) unstable if any pole is outside the unit circle and/or there are
poles of multiplicity greater than one on the unit circle; and (3) marginally stable if poles of
multiplicity 1 are on the unit circle and all other poles are inside the unit circle. Let us look at an
example.



Example 13.6 Modeling and Stability
PROBLEM:
The missile shown in Figure 13.14(a) can be aerodynamically controlled by torques created by
the deflection of control surfaces on the missile's body. The commands to deflect these control
surfaces come from a computer that uses tracking data along with programmed guidance
equations to determine whether the missile is on track. The information from the guidance
equations is used to develop flight-control commands for the missile. A simplified model is
shown in Figure 13.14(b). Here the computer performs the function of controller by using
tracking information to develop input commands to the missile. An accelerometer in the missile
detects the actual acceleration, which is fed back to the computer. Find the closed-loop digital
transfer function for this system and determine if the system is stable for K = 20 and K = 100
with a sampling interval of T = 0.1 second.



(13.48)

FIGURE 13.14 Finding stability of a missile control system: a. missile; b.
conceptual block diagram; c. block diagram; d. block diagram with equivalent
single sampler

SOLUTION:
The input to the control system is an acceleration command developed by the computer. The
computer can be modeled by a sample-and-hold. The s-plane model is shown in Figure 13.14(c).
The first step in finding the z-plane model is to find G(z), the forward-path transfer function.
From Figure 13.14(c) or (d),

G (s) =

where a = 27. The z-transform, G(z), is (1 − z−1) z {Ka/[s2(s + a)]}.

1 − e−Ts

s

Ka

s (s + a)



(13.49)

(13.50)

(13.51)

(13.52)

The term Ka/[s2(s + a)] is first expanded by partial fractions, after which we find the z-
transform of each term from Table 13.1. Hence,

z{ } = Kz{ }= Kz{ − + }

= K{ − + }

= K{ − }

Thus,

G (z) = K

⎧⎪
⎨
⎪⎩

⎫⎪
⎬
⎪⎭

Letting T = 0.1 and a = 27, we have

G (z) =

Finally, we find the closed-loop transfer function, T(z), for a unity-feedback system:

T (z) = =

The stability of the system is found by finding the roots of the denominator. For K = 20, the
roots of the denominator are 0.12 ±j 0.78. The system is thus stable for K = 20, since the poles
are inside the unit circle. For K = 100, the poles are at −0.58 and −4.9. Since one of the poles is
outside the unit circle, the system is unstable for K = 100.

 Students who are using MATLAB should now run ch13apB5 in Appendix B. You 

will learn how to use MATLAB to determine the range of K for stability in a digital 
system. This exercise solves Example 13.6 using MATLAB.

In the case of continuous systems, the determination of stability hinges upon our ability to determine
whether the roots of the denominator of the closed-loop transfer function are in the stable region of
the s-plane. The problem for high-order systems is complicated by the fact that the closed-loop
transfer function denominator is in polynomial form, not factored form. The same problem surfaces
with closed-loop sampled-data transfer functions.

Tabular methods for determining stability, such as the Routh–Hurwitz method used for higher-order
continuous systems, exist for sampled-data systems. These methods, which are not covered in this
introductory chapter to digital control systems, can be used to determine stability in higher-order
digital systems. If you wish to go further into the area of digital system stability, you are encouraged
to look at Raible's tabular method or Jury's stability test for determining the number of a sampled-
data system's closed-loop poles that exist outside the unit circle and thus indicate instability.2

The following example demonstrates the effect of sampling rate on the stability of a closed-loop
feedback control system. All parameters are constant except for the sampling interval, T. We will see

Ka

s2(s+a)
a

s2(s+a)
1
s2

1/a

s

1/a

s+a

Tz

(z−1)
2

z/a

z−1

z/a

z−e−aT

Tz

(z−1)
2

(1−e−aT)z

a(z−1)(z−e−aT )

T (z − e−aT) − (z − 1)( )1−e−aT

a

(z − 1) (z − e−aT )

K (0.0655z + 0.02783)

(z − 1) (z − 0.0672)

G (z)

1 + G (z)

K (0.0655z + 0.02783)

z2 + (0.0655K − 1.0672) z + (0.02783K + 0.0672)

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_13.zip
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(13.56)

that varying T will lead us through regions of stability and instability just as though we were varying
the forward-path gain, K.

Example 13.7 Range of T for Stability
PROBLEM:
Determine the range of sampling interval, T, that will make the system shown in Figure 13.15
stable, and the range that will make it unstable.

FIGURE 13.15 Digital system for Example 13.7

SOLUTION:
Since H(s) = 1, the z-transform of the closed-loop system, T(z), is found from Figure 13.10 to be

T (z) =

To find G(z), first find the partial-fraction expansion of G(s).

G (s) = 10 = 10 (1 − e−Ts)( − )

Taking the z-transform, we obtain

G (z) = [ − ]= 10

Substituting Eq. (13.55) into (13.53) yields

T (z) =

The pole of Eq. (13.56), (11e−T − 10), monotonically decreases from +1 to −1 for 0 < T < 0.2. For
0.2 < T < ∞, (11e−T − 10) monotonically decreases from −1 to −10. Thus, the pole of T(z) will be
inside the unit circle, and the system will be stable if 0 < T < 0.2. In terms of frequency, where f
= 1/T, the system will be stable as long as the sampling frequency is 1/0.2 = 5 hertz or greater.

We now have found, via the z-plane, that sampled systems are stable if their poles are inside the unit
circle. Unfortunately, this stability criterion precludes the use of the Routh–Hurwitz criterion, which
detects roots in the right half-plane rather than outside the unit circle. However, another method
exists that allows us to use the familiar s-plane and the Routh–Hurwitz criterion to determine the
stability of a sampled system. Let us introduce this topic.

Bilinear Transformations

G (z)

1 + G (z)

1 − e−Ts

s (s + 1)

1

s

1

s + 1

10 (z − 1)

z

z

z − 1

z

z − e−T

(1 − e−T)
(z − e−T )

10 (1 − e−T)

z − (11e−T − 10)
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Bilinear transformations give us the ability to apply our s-plane analysis and design techniques
to digital systems. We can analyze and design on the s-plane as we have done in Chapters 8 and 9
and then, using these transformations, convert the results to a digital system that contains the same
properties. Let us look further into this topic.

We can consider z = eTs and its inverse, s = (1/T) ln z, as the exact transformations between z and s.
Thus, if we have G(z) and substitute z = eTs, we obtain G (eTs) as the result of converting to s.
Similarly, if we have G(s) and substitute s = (1/T) ln z, we obtain G((1/T) ln z) as the result of
converting to z. Unfortunately, both transformations yield transcendental functions, which we of
course take care of through the rather complicated z-transform.

What we would like is a simple transformation that would yield linear arguments when transforming
in both directions (bilinear) through direct substitution and without the complicated z-transform.

Bilinear transformations of the form

z =

and its inverse,

s =

have been derived to yield linear variables in s and z. Different values of a, b, c, and d have been
derived for particular applications and yield various degrees of accuracy when comparing properties
of the continuous and sampled functions.

For example, in the next subsection we will see that a particular choice of coefficients will take points
on the unit circle and map them into points on the jω-axis. Points outside the unit circle will be
mapped into the right half-plane, and points inside the unit circle will be mapped into the left half-
plane. Thus, we will be able to make a simple transformation from the z-plane to the s-plane and
obtain stability information about the digital system by working in the s-plane.

Since the transformations are not exact, only the property for which they are designed can be relied
upon. For the stability transformation just discussed, we cannot expect the resulting G(s) to have the
same transient response as G(z). Another transformation will be covered that will retain that
property.

Digital System Stability via the s-Plane
In this subsection, we look at a bilinear transformation that maps jω-axis points on the s-plane to
unit-circle points on the z-plane. Further, the transformation maps right–half-plane points on the s-
plane to points outside the unit circle on the z-plane. Finally, the transformation maps left–half-
plane points on the s-plane to points inside the unit circle on the z-plane. Thus, we are able to
transform the denominator of the pulsed transfer function, D(z), to the denominator of a continuous
transfer function, D(s), and use the Routh–Hurwitz criterion to determine stability.

The bilinear transformation

s =

and its inverse

z =

as + b

cs + d

−dz + b

cz − a

z+1
z−1

s+1
s−1
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(13.62)

(13.63a)

(13.63b)

(13.63c)

perform the required transformation (Kuo, 1995). We can show this fact as follows: Letting s = α + jω
and substituting into Eq. (13.60),

z =

from which

z =

Thus,

z < 1 when α < 0

z > 1 when α > 0

and

|z = 1 when α = 0

Let us look at an example that shows how the stability of sampled systems can be found using this
bilinear transformation and the Routh–Hurwitz criterion.

(α + 1) + jω

(α − 1) + jω

√(α + 1)
2

+ ω2

√(α − 1)
2

+ ω2
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Example 13.8 Stability via Routh–Hurwitz
PROBLEM:

Given T(z) = N(z)/D(z), where D(z) = z3 − z2 − 0.2 z + 0.1, use the Routh–Hurwitz criterion to
find the number of z-plane poles of T(z) inside, outside, and on the unit circle. Is the system
stable?

SOLUTION:

Substitute Eq. (13.60) into D(z) = 0 and obtain3

s3 − 19s2 − 45s − 17 = 0

The Routh table for Eq. (13.64), Table 13.3, shows one root in the right–half-plane and two
roots in the left–half-plane. Hence, T(z) has one pole outside the unit circle, no poles on the unit
circle, and two poles inside the unit circle. The system is unstable because of the pole outside
the unit circle.

TABLE 13.3

Routh table for Example 13.8

s3 1 −45

s2 19 −17

s1 −45.89 0

s0 −17 0

Skill-Assessment Exercise 13.5
PROBLEM:
Determine the range of sampling interval, T, that will make the system shown in Figure 13.16
stable.

FIGURE 13.16 Digital system for Skill-Assessment Exercise 13.5

ANSWER:

0 < T < 0.1022 second

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


Skill-Assessment Exercise 13.6
PROBLEM:

Given T(z) = N(z)/D(z), where D(z) = z3 − z2 − 0.5z + 0.3, use the Routh–Hurwitz criterion to
find the number of z-plane poles of T(z) inside, outside, and on the unit circle. Is the system
stable?

ANSWER:
T(z) has one pole outside the unit circle, no poles on the unit circle, and two poles inside the
unit circle. The system is unstable.

The complete solution is located at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we covered the concepts of stability for digital systems. Both z- and s-plane
perspectives were discussed. Using a bilinear transformation, we are able to use the Routh–Hurwitz
criterion to determine stability.

The highlight of the section is that sampling rate (along with system parameters, such as gain and
component values) helps to determine or destroy the stability of a digital system. In general, if the
sampling rate is too slow, the closed-loop digital system will be unstable. We now move from stability
to steady-state errors, paralleling our previous discussion of steady-state errors in analog systems.

13.7 Steady-State Errors
We now examine the effect of sampling upon the steady-state error for digital systems. Any general
conclusion about the steady-state error is difficult because of the dependence of those conclusions
upon the placement of the sampler in the loop. Remember that the position of the sampler could
change the open-loop transfer function. In the discussion of analog systems, there was only one
open-loop transfer function, G(s), upon which the general theory of steady-state error was based and
from which came the standard definitions of static error constants. For digital systems, however, the
placement of the sampler changes the open-loop transfer function and thus precludes any general
conclusions. In this section, we assume the typical placement of the sampler after the error and in
the position of the cascade controller, and we derive our conclusions accordingly about the steady-
state error of digital systems.

Consider the digital system in Figure 13.17(a), where the digital computer is represented by the
sampler and zero-order hold. The transfer function of the plant is represented by G1(s) and the
transfer function of the z.o.h. by (1 − e−Ts)/s. Letting G(s) equal the product of the z.o.h. and G1(s),
and using the block diagram reduction techniques for sampled-data systems, we can find the
sampled error, E*(s) = E(z). Adding synchronous samplers at the input and the feedback, we obtain
Figure 13.17(b). Pushing G(s) and its input sampler to the right past the pickoff point yields Figure
13.17(c). Using Figure 13.9(a), we can convert each block to its z-transform, resulting in Figure
13.17(d).

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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FIGURE 13.17 a. Digital feedback control system for evaluation of steady-state
errors; b. phantom samplers added; c. pushing G(s) and its samplers to the right
past the pickoff point; d. z-transform equivalent system

From this figure, E(z) = R(z) − E(z)G(z), or

E (z) =

The final value theorem for discrete signals states that

e∗ (∞) = lim
z→1

(1 − z−1)E (z)

where e*(∞) is the final sampled value of e(t), or (alternatively) the final value of e(kT).4

Using the final value theorem on Eq. (13.65), we find that the sampled steady-state error, e*(∞), for
unity negative-feedback systems is

R (z)

1 + G (z)
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(13.69)

(13.70)

(13.71)

(13.72)

(13.73)

(13.74)

(13.75)

e∗ (∞) = lim
z→1

(1 − z−1) E (z) = lim
z→1

(1 − z−1)

Equation (13.67) must now be evaluated for each input: step, ramp, and parabola.

Unit Step Input
For a unit step input, R(s) = 1/s. From Table 13.1,

R (z) =

Substituting Eq. (13.68) into Eq. (13.67), we have

e∗ (∞) =

Defining the static error constant, Kp, as

Kp = lim
z→1

G (z)

we rewrite Eq. (13.69) as

e∗ (∞) =

Unit Ramp Input
For a unit ramp input, R(z) = Tz/(z − 1)2. Following the procedure for the step input, you can derive
the fact that

e∗ (∞) =

where

Kv = lim
z→1

(z − 1)G (z)

Unit Parabolic Input
For a unit parabolic input, R(z) = T2z/(z + 1)/[2(z − 1)3]. Similarly,

e∗ (∞) =

where

Ka = lim
z→1

(z − 1)
2
G (z)

Summary of Steady-State Errors

R (z)

1 + G (z)

z

z − 1

1

1 + lim
z→1

G (z)

1
1+Kp

1
Kv

1
T

1
Ka

1
T 2



The equations developed above for e*(∞), Kp, Kv, and Ka are similar to the equations developed for
analog systems. Whereas multiple pole placement at the origin of the s-plane reduced steady-state
errors to zero in the analog case, we can see that multiple pole placement at z = 1 reduces the steady-
state error to zero for digital systems of the type discussed in this section. This conclusion makes
sense when one considers that s = 0 maps into z = 1 under z = eTs.

For example, for a step input, we see that if G(z) in Eq. (13.69) has one pole at z = 1, the limit will
become infinite, and the steady-state error will reduce to zero.

For a ramp input, if G(z) in Eq. (13.73) has two poles at z = 1, the limit will become infinite, and the
error will reduce to zero.

Similar conclusions can be drawn for the parabolic input and Eq. (13.75). Here, G(z) needs three
poles at z = 1 in order for the steady-state error to be zero. Let us look at an example.
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Example 13.9 Finding Steady-State Error
PROBLEM:
For step, ramp, and parabolic inputs, find the steady-state error for the feedback control system
shown in Figure 13.17(a) if

G1 (s) =

SOLUTION:
First find G(s), the product of the z.o.h. and the plant.

G (s) = = 10 (1 − e−Ts)[ − + ]

The z-transform is then

G (z) = 10 (1 − z−1)[ − + ]

= 10[ − 1 + ]

For a step input,

Kp = lim
z→1

G (z) = ∞; e∗ (∞) = = 0

For a ramp input,

Kv = lim
z→1

(z − 1)G (z) = 10; e∗ (∞) = = 0.1

For a parabolic input,

Ka = lim
z→1

(z − 1)2
G (z) = 0; e∗ (∞) = = ∞

You will notice that the answers obtained are the same as the results obtained for the analog
system. However, since stability depends upon the sampling interval, be sure to check the
stability of the system after a sampling interval is established before making steady-state error
calculations.

 Students who are using MATLAB should now run ch13apB6 in Appendix B. You 

will learn how to use MATLAB to determine Kp, Kv, and Ka in a digital system as well 
as check the stability. This exercise solves Example 13.9 using MATLAB.

10

s (s + 1)

10 (1 − e−Ts)

s2 (s + 1)

1

s2

1

s

1

s + 1

Tz

(z−1)
2

z

z−1
z

z−e−T

T

z−1
z−1

z−e−T

1
1+Kp

1
T

1
Kv

1
T 2

1
Ka

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_12.zip
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Skill-Assessment Exercise 13.7

PROBLEM:
For step, ramp, and parabolic inputs, find the steady-state error for the feedback control
system shown in Figure 13.17(a) if

G1 (s) =

Let T = 0.1 second. Repeat for T = 0.5 second.

ANSWER:
For T = 0.1 second, Kp = 3, Kv = 0, and Ka = 0; for T = 0.5 second, the system is unstable.

The complete solution is located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we discussed and evaluated the steady-state error of digital systems for step, ramp,
and parabolic inputs. The equations for steady-state error parallel those for analog systems. Even the
definitions of the static error constants were similar. Poles at the origin of the s-plane for analog
systems were replaced with poles at +1 on the z-plane to improve the steady-state error. We continue
our parallel discussion by moving into a discussion of transient response and the root locus for
digital systems.

13.8 Transient Response on the z-Plane
Recall that for analog systems a transient response requirement was specified by selecting a closed-
loop, s-plane pole. In Chapter 8, the closed-loop pole was on the existing root locus, and the design
consisted of a simple gain adjustment. If the closed-loop pole was not on the existing root locus, then
a cascade compensator was designed to reshape the original root locus to go through the desired
closed-loop pole. A gain adjustment then completed the design.

In the next two sections, we want to parallel the described analog methods and apply similar
techniques to digital systems. For this introductory chapter, we will parallel the discussion through
design via gain adjustment. The design of compensation is left to you to pursue in an advanced
course.

Chapter 4 established the relationships between transient response and the s-plane. We saw that
vertical lines on the s-plane were lines of constant settling time, horizontal lines were lines of
constant peak time, and radial lines were lines of constant percent overshoot. In order to draw
equivalent conclusions on the z-plane, we now map those lines through z = esT.

The vertical lines on the s-plane are lines of constant settling time and are characterized by the
equation s = σ1 + jω, where the real part, σ1 = − 4/Ts, is constant and is in the left–half-plane for
stability. Substituting this into z = esT, we obtain

z = eσ1TejωT = r1e
jωT

Equation (13.82) denotes concentric circles of radius r1. If σ1 is positive, the circle has a larger radius
than the unit circle. On the other hand, if σ1 is negative, the circle has a smaller radius than the unit
circle. The circles of constant settling time, normalized to the sampling interval, are shown in Figure

20 (s + 3)

(s + 4) (s + 5)
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13.18 with radius eσ1T = e−4/(Ts/T ). Also, Ts/T = − 4/ln(r), where r is the radius of the circle of
constant settling time.

FIGURE 13.18 Constant damping ratio, normalized settling time, and normalized
peak time plots on the z-plane

The horizontal lines are lines of constant peak time. The lines are characterized by the equation s = σ
+ jω1, where the imaginary part, ω1 = π/Tp, is constant. Substituting this into z = esT, we obtain

z = eσTejω1T = eσTejθ1

Equation (13.83) represents radial lines at an angle of θ1. If σ is negative, that section of the radial
line lies inside the unit circle. If σ is positive, that section of the radial line lies outside the unit circle.
The lines of constant peak time normalized to the sampling interval are shown in Figure 13.18. The
angle of each radial line is ω1T = θ1 = π/(Tp/T), from which Tp/T = π/θ1.

Finally, we map the radial lines of the s-plane onto the z-plane. Remember, these radial lines are
lines of constant percent overshoot on the s-plane. From Figure 13.19, these radial lines are



(13.84)

(13.85)

(13.86)

represented by

= −tan (sin−1
ζ) = −

Hence,

s = σ + jω = −ω + jω

Transforming Eq. (13.85) to the z-plane yields

z = esT = e
−ωT(ζ/√1−ζ2)

e jωT = e
−ωT(ζ/√1−ζ 2)

∠ωT

FIGURE 13.19 The s-plane sketch of constant percent overshoot line

Thus, given a desired damping ratio, ζ, Eq. (13.86) can be plotted on the z-plane through a range of
ωT as shown in Figure 13.18. These curves can then be used as constant percent overshoot curves on
the z-plane.

This section has set the stage for the analysis and design of transient response for digital systems. In
the next section, we apply the results to digital systems using the root locus.

13.9 Gain Design on the z-Plane
In this section, we plot root loci and determine the gain required for stability as well as the gain
required to meet a transient response requirement. Since the open-loop and closed-loop transfer
functions for the generic digital system shown in Figure 13.20 are identical to the continuous system
except for a change in variables from s to z, we can use the same rules for plotting a root locus.

σ

ω

ζ

√1 − ζ2

ζ

√1 − ζ2



FIGURE 13.20 Generic digital feedback control system

However, from our previous discussion, the region of stability on the z-plane is within the unit circle
and not the left half-plane. Thus, in order to determine stability, we must search for the intersection
of the root locus with the unit circle rather than the imaginary axis.

In the last section, we derived the curves of constant settling time, peak time, and damping ratio. In
order to design a digital system for transient response, we find the intersection of the root locus with
the appropriate curves as they appear on the z-plane in Figure 13.18. Let us look at the following
example.



Example 13.10 Stability Design via Root Locus
PROBLEM:
Sketch the root locus for the system shown in Figure 13.21. Also, determine the range of gain, K,
for stability from the root locus plot.

FIGURE 13.21 Digital feedback control for Example 13.10

SOLUTION:
Treat the system as if z were s, and sketch the root locus. The result is shown in Figure 13.22.
Using the root locus program discussed in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e, search along the unit circle for 180°.
Identification of the gain, K, at this point yields the range of gain for stability. Using the
program, we find that the intersection of the root locus with the unit circle is 1 ∠ 60°. The gain
at this point is 0.5. Hence, the range of gain for stability is 0 < K < 0.5.

FIGURE 13.22 Root locus for the system of Figure 13.21

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


 Students who are using MATLAB should now run ch13apB7 in Appendix B. You 

will learn how to use MATLAB to plot a root locus on the z-plane as well as 
superimpose the unit circle. You will learn how to select interactively the 
intersection of the root locus and the unit circle to obtain the value of gain for 
stability. This exercise solves Example 13.10 using MATLAB.

In the next example, we design the value of gain, K, in Figure 13.21 to meet a transient response
specification. The problem is handled similarly to the analog system design, where we found the gain
at the point where the root locus crossed the specified damping ratio, settling time, or peak time
curve. In digital systems, these curves are as shown in Figure 13.18. In summary, then, draw the root
locus of the digital system and superimpose the curves of Figure 13.18. Then find out where the root
locus intersects the desired damping ratio, settling time, or peak time curve and evaluate the gain at
that point. In order to simplify the calculations and obtain more accurate results, draw a radial line
through the point where the root locus intersects the appropriate curve. Measure the angle of this
line and use the root locus program in Appendix H.2 at
www.wiley.com/go/Nise/ControlSystemsEngineering8e to search along this radial line for the point
of intersection with the root locus.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_13.zip
http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
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Example 13.11 Transient Response Design via Gain Adjustment
PROBLEM:
For the system of Figure 13.21, find the value of gain, K, to yield a damping ratio of 0.7.

SOLUTION:
Figure 13.23 shows the constant damping ratio curves superimposed over the root locus for the
system as determined from the last example. Draw a radial line from the origin to the
intersection of the root locus with the 0.7 damping ratio curve (a 16.62° line). The root locus
program discussed in Appendix H.2 at www.wiley.com/go/Nise/ControlSystemsEngineering8e
can now be used to obtain the gain by searching along a 16.62° line for 180°, the intersection
with the root locus. The results of the program show that the gain, K, is 0.0627 at 0.719 + j
0.215, the point where the 0.7 damping ratio curve intersects the root locus.

FIGURE 13.23 Root locus for the system of Figure 13.21 with constant 0.7
damping ratio curve

We can now check our design by finding the unit sampled step response of the system of Figure
13.21. Using our design, K = 0.0627, along with R(z) = z/(z − 1), a sampled step input, we find
the sampled output to be

C (z) = =

Performing the indicated division, we obtain the output valid at the sampling instants, as shown
in Figure 13.24. Since the overshoot is approximately 5%, the requirement of a 0.7 damping
ratio has been met. You should remember, however, that the plot is valid only at integer values
of the sampling instants.

R (z)G (z)

1 + G (z)

0.0627z2 + 0.0627z

z3 − 2.4373z2 + 2z − 0.5627
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FIGURE 13.24 Sampled step response of the system of Figure 13.21 with K =
0.0627

 Students who are using MATLAB should now run ch13apB8 in Appendix B. You 

will learn how to use MATLAB to plot a root locus on the z-plane as well as 
superimpose a grid of damping ratio curves. You will learn how to obtain the gain 
and a closed-loop step response of a digital system after interactively selecting 
the operating point on the root locus. This exercise solves Example 13.11 using 
MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_13.zip


Skill-Assessment Exercise 13.8
PROBLEM:
For the system of Figure 13.20 where H(z) = 1 and

G (z) =

find the value of gain, K, to yield a damping ratio of 0.5.

ANSWER:

K = 0.31

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

TryIt 13.3
Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 13.8.

Gz=zpk(−0.5,[0.25,0.75],...1,[])
rlocus(Gz)
zgrid(0.5, [])
[K,p]=rlocfind(Gz)

Note: When the root locus appears, click on the intersection of the 0.5 damping ratio curve
and the root locus to calculate the gain.

Simulink provides an alternative method of simulating digital systems to obtain the time 
response. Students who are performing the MATLAB exercises and want to explore the added 
capability of Simulink should now consult Appendix C, Simulink Tutorial. Example C.4 in 
the tutorial shows how to use Simulink to simulate digital systems.

 MATLAB's Linear System Analyzer provides another method of simulating digital 

systems to obtain the time response. Students who are performing the MATLAB exercises 
and want to explore the added capability of MATLAB's Linear System Analyzer should now 
consult Appendix E, which contains a tutorial on the Linear System Analyzer as well as 
some examples. One of the illustrative examples, Example E.5, finds the closed-loop step 
response of a digital system using the Linear System Analyzer.

In this section, we used the root locus and gain adjustment to design the transient response of a
digital system. This method suffers the same drawbacks as when it was applied to analog systems;
namely, if the root locus does not intersect a desired design point, then a simple gain adjustment will
not accomplish the design objective. Techniques to design compensation for digital systems can then
be applied.

13.10 Cascade Compensation via the s-Plane

K (z + 0.5)

(z − 0.25) (z − 0.75)

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/TryIt_for_Chapter_13.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Simulink_Files_in_Appendix_C_for_Chapter_13.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_E_for_Chapter_13.zip
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In previous sections of this chapter, we analyzed and designed digital systems directly in the z-
domain up to and including design via gain adjustment. We are now ready to design digital
compensators, such as those covered in Chapters 9 and 11. Rather than continuing on this path of
design directly in the z-domain, we depart by covering analysis and design techniques that allow us
to make use of previous chapters by designing on the s-plane and then transforming our s-plane
design to a digital implementation. We covered one aspect of s-plane analysis in Section 13.6, where
we used a bilinear transformation to analyze stability. We now continue with s-plane analysis and
design by applying it to cascade compensator design. Direct design of compensators on the z-plane is
left for a dedicated course in digital control systems.

Cascade Compensation
In order to perform design in the s-plane and then convert the continuous compensator to a digital
compensator, we need a bilinear transformation that will preserve, at the sampling instants, the
response of the continuous compensator. The bilinear transformation covered in Section 13.6 will
not meet that requirement. A bilinear transformation that can be performed with hand calculations
and yields a digital transfer function whose output response at the sampling instants is
approximately the same as the equivalent analog transfer function is called the Tustin
transformation. This transformation is used to transform the continuous compensator, Gc(s), to
the digital compensator, Gc(z). The Tustin transformation is given by5

s =

and its inverse by

z = =

As the sampling interval, T, gets smaller (higher sampling rate), the designed digital compensator's
output yields a closer match to the analog compensator. If the sampling rate is not high enough,
there is a discrepancy at higher frequencies between the digital and analog filters’ frequency
responses. Methods are available to correct the discrepancy, but they are beyond the scope of our
discussion. The interested reader should investigate the topic of prewarping, covered in books
dedicated to digital control and listed in the Bibliography at the end of this chapter.

Astrom and Wittenmark (1984) have developed a guideline for selecting the sampling interval, T.
Their conclusion is that the value of T in seconds should be in the range 0.15/ωΦM

 to 0.5/ωΦM
, where

ωΦM
 is the zero dB frequency (rad/s) of the magnitude frequency response curve for the cascaded

analog compensator and plant.

In the following example, we will design a compensator, Gc(s), to meet the required performance
specifications. We will then use the Tustin transformation to obtain the model for an equivalent
digital controller. In the next section, we will show how to implement the digital controller.

2(z−1)

T (z+1)

−( s+ )2

T

( s− )2

T

1+ sT

2

1− sT

2
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Example 13.12 Digital Cascade Compensator Design
PROBLEM:
For the digital control system of Figure 13.25(a), where

Gp (s) =

design a digital lead compensator, Gc(z), as shown in Figure 13.25(c), so that the system will
operate with 20% overshoot and a settling time of 1.1 seconds. Create your design in the s-
domain and transform the compensator to the z-domain.

FIGURE 13.25 a. Digital control system showing the digital computer
performing compensation; b. continuous system used for design; c. transformed
digital system

1

s (s + 6) (s + 10)
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SOLUTION:
Using Figure 13.25(b), design a lead compensator using the techniques described in Chapter 9
or 11. The design was created as part of Example 9.6, where we found that the lead compensator
was

Gc (s) =

Using Eqs. (13.90) and (13.91), we find that the zero dB frequency, ωΦM
, for Gp(s)Gc(s) is 5.8

rad/s. Using the guideline described by Astrom and Wittenmark (1984), the lowest value of T
should be in the range 0.15/ωΦM

= 0.026 to 0.5/ωΦM
= 0.086 second. Let us use T = 0.01

second.

Substituting Eq. (13.88) into Eq. (13.91) with T = 0.01 second yields

Gc (z) =

The z-transform of the plant and zero-order hold, found by the method discussed in Section
13.4 with T = 0.01 second, is

Gp (z) =

The time response in Figure 13.26 (T = 0.01 second) shows that the compensated closed-loop
system meets the transient response requirements. The figure also shows the response for a
compensator designed with sampling times at the extremes of Astrom and Wittenmark's
guideline.

1977 (s + 6)

(s + 29.1)

1778z − 1674

z − 0.746

(1.602 × 10−7z2) + (6.156 × 10−7z) + (1.478 × 10−7)

z3 − 2.847z2 + 2.699z − 0.8521



FIGURE 13.26 Closed-loop response for the compensated system of Example
13.12 showing effect of three different sampling frequencies

 Students who are using MATLAB should now run ch13 apB9 in Appendix B. You 

will learn how to use MATLAB to design a digital lead compensator using the Tustin 
transformation. This exercise solves Example 13.12 using MATLAB.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_in_Appendix_B_for_Chapter_13.zip
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Skill-Assessment Exercise 13.9

PROBLEM:
In Example 11.3, a lead compensator was designed for a unity-feedback system whose plant
was

G (s) =

The design specifications were as follows: percent overshoot = 20%, peak time = 0.1
second, and Kv = 40. In order to meet the requirements, the design yielded K = 1440 and a
lead compensator

Gc (s) = 2.38

If the system is to be computer controlled, find the digital controller, Gc(z).

ANSWER:

Gc (z) = 2.34 , T = 0.001 second

The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

Now that we have learned how to design a digital cascade compensator, Gc(z), the next section will
teach us how to use the digital computer to implement it.

13.11 Implementing the Digital Compensator
The controller, Gc(z), can be implemented directly via calculations within the digital computer in the
forward path as shown in Figure 13.27. Let us now derive a numerical algorithm that the computer
can use to emulate the compensator. We will find an expression for the computer's sampled output,
x*(t), whose transforms are shown in Figure 13.27 as X(z). We will see that this expression can be
used to program the digital computer to emulate the compensator.

FIGURE 13.27 Block diagram showing computer emulation of a digital compensator

Consider a second-order compensator, Gc(z),

Gc (z) = =

Cross-multiplying,

100K

s (s + 36) (s + 100)

s + 25.3

s + 60.2

z − 0.975

z − 0.9416

X (z)

E (z)

a3z
3 + a2z

2 + a1z + a0

b2z
2 + b1z + b0
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(b2z
2 + b1z + b0) X (z) = (a3z

3 + a2z
2 + a1z + a0) E (z)

Solving for the term with the highest power of z operating on the output, X(z),

b2z
2X (z) = (a3z

3 + a2z
2 + a1z + a0) E (z) − (b1z + b0) X (z)

Dividing by the coefficient of X(z) on the left-hand side of Eq. (13.96) yields

X (z) =( z + + z−1 + z−2)E (z) −( z−1 + z−2)X (z)

Finally, taking the inverse z-transform,

x∗ (t) = e∗ (t + T ) + e∗ (t) + e∗ (t − T ) + e∗ (t − 2T ) − x∗ (t − T ) − x∗ (t − 2T )

We can see from this equation that the present sample of the compensator output, x*(t), is a function
of future (e*(t + T)), present (e*(t)), past (e*(t − T)), and e*(t − 2T)) samples of e(t), along with past
values of the output, x*(t − T) and x*(t − 2T). Obviously, if we are to physically realize this
compensator, the output sample cannot be dependent upon future values of the input. Hence, to be
physically realizable, a3 must equal zero for the future value of e(t) to be zero. We conclude that the
numerator of the compensator's transfer function must be of equal or lower order than the
denominator in order that the compensator be physically realizable.6

Now assume that a3 does indeed equal zero. Equation (13.98) now becomes

x∗ (t) = e∗ (t) + e∗ (t − T ) + e∗ (t − 2T ) − x∗ (t − T ) − x∗ (t − 2T )

Hence, the output sample is a function of current and past input samples of the input as well as past
samples of the output. Figure 13.28 shows the flowchart of the compensator from which a program
can be written for the digital computer.7 The figure shows that the compensator can be implemented
by storing several successive values of the input and output. The output is then formed by a weighted
linear combination of these stored variables. Let us now look at a numerical example.

FIGURE 13.28 Flowchart for a second-order digital compensator6
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Example 13.13 Digital Cascade Compensator Implementation
PROBLEM:
Develop a flowchart for the digital compensator defined by Eq. (13.100).

Gc (z) = =

SOLUTION:
Cross-multiply and obtain

(z2 − 0.5z + 0.7) X (z) = (z + 0.5) E (z)

Solve for the highest power of z operating on the output, X(z),

z2X (z) = (z + 0.5) E (z) − (−0.5z + 0.7) X (z)

Solving for X(z) on the left-hand side,

X (z) = (z−1 + 0.5z−2) E (z) − (−0.5z−1 + 0.7z−2) X (z)

Implementing Eq. (13.103) with the flowchart of Figure 13.29 completes the design.

FIGURE 13.29 Flowchart to implement8 Gc (z) =

X (z)

E (z)

z + 0.5

z2 − 0.5z + 0.7

z+0.5

z2−0.5z+0.7



Skill-Assessment Exercise 13.10
PROBLEM:
Draw a flowchart from which the compensator

Gc (z) =

can be programmed if the sampling interval is 0.1 second.

ANSWER:
The complete solution is at www.wiley.com/go/Nise/ControlSystemsEngineering8e.

In this section, we learned how to implement a digital compensator. The resulting flowchart can
serve as the design of a digital computer program for the computer in the loop. The design consists of
delays that can be thought of as storage for each sampled value of input and output. The stored
values are weighted and added. The engineer then can implement the design with a computer
program.

In the next section, we will put together the concepts of this chapter as we apply the principles of
digital control system design to our antenna azimuth control system.

1899z2 − 3761z + 1861

z2 − 1.908z + 0.9075
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Case Studies

Antenna Control: Transient Design via Gain
 We now demonstrate the objectives of this chapter by turning to our ongoing antenna

azimuth position control system. We will show where the computer is inserted in the loop,
model the system, and design the gain to meet a transient response requirement. Later, we will
design a digital cascade compensator.

The computer will perform two functions in the loop. First, the computer will be used as the
input device. It will receive digital signals from the keyboard in the form of commands and
digital signals from the output for closed-loop control. The keyboard will replace the input
potentiometer, and an analog-to-digital (A/D) converter along with a unity gain feedback
transducer will replace the output potentiometer.

Figure 13.30(a) shows the original analog system, and Figure 13.30(b) shows the system with
the computer in the loop. Here the computer is receiving digital signals from two sources: (1)
the input via the keyboard or other tracking commands and (2) the output via an A/D converter.
The plant is receiving signals from the digital computer via a digital-to-analog (D/A) converter
and the sample-and-hold.

FIGURE 13.30 Antenna control system: a. analog implementation; b. digital
implementation

Figure 13.30(b) shows some simplifying assumptions we have made. The power amplifier's pole
is assumed to be far enough away from the motor's pole that we can represent the power
amplifier as a pure gain equal to its dc gain of unity. Also, we have absorbed any preamplifier
and potentiometer gain in the computer and its associated D/A converter.

PROBLEM:
Design the gain for the antenna azimuth position control system shown in Figure 13.30(b) to
yield a closed-loop damping ratio of 0.5. Assume a sampling interval of T = 0.1 second.

SOLUTION:
Modeling the System: Our first objective is to model the system in the z-domain. The
forward transfer function, G(s), which includes the sample-and-hold, power amplifier, motor
and load, and the gears, is



(13.104)

(13.105)

(13.106)

(13.107)

G (s) = = (1 − eTs)

where a = 1.71, and T = 0.1.

Since the z-transform of (1 − e−Ts) is (1 − z−1) and, from Example 13.6, the z-transform of
a/[s2(s + a)] is

z{ }=[ − ]

the z-transform of the plant, G(z), is

G (z) = (1 − z−1) z{ }

= [ ]

Substituting the values for a and T, we obtain

G (z) =

Figure 13.31 shows the computer and plant as part of the digital feedback control system.

FIGURE 13.31 Analog antenna azimuth position control system is converted to a
digital system.

Designing for Transient Response: Now that the modeling in the z-domain is complete, we
can begin to design the system for the required transient response. We superimpose the root
locus over the constant damping ratio curves in the z-plane, as shown in Figure 13.32. A line
drawn from the origin to the intersection forms an 8.58° angle. Searching along this line for
180°, we find the intersection to be (0.915 + j 0.138), with a loop gain, 9.846 × 10−4K, of 0.0135.
Hence, K = 13.71.

1 − e−Ts

s

0.2083

s (s + a)

0.2083

a

a

s2 (s + a)

a

s2 (s + a)

Tz

(z − 1)2

(1 − e−aT) z

a (z − 1) (z − e−aT )

0.2083
a

a

s2(s+a)

0.2083
a2

[aT−(1−e−aT)]z+[(1−e−aT)−aTe−aT ]

(z−1)(z−e−aT )

9.846 × 10−4 (z + 0.945)

(z − 1) (z − 0.843)



FIGURE 13.32 Root locus superimposed over constant damping ratio curve

Checking the design by finding the unit sampled step response of the closed-loop system yields
the plot of Figure 13.33, which exhibits 20% overshoot (ζ = 0.456).

FIGURE 13.33 Sampled step response of the antenna azimuth position control
system

CHALLENGE:



(13.108)

(13.109)

We now give you a case study to test your knowledge of this chapter's objectives: You are given
the antenna azimuth position control system shown in Appendix A2, Configuration 2. Do the
following:

a. Convert the system into a digital system with T = 0.1 second. For the purposes of the
conversion, assume that the potentiometers are replaced with unity gain transducers.
Neglect power amplifier dynamics.

b. Design the gain, K, for 16.3% overshoot.

c. For your designed value of gain, find the steady-state error for a unit ramp input.

d. 

Repeat Part b using MATLAB.

Antenna Control: Digital Cascade Compensator Design
PROBLEM:

 Design a digital lead compensator to reduce the settling time by a factor of 2.5 from that
obtained for the antenna azimuth control system in the Case Study “Antenna Control: Transient
Design via Gain”.

SOLUTION:
Figure 13.34 shows a simplified block diagram of the continuous system, neglecting power
amplifier dynamics and assuming that the potentiometers are replaced with unity gain
transducers as previously explained.

FIGURE 13.34 Simplified block diagram of antenna azimuth control system

We begin with an s-plane design. From Figure 13.33, the settling time is about 5 seconds. Thus,
our design requirements are a settling time of 2 seconds and a damping ratio of 0.5. The natural
frequency is ωn = 4/(ζTs) = 4 rad / s. The compensated dominant poles are located at 
−ζωn ± jωn√1 − ζ2 = −2 ± j3.464.

Designing a lead compensator zero to cancel the plant pole on the s-plane at −1.71 yields a lead
compensator pole at −4. Hence, the lead compensator is given by

Gc (s) =

Using root locus to evaluate the gain, K, at the design point yields 0.2083K = 16, or K = 76.81.

We now select an appropriate sampling frequency as described in Section 13.10. Using the
cascaded compensator,

KGc (s) =

s + 1.71

s + 4

76.81 (s + 1.71)

(s + 4)



(13.110)

(13.111)

(13.112)

(13.113)

and plant,

Gp (s) =

the equivalent forward-path transfer function, Ge(s) = KGc(s)Gp(s), is

Ge (s) =

The magnitude frequency response of Eq. (13.111) is 0 dB at 3.1 rad/s. Thus, from Section 13.10,
the value of the sampling interval, T, should be in the range 0.15/ωΦM

= 0.05 to 
0.5/ωΦM

= 0.16 second. Let us choose a smaller value, say T = 0.025 second.

Substituting Eq. (13.89) into Eq. (13.111), where T = 0.025, yields the digital compensator

KGc (z) =

In order to simulate the digital system, we calculate the z-transform of the plant in Figure 13.34
in cascade with a zero-order sample-and-hold. The z-transform of the sampled plant is
evaluated by the method discussed in Section 13.4 using T = 0.025. The result is

Gp (z) =

The step response in Figure 13.35 shows approximately 20% overshoot and a settling time of 2.1
seconds for the closed-loop digital system.

FIGURE 13.35 Closed-loop digital step response for antenna control system with
a lead compensator

0.2083

s (s + 1.71)

16

s (s + 4)

74.72z − 71.59

z − 0.9048

6.418 × 10−5z + 6.327 × 10−5

z2 − 1.958z + 0.9582



(13.114)

(13.115)

(13.116)

We conclude the design by obtaining a flowchart for the digital compensator. Using Eq. (13.112),
where we define KGc(z) = X(z)/E(z), and cross-multiplying yields

(z − 0.9048) X (z) = (74.72z − 71.59) E (z)

Solving for the highest power of z operating on X(z),

zX (z) = (74.72z − 71.59) E (z) + 0.9048X (z)

Solving for X(z),

X (z) = (74.72 − 71.59z−1) E (z) + 0.9048z−1X (z)

Implementing Eq. (13.116) as a flowchart yields Figure 13.36.

FIGURE 13.36 Flowchart for a digital lead compensator9

CHALLENGE:
You are now given a case study to test your knowledge of this chapter's objectives. You are given
the antenna azimuth position control system shown in Appendix A2, Configuration 2. Replace
the potentiometers with unity gain transducers, neglect power amplifier dynamics, and do the
following:

a. Design a digital lead compensator to yield 10% overshoot with a 1-second peak time. Design
in the s-plane and use the Tustin transformation to specify and implement a digital
compensator. Choose an appropriate sampling interval.

b. Draw a flowchart for your digital lead compensator.

c. 

Repeat Part a using MATLAB.

Summary
In this chapter, we covered the design of digital systems using classical methods. State-space
techniques were not covered. However, you are encouraged to pursue this topic in a course dedicated
to sampled-data control systems.

We looked at the advantages of digital control systems. These systems can control numerous loops at
reduced cost. System modifications can be implemented with software changes rather than hardware
changes.

Typically, the digital computer is placed in the forward path preceding the plant. Digital-to-analog
and analog-to-digital conversion is required within the system to ensure compatibility of the analog



and digital signals throughout the system. The digital computer in the loop is modeled as a sample-
and-hold network along with any compensation that it performs.

Throughout the chapter, we saw direct parallels to the methods used for s-plane analysis of
transients, steady-state errors, and the stability of analog systems. The parallel is made possible by
the z-transform, which replaces the Laplace transform as the transform of choice for analyzing
sampled-data systems. The z-transform allows us to represent sampled waveforms at the sampling
instants. We can handle sampled systems as easily as continuous systems, including block diagram
reduction, since both signals and systems can be represented in the z-domain and manipulated
algebraically. Complex systems can be reduced to a single block through techniques that parallel
those used with the s-plane. Time responses can be obtained through division of the numerator by
the denominator without the partial-fraction expansion required in the s-domain.

Digital systems analysis parallels the s-plane techniques in the area of stability. The unit circle
becomes the boundary of stability, replacing the imaginary axis.

We also found that the concepts of root locus and transient response are easily carried into the z-
plane. The rules for sketching the root locus do not change. We can map points on the s-plane into
points on the z-plane and attach transient response characteristics to the points. Evaluating a
sampled-data system shows that the sampling rate, in addition to gain and load, determines the
transient response.

Cascade compensators also can be designed for digital systems. One method is to first design the
compensator on the s-plane or via frequency response techniques described in Chapters 9 and 11,
respectively. Then the resulting design is transformed to a digital compensator using the Tustin
transformation. Designing cascade compensation directly on the z-plane is an alternative method
that can be used. However, these techniques are beyond the scope of this book.

This introductory control systems course is now complete. You have learned how to analyze and
design linear control systems using frequency-domain and state-space techniques. This course is
only a beginning. You may consider furthering your study of control systems by taking advanced
courses in digital, nonlinear, and optimal control, where you will learn new techniques for analyzing
and designing classes of systems not covered in this book. We hope we have whetted your appetite to
continue your education in control systems engineering.

Review Questions
1. Name two functions that the digital computer can perform when used with feedback control

systems.

2. Name three advantages of using digital computers in the loop.

3. Name two important considerations in analog-to-digital conversion that yield errors.

4. Of what does the block diagram model for a computer consist?

5. What is the z-transform?

6. What does the inverse z-transform of a time waveform actually yield?

7. Name two methods of finding the inverse z-transform.

8. What method for finding the inverse z-transform yields a closed-form expression for the time
function?

9. What method for finding the inverse z-transform immediately yields the values of the time
waveform at the sampling instants?

10. In order to find the z-transform of a G(s), what must be true of the input and the output?

11. If input R(z) to system G(z) yields output C(z), what is the nature of c(t)?

12. If a time waveform, c(t), at the output of system G(z) is plotted using the inverse z-transform,
and a typical second-order response with damping ratio = 0.5 results, can we say that the system
is stable?



13. What must exist in order for cascaded sampled-data systems to be represented by the product of
their pulse transfer functions, G(z)?

14. Where is the region for stability on the z-plane?

15. What methods for finding the stability of digital systems can replace the Routh–Hurwitz
criterion for analog systems?

16. To drive steady-state errors in analog systems to zero, a pole can be placed at the origin of the s-
plane. Where on the z-plane should a pole be placed to drive the steady-state error of a sampled
system to zero?

17. How do the rules for sketching the root locus on the z-plane differ from those for sketching the
root locus on the s-plane?

18. Given a point on the z-plane, how can one determine the associated percent overshoot, settling
time, and peak time?

19. Given a desired percent overshoot and settling time, how can one tell which point on the z-plane
is the design point?

20. Describe how digital compensators can be designed on the s-plane.

21. What characteristic is common between a cascade compensator designed on the s-plane and the
digital compensator to which it is converted?

Cyber Exploration Laboratory
EXPERIMENT 13.1

Objectives
To design the gain of a digital control system to meet a transient response requirement; to simulate a
digital control system to test a design; to see the effect of sampling rate upon the time response of a
digital system.

Minimum Required Software Packages
MATLAB, Simulink, and the Control System Toolbox.

Prelab
1. Given the antenna azimuth control system shown in Appendix A2, use Configuration 2 to find

the discrete transfer function of the plant. Neglect the dynamics of the power amplifier and
include the preamplifier, motor, gears, and load. Assume a zero-order hold and a sampling
interval of 0.01 second.

2. Using the digital plant found in Prelab 1, find the preamplifier gain required for a closed-loop
digital system response with 10% overshoot and a sampling interval of 0.01 second. What is the
peak time?

3. Given the antenna azimuth control system shown in Appendix A2, use Configuration 2 to find
the preamplifier gain required for the continuous system to yield a closed-loop step response
with 10% overshoot. Consider the open-loop system to be the preamplifier, motor, gears, and
load. Neglect the dynamics of the power amplifier.

Lab
1. Verify your value of preamplifier gain found in Prelab 2 using the Control System Designer to

generate the root locus for the digital open-loop transfer function found in Prelab 1. Use the



Design Requirements capability to generate the 10% overshoot curve and place your closed-loop
poles at this boundary. Obtain a plot of the root locus and the design boundary. Record the value
of gain for 10% overshoot. Also, obtain a plot of the closed-loop step response using the Linear
System Analyzer and record the values of percent overshoot and peak time. Use the same tool to
find the range of gain for stability.

2. Using Simulink, set up the closed-loop digital system whose plant was found in Prelab 1. Make
two diagrams: one with the digital transfer function for the plant and another using the
continuous transfer function for the plant preceded by a zero-order sample-and-hold. Use the
same step input for both diagrams and obtain the step response of each. Measure the percent
overshoot and peak time.

3. Using Simulink, set up both the digital and continuous systems calculated in Prelab 2 and Prelab
3, respectively, to yield 10% overshoot. Build the digital system with a sample-and-hold rather
than the z-transform function. Plot the step response of each system and record the percent
overshoot and the peak time.

4. For one of the digital systems built in Lab 2, vary the sampling interval and record the responses
for a few values of sampling interval above 0.01 second. Record sampling interval, percent
overshoot, and peak time. Also, find the value of sampling interval that makes the system
unstable.

Postlab
1. Make a table containing the percent overshoot, peak time, and gain for each of the following

closed-loop responses: the digital system using MATLAB; the digital system using Simulink and
the digital transfer functions; the digital system using Simulink and the continuous transfer
functions with the zero-order sample-and-hold; and the continuous system using Simulink.

2. Using the data from Lab 4, make a table containing sampling interval, percent overshoot, and
peak time. Also, state the sampling interval that makes the system unstable.

3. Compare the responses of all of the digital systems with a sampling interval of 0.01 second and
the continuous system. Explain any discrepancies.

4. Compare the responses of the digital system at different sampling intervals with the continuous
system. Explain the differences.

5. Draw some conclusions about the effect of sampling.

EXPERIMENT 13.2

Objective
To use the various functions from the LabVIEW Control Design and Simulation Module for the
analysis of digital control systems.

Minimum Required Software Packages
LabVIEW with the Control Design and Simulation Module and the MathScript RT Module; MATLAB
with the Control Systems Toolbox.

Prelab
1. You are given Figure P8.20 and the parameters listed in the Prelab of Cyber Exploration

Laboratory Experiment 8.2 for the open-loop NASA eight-axis ARMII (Advanced Research
Manipulator II) electromechanical shoulder joint/link, actuated by an armature-controlled dc
servomotor.



2. Obtain the open-loop transfer function of the shoulder joint/link, G(s) = , or use your

calculation from Cyber Exploration Laboratory Experiment 8.2.

3. Use MATLAB and design a digital compensator to yield a closed-loop response with zero steady-
state error and a damping ratio of 0.7. If you already have performed Cyber Exploration
Laboratory Experiment 8.2, modify your M-file from that experiment. Test your design using
MATLAB.

Lab
Simulate your Prelab design using a Simulation Loop from the LabVIEW Control Design and
Simulation Module. Plot the step response of two loops as follows: (1) a unity feedback with the
forward path consisting of the continuous system transfer function preceded by a zero-order hold,
and (2) a unity feedback with the forward path consisting of the equivalent discrete transfer function
of your compensator in cascade with the open-loop plant.

Postlab
Compare the results obtained with those from your prelab MATLAB program. Comment on time-
performance specifications.
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Appendix A1
List of Symbols
%OS Percent overshoot
A Ampere—unit of electrical current
A System matrix for state‐space representation
am Motor time constant

B Mechanical rotational coefficient of viscous friction in N‐m‐
s/rad

B Input matrix for state‐space representation
C Electrical capacitance in farads
C Output matrix for state‐space representation
C(s) Laplace transform of the output of a system
c(t) Output of a system
CM Controllability matrix

D Mechanical rotational coefficient of viscous friction in N‐m‐
s/rad

D Feedforward matrix for state‐space representation
Da Motor armature coefficient of viscous damping in N‐m‐s/rad

Dm Total coefficient of viscous friction at the armature of a
motor, including armature coefficient of viscous friction and
reflected load coefficient of viscous friction in N‐m‐s/rad

E Energy
E(s) Laplace transform of the error
e(t) Error; electrical voltage
Ea(s) Laplace transform of the motor armature input voltage;

Laplace transform of the actuating signal
ea(t) Motor armature input voltage; actuating signal



F Farad—unit of electrical capacitance
F(s) Laplace transform of f(t)
f(t) Mechanical force in newtons; general time function
fv Mechanical translational coefficient of viscous friction

g Acceleration due to gravity
G Electrical conductance in mhos
G(s) Forward‐path transfer function
Gc(s) Compensator transfer function

Gc (z) Sampled transfer function for a compensator

GM Gain margin

Gp(z) Sampled transfer function for a plant

H Henry—unit of electrical inductance
H(s) Feedback‐path transfer function
I Identity matrix
i(t) Electrical current in amperes

J Moment of inertia in kg‐m2

Ja Motor armature moment of inertia in kg‐m2

Jm Total moment of inertia at the armature of a motor,
including armature moment of inertia and reflected load
moment of inertia in kg‐m2

K Controller gain matrix
K Mechanical translational spring constant in N/m or

rotational spring constant in N‐m/rad; amplifier gain;
residue

k Controller feedback gain; running index
Ka Acceleration constant

Kb Back emf constant in V/rad/s

Kf Feedback gain



kg Kilogram = newton seconds2/meter—unit of mass

kg‐m2 Kilogram meters2 = newton ‐ meters seconds2/radian—unit
of moment of inertia

Km Motor gain

Kp Position constant

Kt Motor torque constant relating developed torque to
armature current in N‐m/A

Kv Velocity constant

L Electrical inductance in henries
L Observer gain matrix
l Observer feedback gain
M Mass in kilograms; slope of the root locus asymptotes
m Meter—unit of mechanical translational displacement
M (ω) Magnitude of a sinusoidal response

m/s Meters/second—unit of mechanical translational velocity
MP Peak magnitude of the sinusoidal magnitude response

N Newton—unit of mechanical translational force in kilogram
meters/second2

N‐
s/m

Newton‐seconds/meter—unit of mechanical translational
coefficient of viscous friction

n System type
N/m Newton/meter—unit of mechanical translational spring

constant
N‐m Newton‐meter—unit of mechanical torque
N‐m‐
s/rad

Newton‐meter‐seconds/radian—unit of mechanical
rotational coefficient of viscous friction

N‐
m/A

Newton‐meter/ampere—unit of motor torque constant

N‐
m/rad

Newton‐meter/radian—unit of mechanical rotational spring
constant



OM Observability matrix

P Similarity transformation matrix
pc Compensator pole

Q Coulomb—unit of electrical charge
q(t) Electrical charge in coulombs
R Electrical resistance in ohms
R(s) Laplace transform of the input to a system
r Nonlinear electrical resistance
r(t) Input to a system
Ra Motor armature resistance in ohms

rad Radian—unit of angular displacement
rad/s Radian/second—unit of angular velocity
s Second—unit of time
s Complex variable for the Laplace transform
SF:P Sensitivity of F to a fractional change in P

T Time constant; sampling interval for digital signals
T(s) Closed‐loop transfer function; Laplace transform of

mechanical torque
T(t) Mechanical torque in N‐m
Tm(t) Torque at the armature developed by a motor in N‐m

Tm(s) Laplace transform of the torque at the armature developed
by a motor

Tp Peak time in seconds

Tr Rise time in seconds

Ts Settling time in seconds

Tw Pulse width in seconds

u Input or control vector for state‐space representation
u Input control signal for state‐space representation



u(t) Unit step input
V‐
s/rad

Volt‐seconds/radian—unit of motor back emf constant

v(t) Mechanical translation velocity in m/s; electrical voltage
vb(t) Motor back emf in volts

ve(t) Error voltage

vp(t) Power amplifier input in volts

x State vector for state‐space representation
x(t) Mechanical translation displacement in meters; a state

variable
⋅x Time derivative of a state variable
⋅
x Time derivative of the state vector
y Output vector for state‐space representation
y(t) Output scalar for state‐space representation
z Complex variable for the z‐transform
zc Compensator zero

α Pole‐scaling factor for a lag compensator, where α > 1; angle
of attack

β Pole‐scaling factor for a lead compensator, where β < 1
γ Pole‐scaling factor for a lag–lead compensator, where γ > 1
δ Thrust angle
ζ Damping ratio
θ Angle of a vector with the positive extension of the real axis
θ(t) Angular displacement
θa Angle of a root locus asymptote with the positive extension

of the real axis
θc Angular contribution of a compensator on the s‐plane

θm(t) Angular displacement of the armature of a motor

λ Eigenvalue of a square matrix



σ Real part of the Laplace transform variable, s
σa Real‐axis intercept of the root locus asymptotes

ΦM Phase margin

Φ(t) State transition matrix
φ Sinusoidal phase angle; body angle
φc Sinusoidal phase angle of a compensator

φmax Maximum sinusoidal phase angle

Ω Ohm—unit of electrical resistance
℧ Mho—unit of electrical conductance
ω Imaginary part of the Laplace transform variable, s
ω (t) Angular velocity in rad/s

ω
BW

Bandwidth in rad/s

ωd Damped frequency of oscillation in rad/s
ωΦ

M
Phase‐margin frequency in radians

ω
G

M

Gain‐margin frequency in radians

ωn Natural frequency in rad/s
ωp Peak‐magnitude frequency of the magnitude frequency

response in rad/s



Appendix A2
Antenna Azimuth Position Control
System
Layout

Schematic



Block Diagram

Schematic Parameters
Parameter Configuration

1
Configuration

2
Configuration

3
V 10 10 10
n 10 1 1
K — — —
K1 100 150 100

a 100 150 100
Ra 8 5 5



Parameter Configuration
1

Configuration
2

Configuration
3

Ja 0.02 0.05 0.05

Da 0.01 0.01 0.01

Kb 0.5 1 1

Kt 0.5 1 1

N1 25 50 50

N2 250 250 250

N3 250 250 250

JL 1 5 5

DL 1 3 3

Block Diagram Parameters
Parameter Configuration

1
Configuration

2
Configuration

3
Kpot 0.318

K —
K1 100

a 100
Km 2.083

am 1.71

Kg 0.1

Note: Reader may fill in Configuration 2 and Configuration 3 columns after
completing the antenna control case study challenge problems in Chapters 2 and
10, respectively.
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Unmanned Free‐Swimming
Submersible Vehicle
Pitch Control System

Heading Control System



Appendix A4
Key Equations
Modeling

=−   (2.97);

=   (2.104)

= =   (2.133);

= =   (2.135)

⎛
⎜
⎝

⎞
⎟
⎠

2

  (see after 2.138)

=   (2.153)

=   (2.162);

Kb =   (2.163)

T (s)= = C(sI − A)− 1
B + D  (3.73)

Time Response

Tr =   (4.9);

Ts =   (4.10)

G(s)=   (4.22)

Vo ( s )

Vi ( s )

Z2 ( s )

Z1 ( s )

Vo ( s )

Vi ( s )

Z1 ( s ) +Z2 ( s )

Z1 ( s )

θ2

θ1

r1
r2

N1

N2

T2

T1

θ1

θ2

N2

N1

Number of teeth of

gear ondestination shaft

Number of teath of

gear onsource shaft

θm ( s )

Ea ( s )

Kt/ (RaJm )

s [ s+ (Dm+ ) ]1
Jm

KtKb

Ra

Kt

Ra

Tstall

ea

ea
ωno‐load

Y ( s )

U ( s )

2.2
a

4
a

ω
2
n

s2+2ζωns+ω2
n



%OS = e
− ( ζπ/√1−ζ2 )

× 100  (4.38)

ζ =   (4.39)

Tp =   (4.34);

Ts =   (4.42)

Steady‐State Error

e(∞)= estep(∞)=   (7.30);

e(∞)= eramp(∞)=   (7.31);

e(∞)= eparabola(∞)=   (7.32);

Kp = lim
s→0

G(s)  (7.33)

Kv = lim
s→0

sG(s)  (7.34)

Ka = lim
s→0

s2G(s)  (7.35)

Root Locus
∠KG(s)H(s)=−1 = 1∠(2k + 1)180°  (8.13)

σa =   (8.27)

θa =   (8.28)

θ = ∑ finite zero angles − ∑ finite pole angles

K = = =   (8.51)

− ln ( %OS/100 )

√π2+ln2 ( %OS/100 )

π

ωn√1−ζ2

4
ζωn

1
1+lim

s→0
G ( s )

1
lim
s→0

sG ( s )

1
lim
s→0

s2G ( s )

∑ finite poles−∑ finite zeros

#finite poles−#finite zeros

( 2k+1 )π
#finite poles−#finite zeros

1
|G ( s )H ( s ) |

1
M

∏ finite pole lengths

∏ finite zero lengths



Frequency Response

Mp =   (10.52)

ωp = ωn√1 − 2ζ2  (10.53)

ωBW = ωn√(1 − 2ζ2)+√4ζ4 − 4ζ2 + 2  (10.54)

ΦM = tan− 1   (10.73)

ϕmax = tan− 1 = sin− 1   (11.11)

ωmax =   (11.9);

|Gc(jωmax)|=   (11.12)

State Space
CM =[B AB A

2
B ⋯ A

n−1
B]  (12.26)

.
x =(A − BK)x + Br; y = Cx  (12.3);
.
ex =(A − LC)ex; y − ŷ = Cex  (12.64)

OM =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

C

CA

⋮

CA
n−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

  (12.79)

Digital Control
e∗(∞)= lim

z→1
(1 − z− 1)E(z)  (13.66)

Kp = lim
z→1

G(z)  (13.70);

1
2ζ√1−ζ2

2ζ

√−2ζ2+√1+4ζ4

1−β

2√β

1−β

1+β

1
T√β

1
√β



Kv = lim
z→1

(z − 1)G(z)  (13.73)

Ka = lim
z→1

(z − 1)2
G(z)  (13.75)

1
T

1
T 2



Appendix B
MATLAB Tutorial
B.1 Introduction
MATLAB is a high‐level technical computing environment suitable for solving scientific and engineering
problems. When used with routines from its companion software, the Control System Toolbox, MATLAB
can be used to analyze and design control systems problems such as those covered in this textbook.
MATLAB and the Control System Toolbox are commercial software products available from MathWorks,
Inc., 3 Apple Hill Drive, Natick, MA 01760‐2098. Phone: (508) 647‐7000. Email: info@mathworks.com.
URL: www.mathworks.com.

The MATLAB examples in this tutorial consist of solved problems that demonstrate the application of
MATLAB to the analysis and design of control systems. Many problems were taken from examples in the
text (identified with a MATLAB icon) that were solved without MATLAB. A Command Summary at the
end of this appendix lists key MATLAB statements and their descriptions.

The code in this tutorial is also available in the Control Systems Engineering Toolbox folder. You should
have MATLAB Version 9.3(R2017b) and the Control System Toolbox Version 10.3 installed on your
machine to execute this appendix's code in the Control Systems Engineering Toolbox Version 8.

To run the M‐files, first be sure the files are either added to the search path in Set Path under the
HOME tab in the ENVIRONMENT section or appear in the Current Folder window, which is part
of the MATLAB window. To see the computer responses after installing the M‐files, run each problem
by typing the M‐file name, such as ch2p1, after the prompt (>>) in the Command Window. You may
also run the files by right‐clicking the file name, if it appears in the Current Folder window, and select
Run.
To view all or part of the M‐file in the Command Window, enter “type <file name>” or “help <file
name>,” respectively, after the prompt. You may also view and make changes to the M‐file by double‐
clicking the file in the Current Folder window. This action brings up the editor. After editing, be sure
to save the revised file before executing.

If you do not have the Control Systems Engineering Toolbox M‐files, you can create your own M‐files by
typing the code for each problem in this appendix into a separate M‐file (there is no need to type the
final pause statement or comments), and naming each M‐file with a .m extension, as in ch2p1.m. You
can also type the code for more than one problem into an M‐file, including the pause command, and
name the M‐file with the .m extension. You can then call the file from the Command Window, and
continue past the pause statements to the next problem by pressing any key.

By its nature, this appendix cannot cover all the background and details necessary for a complete
understanding of MATLAB. For further details, you are referred to other sources, including MATLAB
reference manuals and instructions specific to your particular computer. The bibliography at the end of
this appendix provides a partial listing of references. This appendix should give you enough information
to be able to apply MATLAB to the analysis and design problems covered in this book.

The code will also run on workstations that support MATLAB. Consult the MATLAB Installation Guide
for your platform for minimum system hardware requirements.

B.2 MATLAB Examples

Chapter 2: Modeling in the Frequency Domain
ch2apB1
Bit strings will be used to identify parts of this tutorial on the computer output. Bit strings are
represented by the text enclosed in apostrophes, such as 'ab'. Comments begin with % and are ignored
by MATLAB. Numbers are entered without any other characters. Arithmetic can be performed using the



proper arithmetic operator. Numbers can be assigned using a left‐hand argument and an equals sign.
Finally, we can find the magnitude and angle of a complex number, Q using abs (Q) and angle (Q),
respectively.

'(ch2apB1)' % Display label.

'How are you?' % Display string.

-3.96 % Display scalar number -3.96.

-4 + 7i % Display complex number -4+7i.

-5-6j % Display complex number -5-6 j.

(-4+7i)+(-5-6i) % Add two complex numbers and

% display sum.

(-4+7j)*(-5-6j) % Multiply two complex numbers and

% display product.

M=5 % Assign 5 to M and display.

N=6 % Assign 6 to N and display.

P=M+N % Assign M+N to P and display.

Q=3+4j % Define complex number, Q.

MagQ=abs(Q) % Find magnitude of Q.

ThetaQ=(180/pi)*angle(Q) % Find the angle of Q in degrees.

pause

ch2apB2
Polynomials in s can be represented as row vectors containing the coefficients. Thus 
P1 = s3 + 7s2 − 3s + 23 can be represented by the vector shown below with elements separated by a
space or comma. Bit strings can be used to identify each section of this tutorial.

'(ch2apB2)' % Display label.

P1=[17-323] % Store polynomial s^3 + 7s^2 -3s+

% 23 as P1 and display.

pause

ch2apB3
Running the previous statements causes MATLAB to display the results. Ending the command with a
semicolon suppresses the display. Typing an expression without a left‐hand assignment and without a
semicolon causes the expression to be evaluated and the result displayed. Enter P2 in the MATLAB
Command Window after execution.

'(ch2apB3)' % Display label.

P2=[3 5 7 8] ; % Assign 3s^3 + 5s^2 +7s + 8 to P2

% without displaying.

3*5 % Evaluate 3*5 and display result.

pause

ch2apB4
An F(s) in factored form can be represented in polynomial form. Thus P3 = (s + 2) (s + 5) (s + 6) can
be transformed into a polynomial using poly (V), where V is a row vector containing the roots of the
polynomial and poly(V) forms the coefficients of the polynomial.

'(ch2apB4)' % Display label.



P3=poly([-2 -5 -6]) % Store polynomial

% (s+2)(s+5)(s+6)as P3 and

% display the coefficients.

pause

ch2apB5
We can find roots of polynomials using the roots (V) command. The roots are returned as a column
vector. For example, find the roots of 5s4 + 7s3 + 9s2 − 3s + 2 = 0.

'(ch2apB5)' % Display label.

P4=[5 7 9 -3 2] % Form 5s^4+7s^3+9s^2-3s+2 and

% display.

rootsP4=roots(P4) % Find roots of 5s^4+7s^3+9s^2

%-3s+2,

% assign to rootsP4, and display.

pause

ch2apB6
Polynomials can be multiplied together using the conv(a,b) command (standing for convolve). Thus, 
P5 = (s3 + 7s2 + 10s + 9) (s4 − 3s3 + 6s2 + 2s + 1) is generated as follows:

'(ch2apB6)' % Display label.

P5=conv([1 7 10 9],[1 -3 6 2 1]) % Form (s^3+7s^2+10s+9)(s^4-

% 3s^3+6s^2+2s+1), assign to P5,

% and display.

pause

ch2apB7
The partial‐fraction expansion for F (s) = b (s) /a (s) can be found using the [K, p, k ]= residue (b,
a) command (K = residue; p = roots of denominator; k = direct quotient, which is found by dividing
polynomials prior to performing a partial‐fraction expansion). We expand 
F(s) = (7s2 + 9s + 12)/[s (s + 7) (s2 + 10s + 100)] as an example. Using the results from MATLAB
yields: 
F(s) = [(0.2554 − 0.3382i)/(s + 5.0000 − 8.6603i)] + [(0.2554 + 0.3382i)/(s + 5.0000 + 8.6603i)] − [

'(ch2apB7)' % Display label.

numf=[7 9 12]; % Define numerator of F(s).

denf=conv(poly([0 -7]),[1 10 100]); % Define denominator of F(s).

[K,p,k]=residue(numf,denf) % Find residues and assign to K;

% find roots of denominator and

% assign to p; find

% constant and assign to k.

pause

ch2apB8 (Example 2.3)
Let us do Example 2.3 in the book using MATLAB.

'(ch2apB8) Example 2.3' % Display label.



numy=32; % Define numerator.

deny=poly([0 -4 -8]); % Define denominator.

[r,p,k]=residue(numy,deny) % Calculate residues, poles, and

% direct quotient.

pause

ch2apB9 Creating Transfer Functions

Vector Method, Polynomial Form
A transfer function can be expressed as a numerator polynomial divided by a denominator polynomial,
that is, F (s) = N (s) /D (s). The numerator, N(s), is represented by a row vector, numf, that contains
the coefficients of N(s). Similarly, the denominator, D(s), is represented by a row vector, denf, that
contains the coefficients of D(s). We form F(s) with the command, F=tf(numf,denf). F is called a linear
time‐invariant (LTI) object. This object, or transfer function, can be used as an entity in other
operations, such as addition or multiplication. We demonstrate with 
F (s) = 150 (s2 + 2s + 7) / [s (s2 + 5s + 4)]. Notice after executing the tf command, MATLAB prints
the transfer function.

Vector Method, Factored Form
We also can create LTI transfer functions if the numerator and denominator are expressed in factored
form. We do this by using row vectors containing the roots of the numerator and denominator. Thus 
G (s) = K * N (s) /D (s) can be expressed as an LTI object using the command, G=zpk(numg,deng,K),
where numg is a row vector containing the roots of N(s) and deng is a row vector containing the roots of
D(s). The expression zpk stands for zeros (roots of the numerator), poles (roots of the denominator), and
gain, K. We demonstrate with G (s) = 20 (s + 2) (s + 4) / [(s + 7) (s + 8) (s + 9)]. Notice after
executing the zpk command, MATLAB prints the transfer function.

Rational Expression in s Method, Polynomial Form (Requires Control System Toolbox 8.4)
This method allows you to type the transfer function as you normally would write it. The statement
s=tf('s') must precede the transfer function if you wish to create an LTI transfer function in polynomial
form equivalent to using F=tf(numf,denf).

Rational Expression in s Method, Factored Form (Requires Control System Toolbox 8.4)
This method allows you to type the transfer function as you normally would write it. The statement
s=zpk('s') must precede the transfer function if you wish to create an LTI transfer function in factored
form equivalent to using G=zpk(numg,deng,K).

For both rational expression methods the transfer function can be typed in any form regardless of
whether s=tf('s') or s=zpk('s') is used. The difference is in the created LTI transfer function. We use
the same examples above to demonstrate the rational expression in s methods.

'(ch2apB9)' % Display label.

'Vector Method, Polynomial Form' % Display label.

numf=150*[1 2 7] % Store 150(s^2+2s+7) in numf and

% display.

denf=[1 5 4 0] % Store s(s+1)(s+4) in denf and

% display.

'F(s)' % Display label.



F=tf(numf,denf) % Form F(s) and display.

clear % Clear previous variables from

% workspace.

'Vector Method, Factored Form' % Display label.

numg=[-2-4] % Store (s+2)(s+4) in numg and

% display.

deng=[-7-8-9] % Store (s+7)(s+8)(s+9) in deng

% and display.

K=20 % Define K.

'G(s)' % Display label.

G=zpk(numg,deng,K) % Form G(s) and display.

clear % Clear previous variables from

% workspace.

'Rational Expression Method, Polynomial Form'

% Display label.

s=tf('s') % Define 's' as an LTI object in

% polynomial form.

F=150*(s^2+2*s+7)/[s*(s^2+... % Form F (s) as an LTI transfer

5*s+4)] % function in polynomial form.

G=20*(s+2)*(s+4)/[(s+7)*... % Form G(s) as an LTI transfer

(s+8)*(s+9)] % function in polynomial form.

clear % Clear previous variables from

% workspace.

'Rational Expression Method, Factored Form'

% Display label.

s=zpk('s') % Define 's' as an LTI object in

% factored form.

F=150*(s^2+2*s+7)/[s*(s^2+5*s+4)]

% Form F(s) as an LTI transfer

% function in factored form.

G=20*(s+2)*(s+4)/[(s+7)*(s+8)*(s+9)]

% Form G(s) as an LTI transfer

% function in factored form.

pause

ch2apB10
Transfer function numerator and denominator vectors can be converted between polynomial form
containing the coefficients and factored form containing the roots. The MATLAB function,
tf2zp(numtf,dentf), converts the numerator and denominator from coefficients to roots. The results are
in the form of column vectors. We demonstrate this with 
F (s) = (10s2 + 40s + 60) / (s3 + 4s2 + 5s + 7). The MATLAB function, zp2tf(numzp,denzp,K),
converts the numerator and denominator from roots to coefficients. The arguments numzp and denzp
must be column vectors. In the demonstration that follows, apostrophes signify transpose. We



demonstrate the conversion from roots to coefficients with G (s) = 10 (s + 2) 
(s + 4) / [s (s + 3) (s + 5)].

'(ch2apB10)' % Display label.

'Coefficients for F(s)' % Display label.

numftf=[10 40 60] % Form numerator of F(s)=

% (10s^2+40s+60)/(s^3+4s^2+5s

% +7).

denftf=[1 4 5 7] % Form denominator of F(s)=

% (10s^2+40s+60)/(s^3+4s^2+5s

% +7).

'Roots for F(s)' % Display label.

[numfzp,denfzp]=tf2zp(numftf,denftf)

% Convert F(s) to factored form.

'Roots for G(s)' % Display label.

numgzp=[-2 -4] % Form numerator of

K=10 % G(s)=10(s+2)(s+4)/[ s(s + 3)

% (s+5)].

dengzp=[0 -3 -5] % Form denominator of

% G(s)=10(s+2)(s+4)/[ s(s+3)(s+5)].

'Coefficients for G(s)' % Display label.

[numgtf,dengtf]=zp2tf(numgzp',dengzp',K)

% Convert G(s) to polynomial form.

pause

ch2apB11
LTI models can also be converted between polynomial and factored forms. MATLAB commands tf and
zpk are also used for the conversion between LTI models. If a transfer function, Fzpk(s), is expressed as
factors in the numerator and denominator, then tf(Fzpk) converts Fzpk(s) to a transfer function
expressed as coefficients in the numerator and denominator. Similarly, if a transfer function, Ftf(s), is
expressed as coefficients in the numerator and denominator, then zpk(Ftf) converts Ftf(s) to a transfer
function expressed as factors in the numerator and denominator. The following example demonstrates
the concepts.

'(ch2apB11)' % Display label.

'Fzpk1(s)' % Display label.

Fzpk1=zpk([-2 -4],[0 -3 -5],10) % Form Fzpk1(s)=

% 10(s+2)(s+4)/[ s(s+3)(s+5)].

'Ftf1' % Display label.

Ftf1=tf(Fzpk1) % Convert Fzpk1(s) to

% coefficients form.

'Ftf2' % Display label.

Ftf2=tf([10 40 60],[1 4 5 7]) % Form Ftf2(s)=

% (10s^2+40s+60)/(s^3+4s^2+5s

% +7).

'Fzpk2' % Display label.



Fzpk2=zpk(Ftf2) % Convert Ftf2(s) to

% factored form.

pause

ch2apB12
Functions of time can be easily plotted using MATLAB's plot(X,Y,S), where X is the independent
variable, Y is the dependent variable, and S is a character string describing the plot's color, marker, and
line characteristic. Type HELP PLOT in the Command Window to see a list of choices for S. Multiple
plots also can be obtained using plot (X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,…). In the following example we plot
on the same graph sin(5t) in red and cos(5t) in green for t = 0 to 10 seconds in 0.01 second increments.
Time is specified as t=start: increment: final.

'(ch2apB12)' % Display label.

t=0:0.01:10; % Specify time range and increment.

f1=cos(5*t); % Specify f1 to be cos(5t).

f2=sin(5*t); % Specify f2 to be sin (5t).

plot(t,f1,'r',t,f2,'g') % Plot f1 in red and f2 in green.

pause

Chapter 3: Modeling in the Time Domain
ch3apB1

The square system matrix, A = [

0 1 0
0 0 1

−9−8−7

] is written with a space or comma separating the elements of each row. The next row
is indicated with a semicolon or carriage return. The entire matrix is then enclosed in a pair of square
brackets.

'(ch3apB1)' % Display label.

A=[0 1 0;0 0 1; -9 -8 -7] % Represent A.

'or'

A=[0 1 0 % Represent A.

0 0 1

-9 -8 -7]

pause

ch3apB2
A row vector, such as the output matrix C, can be represented with elements separated by spaces or
commas and enclosed in square brackets. A column vector, such as input matrix B, can be written as
elements separated by semicolons or carriage returns, or as the transpose (') of a row vector.

'(ch3apB2)' % Display label.

C=[2 3 4] % Represent row vector C.

B=[7;8;9] % Represent column vector B.

'or'

B=[7 % Represent column vector B.
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9]

'or'

B=[7 8 9]' % Represent column vector B.

pause

ch3apB3
The state‐space representation consists of specifying the A, B, C, and D matrices followed by the
creation of an LTI state‐space object using the MATLAB command, ss(A,B,C,D). Hence, for the matrices
in (ch3p1) and (ch3p2), the state‐space representation would be:

'(ch3apB3)' % Display label.

A=[0 1 0;0 0 1;-9 -8 -7]; % Represent A.

B=[7;8;9]; % Represent column vector B.

C=[2 3 4]; % Represent row vector C.

D=0; % Represent D.

F=ss(A,B,C,D) % Create an LTI object and display.

ch3apB4 (Example 3.4)
Transfer functions represented either by numerator and denominator or an LTI object can be converted
to state space. For numerator and denominator representation, the conversion can be implemented
using [A, B, C, D]=tf2ss(num,den). The A matrix is returned in a form called the controller canonical
form, which will be explained in Chapter 5 in the text. To obtain the phase‐variable form, [Ap,Bp,Cp,Dp],
we perform the following operations: Ap=inv(P)*A*P;Bp=inv(P)*B;Cp=C*P,Dp=D, where P is a matrix with
1's along the anti‐diagonal and 0's elsewhere. These transformations will be explained in Chapter 5. The
command inv (X) finds the inverse of a square matrix. The symbol*signifies multiplication. For systems
represented as LTI objects, the command ss(F), where F is an LTI transfer‐function object, can be used
to convert F to a state‐space object. Let us look at Example 3.4 in the text. For the numerator–
denominator representation, notice that the MATLAB response associates the gain, 24, with the vector C
rather than the vector B as in the example in the text. Both representations are equivalent. For the LTI
transfer‐function object, the conversion to state space does not yield the phase‐variable form. The result
is a balanced model that improves the accuracy of calculating eigenvalues, which are covered in Chapter
4. Since ss(F) does not yield familiar forms of the state equations (nor is it possible to easily convert to
familiar forms), we will have limited use for that transformation at this time.

'(ch3apB4) Example 3.4' % Display label.

'Numerator-denominator representation conversion'

% Display label.

'Controller canonical form' % Display label.

num=24; % Define numerator of

% G(s)=C(s)/R(s).

den=[1 9 26 24]; % Define denominator of G(s).

[A,B,C,D]=tf2ss(num,den) % Convert G(s) to controller

% canonical form, store matrices

% A, B, C, D, and display.

'Phase-variable form' % Display label.

P=[0 0 1;0 1 0;1 0 0]; % Form transformation matrix.

Ap=inv(P)*A*P % Form A matrix, phase-variable

% form.



Bp=inv(P)*B % Form B vector, phase-variable

% form.

Cp=C*P % Form C vector, phase-variable

% form.

Dp=D % Form D phase-variable form.

'LTI object representation' % Display label.

T=tf(num,den) % Represent T(s)=24/(s^3+9s^2 +

% 26s+24) as an LTI transfer-

% function object.

Tss=ss(T) % Convert T(s) to state space.

pause

ch3apB5
State‐space representations can be converted to transfer functions represented by a numerator and a
denominator using [num,den]=ss2tf(A,B,C,D,iu), where iu is the input number for multiple‐input
systems. For single‐input, single‐output systems iu=1. For an LTI state‐space system, Tss, the conversion
can be implemented using Ttf=tf(Tss) to yield the transfer function in polynomial form or
Tzpk=zpk(Tss) to yield the transfer function in factored form. For example, the transfer function
represented by the matrices described in (ch3p3) can be found as follows:

'(ch3apB5)' % Display label.

'Non LTI' % Display label.

A=[0 1 0;0 0 1;-9 -8 -7]; % Represent A.

B=[7;8;9]; % Represent B.

C=[2 3 4]; % Represent C.

D=0; % Represent D.

'Ttf(s)' % Display label.

[num,den]=ss2tf(A,B,C,D,1) % Convert state-space

% representation to a

% transfer function represented as

% a numerator and denominator in

% polynomial form, G(s)=num/den,

% and display num and den.

  'LTI' % Display label.

Tss=ss(A,B,C,D) % Form LTI state-space model.

'Polynomial form, Ttf(s)' % Display label.

Ttf=tf(Tss) % Transform from state space to

% transfer function in polynomial

% form.

'Factored form, Tzpk(s)' % Display label.

Tzpk=zpk(Tss) % Transform from state space to

% transfer function in factored

% form.

pause



Chapter 4: Time Response
ch4apB1 (Example 4.6)
We can use MATLAB to calculate characteristics of a second‐order system, such as damping ratio, ζ;
natural frequency, ωn; percent overshoot, %OS (pos); settling time, Ts; and peak time, Tp. Let us look at
Example 4.6 in the text.

'(ch4apB1) Example 4.6' % Display label.

p1=[1 3+7*i]; % Define polynomial containing

% first pole.

p2=[1 3-7*i]; % Define polynomial containing

% second pole.

deng=conv(p1,p2); % Multiply the two polynomials to

% find the 2nd order polynomial,

% as^2+bs+c.

omegan=sqrt(deng(3)/deng(1)) % Calculate the natural frequency,

% sqrt(c/a).

zeta=(deng(2)/deng(1))/(2*omegan)

% Calculate damping ratio,

% ((b/a)/2*wn).

Ts=4/(zeta*omegan) % Calculate settling time,

% (4/z*wn).

Tp=pi/(omegan*sqrt(1 -zeta^2)) % Calculate peak time,

% pi/wn*sqrt(1 -z^2).

pos=100*exp(-zeta*pi/sqrt(1 -zeta^2))

% Calculate percent overshoot

% (100*e^(-z*pi/sqrt(1-z^2)).

pause

ch4apB2 (Example 4.8)
We can use MATLAB to obtain system step responses. These responses are particularly valuable when
the system is not a pure two‐pole system and has additional poles or zeros. We can obtain a plot of the
step response of a transfer function, T(s) =num/den, using the command step(T), where T is an LTI
transfer‐function object. Multiple plots also can be obtained using step(T1,T2,...).

Information about the plots obtained with step(T) can be found by left‐clicking the mouse on the curve.
You can find the curve's label as well as the coordinates of the point on which you clicked. Right‐clicking
away from a curve brings up a menu. From this menu you can select (1) system responses to be
displayed and (2) response characteristics to be displayed, such as peak response. When selected, a dot
appears on the curve at the appropriate point. Let your mouse rest on the point to read the value of the
characteristic. You may also select (3) choice for grid on or off, (4) choice to normalize the curve, and (5)
properties, such as labels, limits, units, style, and characteristics.

If we add the left‐hand side,[y,t]=step(T), we create vectors containing the plot's points, where y is the
output vector and t is the time vector. For this case, a plot is not made until the plot(t,y) command is
given, where we assume we want to plot the output (y) versus time (t). We can label the plot, the x‐axis,
and the y‐axis with title('ab'), xlabel('ab'), and ylabel('ab'), respectively. The command clf
clears the graph prior to plotting. Finally, text can be placed anywhere on the graph using the command
text(X,Y,'text'), where (X,Y) are the graph coordinates where 'text' will be displayed. Let us look at
Example 4.8 in the text.



'(ch4apB2) Example 4.8' % Display label.

'Test Run' % Display label.

clf % Clear graph.

numt1=[24.542]; % Define numerator of T1.

dent1=[1 4 24.542]; % Define denominator of T1.

'T1(s)' % Display label.

T1=tf(numt1,dent1) % Create and display T1(s).

step(T1) % Run a demonstration step response

% plot

title ('Test Run of T1(s)') % Add title to graph.

pause

'Complete Run' % Display label.

[y1,t1]=step(T1); % Run step response of T1 and

% collect points.

numt2=[245.42]; % Define numerator of T2.

p1=[1 10]; % Define (s+10) in denominator

% of T2.

p2=[1 4 24.542]; % Define (s^2+4s+24.542) in

% denominator of T2.

dent2=conv(p1,p2); % Multiply (s + 10)(s^2+4s+24.542)

% for denominator of T2.

'T2(s)' % Display label.

T2=tf(numt2,dent2) % Create and display T2.

[y2,t2]=step(T2); % Run step response of T2 and

% collect points.

numt3=[73.626]; % Define numerator of T3.

p3=[1 3]; % Define (s+3) in denominator

% of T3.

dent3=conv(p3,p2); % Multiply (s+3)(s^2+4s+24.542)

% for denominator of T3.

'T3(s)' % Display label.

T3=tf(numt3,dent3) % Create and display T3.

[y3,t3]=step(T3); % Run step response of T3 and

% collect points.

clf % Clear graph.

plot(t1,y1,t2,y2,t3,y3) % Plot acquired points with all

% three plots on one graph.

title ('Step Responses of T1(s),T2 (s), and T3(s)')

% Add title to graph.

xlabel('Time(seconds)') % Add time axis label.

ylabel ('Normalized Response') % Add response axis label.

text(0.7,0.7,'c3(t)') % Label step response of T1.

text(0.7,1.1,'c2(t)') % Label step response of T2.



text(0.5,1.3,'c1(t)') % Label step response of T3.

pause

step(T1,T2,T3) % Use alternate method of plotting

% step responses.

title ('Step Responses of T1(s), T2(s), and T3(s)')

% Add title to graph.

pause

ch4apB3
We also can plot the step response of systems represented in state space using the step(T,t) command.
Here T is any LTI object and t=a:b:c is the range for the time axis, where a is the initial time, b is the
time step size, and c is the final time. For example, t=0:1:10 means time from 0 to 10 seconds in steps of
1 second. The t field is optional. Finally, in this example we introduce the command grid on, which
superimposes a grid over the step response. Place the grid on command after the step(T,t) command.

'(ch4apB3)' % Display label.

clf % Clear graph.

A=[0 1 0;0 0 1;-24 -26 -9]; % Generate A matrix.

B=[0;0;1]; % Generate B vector.

C=[2 7 1]; % Generate C vector.

D=0; % Generate D.

T=ss(A,B,C,D) % Generate LTI object, T, in state

% space and display.

t=0:0.1:10; % Define range of time for plot.

step(T,t) % Plot step response for given

% range of time.

grid on % Turn grid on for plot.

pause

ch4apB4 (Antenna Control Case Study)
We now use MATLAB to plot the step response requested in the Antenna Control Case Study.

'(ch4apB4) Antenna Control Case Study'

% Display label.

clf % Clear graph.

numg=20.83; % Define numerator of G(s).

deng=[1 101.71 171]; % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Form and display transfer

% Function G(s).

step(G); % Generate step response.

title('Angular Velocity Response')

% Add title.

pause

ch4apB5 (UFSS Case Study)



As a final example, let us use MATLAB to do the UFSS Case Study in the text (Johnson, 1980). We
introduce table lookup to find the rise time. Using the interp1(y,t,y1) command, we set up a table of
values of amplitude, y, and time, t, from the step response and look for the value of time for which the
amplitude is y1=0.1 and 0.9. We also generate time response data over a defined range of time using
t=a:b:c followed by [y,t]=step(G,t). Here G is an LTI transfer‐function object and t is the range for the
time axis, where a is the initial time, b is the time step size, and c is the final time; y is the output.

'(ch4apB5) UFSS Case Study' % Display label.

clf % Clear graph.

'(a)' % Display label.

numg=0.0169; % Define numerator of 2nd order

% approximation of G(s).

deng=[1 0.226 0.0169]; % Define 2nd order term of

% denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

omegan=sqrt(deng(3)) % Find natural frequency.

zeta=deng(2)/(2*omegan) % Find damping ratio.

Ts=4/(zeta*omegan) % Find settling time.

Tp=pi/(omegan*sqrt(1-zeta^2)) % Find peak time.

pos=exp(-zeta*pi/sqrt(1-zeta^2))*100

% Find percent overshoot.

t=0:0.1:35; % Limit time to find rise time. t=0

% to 35 in steps of 0.1.

[y,t]=step(G,t); % Generate and save points of step

% response over defined range of t.

Tlow=interp1(y,t,0.1); % Search table for time when

% y=0.1*finalvalue.

Thi=interp1(y,t,0.9); % Search table for

% time=0.9*finalvalue.

Tr=Thi-Tlow % Calculate rise time.

'(b)' % Display label.

numc=0.125*[1 0.435]; % Define numerator of C(s).

denc=conv(poly([0 -1.23]),[1 0.226 0.0169]);

% Define denominator of C(s).

[K,p,k]=residue(numc,denc) % Find partial-fraction expansion.

'(d)' % Display label.

numg=0.125*[1 0.435]; % Define numerator of G(s).

deng=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

[y,t]=step(G); % Generate complete step response

% and collect points.

plot(t,y) % Plot points.



title ('Pitch Angle Response ') % Add title.

xlabel('Time(seconds)') % label time axis.

ylabel ('Pitch Angle (radians)') % Label y-axis.

pause

Chapter 5: Reduction of Multiple Subsystems
ch5apB1 (UFSS Pitch Control System)
MATLAB can be used for block diagram reduction. Three methods are available: (1) Solution via Series,
Parallel, and Feedback Commands, (2) Solution via Algebraic Operations, and (3) Solution via Append
and Connect Commands. Let us look at each of these methods.

1. Solution via Series, Parallel, and Feedback Commands The closed‐loop transfer function is
obtained using the following commands successively, where the arguments are LTI objects:
series(G1,G2)for a cascade connection of G1(s); and G2(s); parallel(G1,G2)for a parallel connection
of G1(s) and G2(s); feedback(G,H,sign)for a closed‐loop connection with G(s) as the forward path,
H(s) as the feedback, and sign is –1 for negative‐feedback systems or +1 for positive‐feedback
systems. The sign is optional for negative‐feedback systems.

2. Solution via Algebraic Operations Another approach is to use arithmetic operations
successively on LTI transfer functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s);
G1+G2 for a parallel connection of G1(s) and G2(s); G/(1+G*H)for a closed‐loop negative‐feedback
connection with G(s) as the forward path and H(s) as the feedback; G/(1‐G*H)for positive‐feedback
systems. When using division we follow with the function minreal (sys)to cancel common terms in
the numerator and denominator.

3. Solution via Append and Connect Commands The last method, which defines the topology of
the system, may be used effectively for complicated systems. First, the subsystems are defined.
Second, the subsystems are appended, or gathered, into a multiple‐input/multiple‐output system.
Think of this system as a single system with an input for each of the subsystems and an output for
each of the subsystems. Next, the external inputs and outputs are specified. Finally, the subsystems
are interconnected. Let us elaborate on each of these steps.

The subsystems are defined by creating LTI transfer functions for each. The subsystems are
appended using the command G=append(G1,G2,G3,G4,.….,Gn), where the Gi are the LTI transfer
functions of the subsystems and G is the appended system. Each subsystem is now identified by a
number based upon its position in the append argument. For example, G3 is 3, based on the fact
that it is the third subsystem in the append argument (not the fact that we write it as G3).

Now that we have created an appended system, we form the arguments required to interconnect
their inputs and outputs to form our system. The first step identifies which subsystems have the
external input signal and which subsystems have the external output signal. For example, we use
inputs=[1 5 6]and outputs=[3 4]to define the external inputs to be the inputs of subsystems 1,5,
and 6 and the external outputs to be the outputs of subsystems 3 and 4. For single‐input/single‐
output systems, these definitions use scalar quantities. Thus inputs=5,outputs=8 define the input to
subsystem 5 as the external input and the output of subsystem 8 as the external output.

At this point we tell the program how all of the subsystems are interconnected. We form a Q matrix
that has a row for each subsystem whose input comes from another subsystem's output. The first
column contains the subsystem's number. Subsequent columns contain the numbers of the
subsystems from which the inputs come. Thus, a typical row might be as follows: [3 6 −7], or
subsystem 3's input is formed from the sum of the output of subsystem 6 and the negative of the
output of subsystem 7.

Finally, all of the interconnection arguments are used in the connect(G Q inputs,outputs)
command, where all of the arguments have been previously defined.

Let us demonstrate the three methods for finding the total transfer function by looking at the back
endpapers and finding the closed‐loop transfer function of the pitch control loop for the UFSS with 



K1 = K2 = 1 (Johnson, 1980). The last method using append and connect requires that all
subsystems be proper (the order of the numerator cannot be greater than the order of the
denominator). The pitch rate sensor violates this requirement. Thus, for the third method, we
perform some block diagram maneuvers by pushing the pitch rate sensor to the left past the
summing junction and combining the resulting blocks with the pitch gain and the elevator
actuator. These changes are reflected in the program. You should verify all computer results with
hand calculations.

'(ch5apB1) UFSS Pitch Control System'

'Solution via Series, Parallel, & Feedback Commands'

% Display labels.

numg1=[-1]; % Define numerator of G1(s).

deng1=[1]; % Define denominator of G1(s).

numg2=[0 2]; % Define numerator of G2(s).

deng2=[1 2]; % Define denominator of G2 (s).

numg3=-0.125*[1 0.435]; % Define numerator of G3(s).

deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).

numh1=[-1 0]; % Define numerator of H1(s).

denh1=[0 1]; % Define denominator of H1(s).

G1=tf(numg1,deng1); % Create LTI transfer function,

% G1(s).

G2=tf(numg2,deng2); % Create LTI transfer function,

% G2(s).

G3=tf(numg3,deng3); % Create LTI transfer function,

% G3(s).

H1=tf (numh1,denh1); % Create LTI transfer function,

% H1(s).

G4=series(G2,G3); % Calculate product of elevator

% and vehicle dynamics.

G5=feedback(G4,H1); % Calculate closed-loop transfer

% function of inner loop.

Ge=series(G1,G5); % Multiply inner-loop transfer

% function and pitch gain.

'T(s) via Series, Parallel, & Feedback Commands'

% Display label.

T=feedback(Ge,1) % Find closed-loop transfer

% function.

'Solution via Algebraic Operations'

% Display label.

clear % Clear session.

numg1=[-1]; % Define numerator of G1(s).

deng1=[1]; % Define denominator of G1(s).

numg2=[0 2]; % Define numerator of G2(s).

deng2=[1 2]; % Define denominator of G2(s).



numg3=-0.125*[1 0.435]; % Define numerator of G3(s).

deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).

numh1=[-1 0]; % Define numerator of H1(s).

denh1=[0 1]; % Define denominator of H1(s).

G1=tf (numg1,deng1); % Create LTI transfer function, G1(s).

G2=tf (numg2,deng2); % Create LTI transfer function, G2(s).

G3=tf (numg3,deng3); % Create LTI transfer function, G3(s).

H1=tf (numh1,denh1); % Create LTI transfer function, H1(s).

G4=G3*G2; % Calculate product of elevator and

% vehicle dynamics.

G5=G4/(1+G4*H1); % Calculate closed-loop transfer

% function of inner loop.

G5=minreal(G5); % Cancel common terms.

Ge=G5*G1; % Multiply inner-loop transfer

% functions.

'T(s) via Algebraic Operations' % Display label.

T=Ge/(1+Ge); % Find closed-loop transfer function.

T=minreal(T) % Cancel common terms.

' Solution via Append & Connect Commands'

% Display label.

'G1(s)=(-K1)*(1/(-K2s))=1/s' % Display label.

numg1=[1]; % Define numerator of G1(s).

deng1=[1 0]; % Define denominator of G1(s).

G1=tf(numg1,deng1) % Create LTI transfer function,

% G1(s)=pitch gain*

% 1 (1/Pitch rate sensor).

'G2(s)=(-K2s)*(2/(s+2)' % Display label.

numg2=[-2 0]; % Define numerator of G2(s).

deng2=[1 2]; % Define denominator of G2(s).

G2=tf(numg2,deng2) % Create LTI transfer function,

% G2(s)=pitch rate sensor*vehicle

% dynamics.

'G3(s)=-0.125(s +0.435)/((s+1.23)(s^2+0.226s+0.0169))'

% Display label.

numg3=-0.125*[1 0.435]; % Define numerator of G3(s).

deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).

G3=tf(numg3,deng3); % Create LTI transfer function,

% G3(s)=vehicle dynamics.

System=append(G1,G2,G3) % Gather all subsystems.

input=1; % Input is at first subsystem,

% G1(s).



output=3; % Output is output of third

% subsystem, G3(s).

Q=[1 -3 0 % Subsystem 1, G1(s), gets its

% input from the negative of the

% output of subsystem 3, G3(s).

2 1 -3 % Subsystem 2, G2(s), gets its

% input from subsystem 1, G1(s),

% and the negative of the output

% of subsystem 3, G3(s).

3 2 0]; % Subsystem 3, G3(s), gets its

% input from subsystem 2, G2(s).

T=connect(System,Q,input,output);

% Connect the subsystems.

'T(s) via Append & Connect Commands'

% Display label.

T=tf(T); % Create LTI closed-loop transfer

% function.

T=minreal(T) % Cancel common terms.

pause

ch5apB2 (Example 5.3)
We can use MATLAB to calculate the closed‐loop characteristics of a second‐order system, such as
damping ratio, ζ; natural frequency, ωn; percent overshoot, %OS (pos); settling time, Ts; and peak time,
Tp. The command [numt,dent]=tfdata(T,'v') extracts the numerator and denominator of T(s) for a
single‐input/single‐output system from which the calculations are based. The argument 'v' returns the
numerator and denominator as simple row vectors. Omitting 'v' would return the numerator and
denominator as cell arrays requiring more steps to obtain the row vectors. We end by generating a plot
of the closed‐loop step response. Let us look at Example 5.3 in the text.

'(ch5apB2) Example 5.3' % Display label.

numg=[25]; % Define numerator of G(s).

deng=poly([0 -5]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

'T(s)' % Display label.

T=feedback(G,1) % Find T(s).

[numt,dent]=tfdata(T,'v'); % Extract numerator & denominator

% of T(s).

wn=sqrt(dent(3)) % Find natural frequency.

z=dent(2)/(2*wn) % Find damping ratio.

Ts=4/(z*wn) % Find settling time.

Tp=pi/(wn*sqrt(1-z^2)) % Find peak time.

pos=exp(-z*pi/sqrt(1-z^2))*100 % Find percent overshoot.

step(T) % Generate step response.

pause



ch5apB3
MATLAB can be used to convert transfer functions to state space in a specified form. The command [Acc
Bcc Ccc Dcc]=tf2ss(num,den) can be used to convert T(s)=num/den into controller canonical form with
matrices and vectors Acc, Bcc, Ccc, and Dcc. We can then form an LTI state‐space object using Scc=ss
(Acc,Bcc,Ccc,Dcc). This object can then be converted into parallel form using Sp=canon(Scc,'type'),
where type=modal yields the parallel form. Another choice, not used here, is type=companion, which yields
a right companion system matrix. Transformation matrices can be used to convert to other
representations. As an example, let us convert C (s) /R (s) = 24/ [(s + 2) (s + 3) (s + 4)] into a parallel
representation in state space, as is done in Section 5.7—Parallel Form. Notice that the product of values
in the B and C vectors yields the same product as the results in Eqs. (5.49) and (5.50). Thus, the two
solutions are the same, but the state variables are ordered differently, and the gains are split between the
B and C vectors. We can also extract the system matrices from the LTI object using
[A,B,C,D]=ssdata(S), where S is a state‐space LTI object and A, B, C, D, are its associated matrices and
vectors.

'(ch5apB3)' % Display label.

numt=24; % Define numerator of T(s).

dent=poly([-2 -3 -4]); % Define denominator of T(s).

'T(s)' % Display label.

T=tf(numt,dent) % Create and display T(s).

[Acc Bcc Ccc Dcc]=tf2ss(numt,dent);

% Convert T(s) to controller

% canonical form.

Scc=ss(Acc,Bcc,Ccc,Dcc); % Create LTI controller canonical

% state-space object.

Sp=canon(Scc,'modal'); % Convert controller canonical form

% to parallel form.

'Controller Canonical Form' % Display label.

[Acc,Bcc,Ccc,Dcc]=ssdata(Scc) % Extract and display controller

% canonical form matrices.

'Parallel Form' % Display label.

[Ap,Bp,Cp,Dp]=ssdata(Sp) % Extract and display parallel form

% matrices.

pause

ch5apB4 (Example 5.9)
We can use MATLAB to perform similarity transformations to obtain other forms. Let us look at
Example 5.9 in the text.

'(ch5apB4) Example 5.9' % Display label.

Pinv=[2 0 0; 3 2 0; 1 4 5]; % Define P inverse.

P=inv(Pinv) % Calculate P.

'Original' % Display label.

Ax=[0 1 0;0 0 1;-2 -5 -7] % Define original A.

Bx=[0 0 1] % Define original B.

Cx=[1 0 0] % Define original C.

'Transformed' % Display label.

Az=Pinv*Ax*P % Calculate new A.



Bz=Pinv*Bx % Calculate new B.

Cz=Cx*P % Calculate new C.

pause

ch5apB5
Using MATLAB's [P,d]=eig(A) command, where the columns of P are the eigenvectors of A and the
diagonal elements of d are the eigenvalues of A, we can find the eigenvectors of the system matrix and
then proceed to diagonalize the system. We can also use canon (S,'modal')to diagonalize an LTI object,
S, represented in state space.

'(ch5apB5)' % Display label.

A=[3 1 5;4 -2 7;2 3 1]; % Define original A.

B=[1;2;3]; % Define original B.

C=[2 4 6]; % Define original C.

[P,d]=eig(A) % Generate transformation matrix,

% P, and eigenvalues, d.

'Via Transformation' % Display label.

Adt=inv(P)*A*P % Calculate diagonal system A.

Bdt=inv(P)*B % Calculate diagonal system B.

Cdt=C*P % Calculate diagonal system C.

'Via Canon Command' % Display label.

S=ss(A,B,C,0) % Create state‐space LTI object

% for original system.

Sp=canon(S,'modal') % Calculate diagonal system via

% canon command.

pause

Chapter 6: Stability
ch6apB1 (Example 6.7)
MATLAB can solve for the poles of a transfer function in order to determine stability. To solve for the
poles of T(s) use the pole(T) command. Let us look at Example 6.7 in the text.

'(ch6apB1) Example 6.7' % Display label.

numg=1; % Define numerator of G(s).

deng=conv ([1 0],[2 3 2 3 2]); % Define denominator of G(s).

G=tf(numg,deng); % Create G(s) object.

'T(s)' % Display label.

T=feedback(G,1) % Calculate closed-loop T(s)

% object.

% Negative feedback is default

% when there is no sign parameter.

poles=pole(T) % Find poles of T(s).

pause

ch6apB2 (Example 6.9)



We can use MATLAB to find the range of gain for stability by generating a loop, changing gain, and
finding at what gain we obtain right–half‐plane poles.

'(ch6apB2) Example 6.9' % Display label.

K=[1:1:2000]; % Define range of K from 1 to 2000

% in steps of 1.

for n=1:length(K); % Set up length of DO LOOP to equal

% number of K values to be tested.

dent=[1 18 77 K(n)]; % Define the denominator of T(s)

% for the nth value of K.

poles=roots(dent); % Find the poles for the nth value

% of K.

r=real(poles); % Form a vector containing the real

% parts of the poles for K(n).

if max(r) >=0, % Test poles found for the nth

% value of K for a real value ≥ 0.

poles % Display first pole values where

% there is a real part ≥ 0.

K=K(n) % Display corresponding value of K.

break % Stop loop if rhp poles are found.

end % End if.

end % End for.

pause

ch6apB3 (Example 6.11)
We can use MATLAB to determine the stability of a system represented in state space by using the
command eig(A) to find the eigenvalues of the system matrix, A. Let us apply the concept to Example
6.11 in the text.

'(ch6apB3) Example 6.11' % Display label.

A=[0 3 1;2 8 1;-10 -5 -2] % Define system matrix, A.

eigenvalues=eig(A) % Find eigenvalues.

pause

Chapter 7: Steady‐State Errors

ch7apB1 (Example 7.4, sys. b)

Static error constants are found using lim snG(s) as s → 0. Once the static error constant is found, we
can evaluate the steady‐state error. To evaluate the static error constant we can use the command
dcgain(G), which evaluates G(s) at s = 0. Let us look at Example 7.4, system (b), in the text.

'(ch7apB1) Example 7.4, sys.b' % Display label.

numg=500*poly([-2 -5 -6]); % Define numerator of G(s).

deng=poly([0 -8 -10 -12]); % Define denominator of G(s).

G=tf(numg,deng); % Form G(s).

'Check Stability' % Display label.

T=feedback(G,1); % Form T(s).



poles=pole(T) % Display closed-loop poles.

'Step Input' % Display label.

Kp=dcgain(G) % Evaluate Kp=numg/deng for s=0.

ess=1/(1+Kp) % Evaluate ess for step input.

'Ramp Input' % Display label.

numsg=conv([1 0],numg); % Define numerator of sG(s).

densg=poly([0 -8 -10 -12]); % Define denominator of sG(s).

sG=tf(numsg,densg); % Create sG(s).

sG=minreal(sG); % Cancel common 's' in

% numerator(numsg) and

% denominator(densg).

Kv=dcgain(sG) % Evaluate Kv=sG(s) for s=0.

ess=1/Kv % Evaluate steady-state error for

% ramp input.

'Parabolic Input' % Display label.

nums2g=conv([1 0 0],numg); % Define numerator of s^2G(s).

dens2g=poly([0 -8 -10-12]); % Define denominator of s^2G(s).

s2G=tf(nums2g,dens2g); % Create s^2G(s).

s2G=minreal(s2G); % Cancel common 's' in

% numerator(nums2g) and

% denominator(dens2g).

Ka=dcgain(s2G) % Evaluate Ka=s^2G(s) for s=0.

ess=1/Ka % Evaluate steady-state error for

% parabolic input.

pause

ch7apB2 (Example 7.6)
We can use MATLAB to evaluate the gain, K, required to meet a steady‐state error specification. Let us
look at Example 7.6 in the text.

'(ch7apB2) Example 7.6' % Display label.

numgdK=[1 5]; % Define numerator of G(s)/K.

dengdK=poly([0 -6 -7 -8]); % Define denominator of G(s)/K.

GdK=tf(numgdK,dengdK); % Create G(s)/K.

numgkv=conv([1 0],numgdK); % Define numerator of sG(s)/K.

dengkv=dengdK; % Define denominator of sG(s)/K.

GKv=tf(numgkv,dengkv); % Create sG(s)/K.

GKv=minreal(GKv); % Cancel common 's' in numerator

% and denominator of sG(s)/K.

KvdK=dcgain(GKv) % Evaluate (Kv/K)=(numgkv/dengkv)

% for s=0.

ess=0.1 % Enumerate steady-state error.

K=1/(ess*KvdK) % Solve for K.

'Check Stability' % Display label.



T=feedback(K*GdK,1); % Form T(s).

poles=pole(T) % Display closed-loop poles.

pause

Chapter 8: Root Locus Techniques
ch8apB1 (Example 8.7)
MATLAB allows root loci to be plotted with the rlocus (GH) command, where G(s)H(s)=numgh/dengh and
GH is an LTI transfer‐function object. Points on the root locus can be selected interactively using the
[K,p]=rlocfind (GH) command. MATLAB then yields the gain (K) at that point as well as all other poles
(p) that have that gain. We can zoom in and out of the root locus by changing the range of axis values
using the command axis([xmin,xmax,ymin,ymax]). The root locus can be drawn over a grid that shows
constant damping ratio (z) and constant natural frequency (wn) curves using the sgrid (z,wn)
command. To plot multiple ζ and ωn curves, use z=zmin:zstep:zmax and wn=wnmin:wn‐step:wnmax to
specify ranges of values.

'(ch8apB1) Example 8.7' % Display label.

clf % Clear graph.

numgh=[1 -4 20]; % Define numerator of G(s)H(s).

dengh=poly([-2 -4]); % Define denominator of G(s)H(s).

'G(s)H(s)' % Display label.

GH=tf(numgh,dengh) % Create G(s)H(s) and display.

rlocus(GH) % Draw root locus.

z=0.2:0.05:0.5; % Define damping ratio values : 0.2

% to 0.5 in steps of 0.05.

wn=0:1:10; % Define natural frequency values:

% 0 to 10 in steps of 1.

sgrid(z,wn) % Generate damping ratio and

% natural frequency grid lines for

% root locus.

title ('Root Locus') % Define title for root locus.

pause

rlocus(GH) % Draw close-up root locus.

axis([-3 1 -4 4]) % Define range on axes for root

% locus close-up view.

title('Close-up') % Define title for close-up root

% locus.

z=0.45; % Define damping ratio line for

% overlay on close-up root locus.

wn=0; % Suppress natural frequency

% overlay curves.

sgrid(z,wn) % Overlay damping ratio curve on

% close-up root locus.

for k=1: 3 % Loop allows 3 points to be

% selected as per Example 8.7,

%(z=0.45, jwcrossing,breakaway).



[K,p]=rlocfind(GH) % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

end % End loop.

pause

ch8apB2 (Example 8.8)
We can couple the design of gain on the root locus with a step‐response simulation for the gain selected.
We introduce the command rlocus (G,K), which allows us to specify the range of gain, K, for plotting the
root locus. This command will help us smooth the usual root locus plot by equivalently specifying more
points via the argument, K. Notice that the first root locus plotted without the argument K is not smooth.
We also introduce the command x=input('prompt'), which allows keyboard entry of a value for x in
response to a prompt. We apply this command to enter the desired percent overshoot. We also add a
variable's value to the title of the root locus and step‐response plots by inserting another field in the title
command and use num2str(value) to convert value from a number to a character string for display. Let
us apply the concepts to Example 8.8 in the text.

'(ch8apB2) Example 8.8' % Display label.

clear % Clear variables from workspace.

clf % Clear graph.

numg=[1 1.5]; % Define numerator of G(s).

deng=poly([0 -1 -10]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

rlocus(G) % Draw root locus (H(s)=1).

title('Original Root Locus') % Add title.

pause

K=0:0.005:50; % Specify range of gain to smooth

% root locus.

rlocus(G,K) % Draw smoothed root locus

% (H(s)=1).

title('Smoothed Root Locus') % Add title.

pos=input('Type %OS '); % Input desired percent overshoot

% from the keyboard.

z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2)

% Calculate damping ratio.

sgrid(z,0) % Overlay desired damping ratio

% line on root locus.

title(['Root Locus with', num2str(pos),'% overshoot line'])

% Define title for root locus

% showing percent overshoot used.

[K,p]=rlocfind(G) % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

pause

'T(s)' % Display label.



T=feedback(K*G,1) % Find closed-loop transfer

% function

% with selected K and display.

step(T) % Generate closed-loop step

% response for point select on

% root locus.

title(['Step Response for K=',num2str(K)])

% Give step response a title which

% includes the value of K.

pause

Chapter 9: Design via Root Locus
ch9apB1 (Example 9.3)
We can use MATLAB to design PD controllers. The program allows us to input a desired percent
overshoot via the keyboard. MATLAB then produces a root locus for the uncompensated system with an
overlay of the percent overshoot line. We interactively select the intersection of the root locus and the
desired percent overshoot line to set the gain. MATLAB outputs an estimate of the uncompensated
system's performance specifications and a step response of the uncompensated system for us to
determine the required settling time. After we input the settling time through the keyboard, MATLAB
designs the PD controller and produces a root locus of the PD compensated system from which we can
interactively select the gain. Finally, MATLAB produces an estimate of the PD compensated system's
performance specifications and a step response of the PD compensated system.

'(ch9apB1) Example 9.3' % Display label.

clf % Clear graph.

'Uncompensated System' % Display label.

numg=1; % Generate numerator of G(s).

deng=poly([0 -4 -6]); % Generate denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

pos=input('Type desired percent overshoot');

% Input desired percent overshoot.

z=log(pos/100)/sqrt(pi^2+[log(pos/100)]^2);

% Calculate damping ratio.

rlocus(G) % Plot uncompensated root locus.

sgrid(z,0) % Overlay desired percent

% overshoot line.

title (['Uncompensated Root Locus with', num2str(pos),...

'% Overshoot Line']) % Title uncompensated root locus.

[K,p]=rlocfind(G); % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

'Closed-loop poles=' % Display label.

p % Display closed-loop poles.

f=input('Give pole number that is operating point');

% Choose uncompensated system



% dominant pole.

'Summary of estimated specifications for selected point on'

'uncompensated root locus' % Display label.

operatingpoint=p(f) % Display uncompensated dominant

% pole.

gain=K % Display uncompensated gain.

estimated_settling_time=4/abs(real(p(f)))

% Display uncompensated settling

% time.

estimated_peak_time=pi/abs(imag(p(f)))

% Display uncompensated peak time.

estimated_percent_overshoot=pos

% Display uncompensated percent

% overshoot.

estimated_damping_ratio=z % Display uncompensated damping

% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)

% Display uncompensated natural

% frequency.

numkv=conv([1 0],numg); % Set up numerator to evaluate Kv.

denkv=deng; % Set up denominator to evaluate Kv.

sG=tf(numkv,denkv); % Create sG(s).

sG=minreal(sG); % Cancel common poles and zeros.

Kv=dcgain(K*sG) % Display uncompensated Kv.

ess=1/Kv % Display uncompensated

% steady-state

% error for unit ramp input.

'T(s)' % Display label.

T=feedback(K*G,1) % Find uncompensated T(s).

step(T) % Plot step response of

% uncompensated system.

title(['Uncompensated System Step Response with',num2str(pos),...

'% Overshoot']) % Add title to uncompensated step

% response.

'Press any key to go to PD compensation'

% Display label.

pause

'Compensated system' % Display label.

Ts=input('Type Desired Settling Time');

% Input desired settling time from

% the keyboard.

wn=4/(Ts*z); % Calculate natural frequency.

desired_pole=(-z*wn)+(wn*sqrt(1-z^2)*i);



% Calculate desired dominant pole

% location.

angle_at_desired_pole=(180/pi)*...

angle(polyval(numg,desired_pole)/polyval(deng,desired_pole));

% Calculate angular contribution

% to desired pole without PD

% compensator.

PD_angle=180-angle_at_desired_pole;

% Calculate required angular

% contribution from PD

% compensator.

zc=((imag(desired_pole)/tan(PD_angle*pi/180))...

−real (desired_pole)); % Calculate PD zero location.

'PD Compensator' % Display label.

numc=[1 zc]; % Calculate numerator of Gc(s).

denc=[0 1]; % Calculate denominator of Gc(s).

'Gc(s)' % Display label.

Gc=tf (numc,denc) % Create and display Gc(s).

'G(s)Gc(s)' % Display label.

Ge=G*Gc % Cascade G(s) and Gc(s).

rlocus(Ge,0:0.005:100) % Plot root locus of PD compensated

% system.

sgrid(z,0) % Overlay desired percent

% overshoot line.

title (['PD Compensated Root Locus with', num2str(pos),...

'% Overshoot Line']) % Add title to PD compensated root

% locus.

[K,p]=rlocfind(Ge); % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

'Closed-loop poles=' % Display label.

p % Display PD compensated systems'

% closed-loop poles.

f=input('Give pole number that is operating point');

% Choose PD compensated system

% dominant pole.

'Summary of estimated specifications for selected point on PD'

'compensated root locus' % Display label.

operatingpoint=p(f) % Display PD compensated dominant

% pole.

gain=K % Display PD compensated gain.

estimated_settling_time=4/abs(real(p(f)))

% Display PD compensated settling



% time.

estimated_peak_time=pi/abs(imag(p(f)))

% Display PD compensated peak time.

estimated_percent_overshoot=pos % Display PD compensated percent

% overshoot.

estimated_damping_ratio=z % Display PD compensated damping

% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)

% Display PD compensated natural

% frequency.

s=tf([1 0],1); % Create transfer function, 's'.

sGe=s*Ge; % Create sGe(s).

sGe=minreal(sGe); % Cancel common poles and zeros.

Kv=dcgain(K*sGe) % Display compensated Kv.

ess=1/Kv % Display compensated

% steady-state error for

% unit ramp input.

'T(s)' % Display label.

T=feedback(K*Ge,1) % Create and display PD compensated

%T(s).

'Press any key to continue and obtain the PD compensated step'

'response' % Display label.

pause

step(T) % Plot step response for PD

% compensated system.

title(['PD Compensated System Step Response with'...

num2str(pos),'% Overshoot']) % Add title to step response

% of PD compensated system.

pause

ch9apB2 (Example 9.4)
We can use MATLAB to design a lead compensator. The program allows us to input a desired percent
overshoot via the keyboard. MATLAB then produces a root locus for the uncompensated system with an
overlay of the percent overshoot line. We interactively select the intersection of the root locus and the
desired percent overshoot line to set the gain. MATLAB outputs an estimate of the uncompensated
system's performance specifications and a step response of the uncompensated system for us to
determine the required settling time. Next we input the settling time and the lead compensator zero
through the keyboard. At this point we take a different approach from that of the previous example.
Rather than letting MATLAB calculate the lead compensator pole directly, MATLAB produces a root
locus for every interactive guess of a lead compensator pole. Each root locus contains the desired
damping ratio and natural frequency curves. When our guess is correct, the root locus, the damping
ratio line, and the natural frequency curve will intersect. We then interactively select this point of
intersection to input the gain. Finally, MATLAB produces an estimate of the lead‐compensated system's
performance specifications and a step response of the lead‐compensated system.

'(ch9apB2) Example 9.4' % Display label.

clf % Clear graph.



'Uncompensated System' % Display label.

numg=1; % Generate numerator of G(s).

deng=poly([0 -4 -6]); % Generate denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

pos=input('Type desired percent overshoot');

% Input desired percent overshoot.

z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2);

% Calculate damping ratio.

rlocus(G) % Plot uncompensated root locus.

sgrid(z,0) % Overlay desired percent

% overshoot line.

title(['Uncompensated Root Locus with', num2str(pos),...

'% Overshoot Line']) % Title uncompensated root locus.

[K,p]=rlocfind(G); % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

'Closed-loop poles=' % Display label.

p % Display closed-loop poles.

f=input('Give pole number that is operating point');

% Choose uncompensated system

% dominant pole.

'Summary of estimated specifications for selected point on'

'uncompensated root locus' % Display label.

operatingpoint=p(f) % Display uncompensated dominant

% pole.

gain=K % Display uncompensated gain.

estimated_settling_time=4/abs(real(p(f)))

% Display uncompensated settling

% time.

estimated_peak_time=pi/abs(imag(p(f)))

% Display uncompensated peak time.

estimated_percent_overshoot=pos % Display uncompensated percent

% overshoot.

estimated_damping_ratio=z % Display uncompensated damping

% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)

% Display uncompensated natural

% frequency.

numkv=conv([1 0],numg); % Set up numerator to evaluate Kv.

denkv=deng; % Set up denominator to evaluate Kv.

sG=tf(numkv,denkv); % Create sG(s).

sG=minreal(sG); % Cancel common poles and zeros.



Kv=dcgain(K*sG) % Display uncompensated Kv.

ess=1/Kv % Display uncompensated

% steady-state error for

% unit ramp input.

'T(s)' % Display label.

T=feedback(K*G,1) % Create and display T(s).

step(T) % Plot step response of

% uncompensated system.

title(['Uncompensated System Step Response with',...

num2str(pos),'% Overshoot']) % Add title to uncompensated step

% response.

'Press any key to go to lead compensation'

% Display label.

pause

Ts=input('Type Desired Settling Time');

% Input desired settling time.

b=input('Type Lead Compensator Zero, (s+b). b=');

% Input lead compensator zero.

done=1; % Set loop flag.

while done==1 % Start loop for trying lead

% compensator pole.

a=input ('Enter a Test Lead Compensator Pole, (s+a). a= ');

% Enter test lead compensator pole.

numge=conv(numg,[1 b]); % Generate numerator of Gc(s)G(s).

denge=conv([1 a],deng); % Generate denominator

% of Gc(s)G(s).

Ge=tf(numge,denge); % Create Ge(s)= Gc(s)G(s).

wn=4/(Ts*z); % Evaluate desired natural

% frequency.

clf % Clear graph.

rlocus(Ge) % Plot compensated root locus with

% test lead compensator pole.

axis([-10,10,-10,10]) % Change lead-compensated

% root locus axes.

sgrid(z,wn) % Overlay grid on lead-compensated

% root locus.

title (['Lead-Compensated Root Locus with', num2str(pos),...

'% Overshoot Line, Lead Pole at',...

num2str(-a),'and Required Wn']) % Add title to lead-compensated

% root locus.

done=input ('Are you done? (y=0,n=1)');

% Set loop flag.

end % End loop for trying compensator



% pole.

[K,p]=rlocfind (Ge); % Generate gain, K, and closed-loop

% poles, p, for point selected

% interactively on the root locus.

'Gc(s)' % Display label.

Gc=tf ([1 b],[1 a]) % Display lead compensator.

'Gc(s)G(s)' % Display label.

Ge % Display Gc(s)G(s).

'Closed-loop poles=' % Display label.

p % Display lead-compensated

% system's

% closed-loop poles.

f=input('Give pole number that is operating point');

% Choose lead-compensated system

% dominant pole.

'Summary of estimated specifications for selected point on lead'

'compensated root locus' % Display label.

operatingpoint=p(f) % Display lead-compensated

% dominant pole.

gain=K % Display lead-compensated gain.

estimated_settling_time=4/abs(real(p(f)))

% Display lead-compensated

% settling time.

estimated_peak_time=pi/abs(imag(p(f)))

% Display lead-compensated

% peak time.

estimated_percent_overshoot=pos % Display lead-compensated

% percent overshoot.

estimated_damping_ratio=z % Display lead-compensated

% damping ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)

% Display lead-compensated

% natural frequency.

s=tf ([1 0],1); % Create transfer Function, 's'.

sGe=s*Ge; % Create sGe(s) to evaluate Kv.

sGe=minreal(sGe); % Cancel common poles and zeros.

Kv=dcgain(K*sGe) % Display lead-compensated Kv.

ess=1/Kv % Display lead-compensated steady-

% state error for unit ramp input.

'T(s)' % Display label.

T=feedback(K*Ge,1) % Create and display lead-

% compensated T(s).

'Press any key to continue and obtain the lead-compensated step'



'response' % Display label.

pause

step(T) % Plot step response for lead-

% compensated system.

title (['Lead-Compensated System Step Response with',...

num2str(pos),'% Overshoot']) % Add title to step response

% of lead-compensated system.

pause

Chapter 10: Frequency Response Techniques
ch10apB1 (Example 10.3)
We can use MATLAB to make Bode plots using bode(G), where G/(s)=numg/deng and G is an LTI transfer‐
function object. Information about the plots obtained with bode(G) can be found by left‐clicking the
mouse on the curve. You can find the curve's label, as well as the coordinates of the point on which you
clicked. Right‐clicking away from a curve brings up a menu if the icons on the menu bar are deselected.
From this menu you can select (1) system responses to be displayed and (2) characteristics, such as peak
response. When selected, a dot appears on the curve at the appropriate point. Let your mouse rest on the
point to read the value of the characteristic. You may also select (3) which curves to view, (4) choice for
grid on or off, (5) returning to full view after zooming, and (6) properties, such as labels, limits, units,
style, and characteristics. We can obtain points on the plot using [mag, phase, w]=bode(G),where
magnitude, phase, and frequency are stored in mag, phase, and w, respectively. Magnitude and phase are
stored as 3‐D arrays. We use mag(:,:)', phase(:,:)' to convert the arrays to column vectors, where the
apostrophe signifies matrix transpose. Let us look at Example 10.3 in the text.

'(ch10apB1) Example 10.3' % Display label.

clf % Clear graph.

numg=[1 3]; % Define numerator of G(s).

deng=conv([1 2],[1 2 25]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

bode(G) % Make a Bode plot.

grid on % Turn on grid for Bode plot.

title('Open-Loop Frequency Response')

% Add a title to the Bode plot.

[mag,phase,w]=bode(G); % Store points on the Bode plot.

points=[20*log10(mag(:,:))',phase(:,:)',w]

% List points on Bode plot with

% magnitude in dB.

pause

ch10apB2 (Example 10.5)
We can use MATLAB to make Nyquist diagrams using nyquist(G), where G(s)=numg/deng and G is an LTI
transfer‐function object. Information about the plots obtained with nyquist(G) can be found by left‐
clicking the mouse on the curve. You can find the curve's label, as well as the coordinates of the point on
which you clicked and the frequency. Right‐clicking away from a curve brings up a menu if the icons on
the menu bar are deselected. From this menu you can select (1) system responses to be displayed and (2)
characteristics, such as peak response. When selected, a dot appears on the curve at the appropriate
point. Let your mouse rest on the point to read the value of the characteristic. You may also select (3)



whether or not to show negative frequencies, (4) choice for grid on or off, (5) choice for zooming to (–
1,0), (6) returning to full view after zooming, and (7) properties, such as labels, limits, units, style, and
characteristics. We can obtain points on the plot by using [re,im,w]=nyquist(G), where the real part,
imaginary part, and frequency are stored in re, im, and w, respectively, and re and im are 3‐D arrays. We
can specify a range of w by using [re,im]=nyquist(G,w). We use re(:,:)', and im(:,:)'to convert the
arrays to column vectors. Let us look at Example 10.5 in the text.

'(ch10apB2) Example 10.5' % Display label.

clf % Clear graph.

numg=[1 2]; % Define numerator of G(s).

deng=[1 0 0]; % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

nyquist(G) % Make a Nyquist diagram.

grid on % Turn on grid for Nyquist diagram.

title('Open-Loop Frequency Response')

% Add a title to the Nyquist

% diagram.

w=0:0.5:10; % Let 0 <w< 10 in steps of 0.5.

[re,im]=nyquist(G,w); % Get Nyquist diagram points for a

% range of w.

points=[re(:,:)', im(:,:)',w'] % List specified range of points

% in Nyquist diagram.

pause

ch10apB3 (Example 10.8)
We can use MATLAB to find gain margin (Gm), phase margin (Pm), the gain-margin frequency, where the
phase plot goes through 180 degrees (Wcg), and the phase‐margin frequency, where the magnitude plot
goes through zero dB(Wcp). To find these quantities we use [Gm, Pm, Wcg, Wcp]=margin(G), where
G(s)=numg/deng and G is an LTI transfer‐function object. Let us look at Example 10.8 in the text.

'(ch10apB3) Example 10.8' % Display label.

clf % Clear graph.

numg=6; % Define numerator of G(s).

deng=conv([1 2],[1 2 2]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

nyquist(G) % Make a Nyquist diagram.

grid on % Turn on grid for the Nyquist

% diagram.

title ('Open-Loop Frequency Response')

% Add a title to the Nyquist

% diagram.

[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin

% frequencies.

'Gm(dB); Pm(deg.); 180 deg. freq.(r/s); 0 dB freq. (r/s)'

% Display label.



margins=[20*log10(Gm),Pm,Wcg,Wcp]

% Display margin data.

pause

ch10apB4 (Example 10.9)
We can use MATLAB to determine the range of K for stability using frequency response methods. Let us
look at Example 10.9 in the text.

'(ch10apB4) Example 10.9' % Display label.

numg=1; % Define numerator of G(s).

deng=poly([-2 -4 -5]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin

% frequencies.

K=Gm % Display K for stability.

pause

ch10apB5 (Example 10.11)
We can use MATLAB to find the closed‐loop frequency response. Let us look at Example 10.11 in the
text.

'(ch10apB5) Example 10.11' % Display label.

clf % Clear graph.

numg=50; % Define numerator of G(s).

deng=poly([0 -3 -6]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

'T(s)' % Display label.

T=feedback(G,1) % Find and display closed-loop

% transfer function.

bode(T) % Make a Bode plot.

grid on % Turn on the grid for the plots.

title('Closed-Loop Frequency Response')

% Add a title to the Bode plot.

pause

nyquist(T) % Make a Nyquist diagram.

title('Closed-Loop Frequency Response')

% Add a title to the Nyquist

% diagram.

pause

ch10apB6
We can use MATLAB to plot Nichols charts using nichols(G), where G(s)=numg/deng and G is an LTI
transfer‐function object. The Nichols grid can be added using the ngrid command after the nichols(G)
command. Information about the plots obtained with nichols(G) can be found by left‐clicking the mouse
on the curve. You can find the curve's label, as well as the coordinates of the point on which you clicked



and the frequency. Right‐clicking away from a curve brings up a menu if the icons on the menu bar are
deselected. From this menu you can select (1) system responses to be displayed and (2) characteristics,
such as peak response. When selected, a dot appears on the curve at the appropriate point. Let your
mouse rest on the point to read the value of the characteristic. You may also select (3) choice for grid on
or off, (4) returning to full view after zooming, and (5) properties, such as labels, limits, units, style, and
characteristics. Let us make a Nichols chart of G (s) = 1/ [s (s + 1) (s + 2)].

'(ch10apB6)' % Display label.

clf % Clear graph.

numg=1; % Define numerator of G(s).

deng=poly([0 -1 -2]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

nichols(G) % Make a Nichols plot.

ngrid % Add Nichols grid.

pause

ch10apB7 (Example 10.15)
We can use MATLAB and frequency response methods to include time delay in the loop. Time delay is
represented by [numd,dend]=pade (T,n), where T is the delay time in seconds and n is the order. Larger
values of n give better approximations to the delay, Gd(s)=numd/dend. Since we are plotting multiple plots,
we first collect the data for the Bode plots by using [mag,phase]=bode(G,w), where w is specified as a
range of frequencies. We then use the generic plotting command. Also notice the commands used to
label the axes and the plots on the Bode plot (see the MATLAB instruction manual for details). Let us
look at Example 10.15 in the text.

'(ch10apB7) Example 10.15' % Display label.

clf % Clear graph.

hold off % Turn graph hold off.

numg=1; % Define numerator of G(s).

deng=poly([0 -1 -10]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

w=0.01:0.1:10; % Let 0.01<w<10 in steps of 0.1.

[magg,phaseg]=bode (G,w); % Collect Bode data for G(s).

[numd,dend]=pade(1,6); % Represent the delay.

Gd=tf(numd,dend); % Create and display the delay,

% Gd(s).

[magd,phased]=bode(Gd,w); % Collect Bode data for Gd(s).

Ge=Gd*G; % Form Gd(s)G(s).

[mage,phasee]=bode(Ge,w); % Collect Bode data for Gd(s)G(s).

subplot(2,1,1) % Subdivide plot area for plot 1.

semilogx(w,20*log10(mage(:,:))) % Plot magnitude response.

grid on % Turn on grid for magnitude plot.

axis([0.01,10,-80,20]); % Limit Bode plot axes.

title ('Magnitude Response with Delay')

% Add title to magnitude response.



xlabel('Frequency (rad/s)') % Label x-axis of magnitude

% response.

ylabel('20log M') % Label y-axis of magnitude

% response.

subplot(2,1,2) % Subdivide plot area for plot 2.

phased=phased-1080; % Adjust phase offset to compensate

% for modulo 360.

phasee=phasee-1080; % Adjust phase offset to compensate

% for modulo 360.

semilogx(w,phaseg(:,:),w,phased(:,:),w,phasee(:,:))

% Plot phase response for G(s),

% Gd(s), and G(s)Gd(s) on one

% graph.

grid on % Turn on grid for phase plot.

axis([0.01,10,-900,0]); % Limit Bode plot axes.

title ('Phase Response with Delay')

% Add title to phase response.

xlabel('Frequency (rad/s)') % Label x-axis of phase response.

ylabel('Phase (degrees)') % Label y-axis of phase response.

text(1.5,-50,'Time Delay') % Label time delay curve.

text(4,-150,'System') % Label system curve.

text(2.7,-300,'Total') % Label total curve.

pause

ch10apB8 (Example 10.18)
We can use MATLAB and frequency response methods to determine experimentally a transfer function
from frequency response data. By determining simple component transfer functions and then
successively subtracting their frequency response, we can approximate the complete transfer function.
Let us look at Example 10.18 in the text and use MATLAB for a portion of the problem. You can
complete the program for practice. For this problem we generate the original frequency response plot via
a transfer function. Normally, the data for the original frequency response plot would be tabular, and the
program would begin at the step[M0,P0]=bode(G0,w) where the tabular data is generated. In other words,
in a real application, the data would consist of column vectors M0, P0, and w'.

'(ch10apB8) Example 10.18' % Display label.

clf % Clear graph.

hold off % Turn graph hold off.

% Generate the experimental Bode plots for G0(s)=numg0/deng0, that

% is, M0,P0.

numg0=70*[1 20]; % Define numerator of G0(s).

deng0=conv([1 7],[1 2 25]); % Partially define denominator of

% G0(s).

deng0=conv(deng0,[1 70]); % Complete the denominator of

% G0(s).

G0=tf(numg0,deng0); % Create G0(s).

w=1:0.5:1000; % Let 1<w<1000 in steps of 0.5.



[M0, P0]=bode(G0,w); % Generate the tabular data.

[20*log10(M0(:,:))',P0(:,:)',w'];

% Convert magnitude data to dB.

bode(G0,w) % Generate a Bode plot.

grid on % Turn on grid for Bode plot.

title('Experimental') % Add title.

pause

clf % Clear graph.

% Estimate a component part of the transfer function as

% G1 (s)=25/(s^2+2*0.22*5s+5^2) and subtract it from the experimental

% frequency response

numgl=5^2; % Define numerator of G1(s).

deng1=[1 2*0.22*5 5^2]; % Define denominator of G1(s).

'First estimate' % Display label.

G1=tf(numg1,deng1) % Create and display G1(s).

[M1,P1]=bode(G1,w); % Generate Bode data for G1(s).

M2=20*log10(M0(:,:))-20*log10(M1(:,:));

% Subtract Bode magnitude data of

% G1 from original magnitude data.

P2=P0(:,:)-P1(:,:); % Subtract Bode phase data of G1

% from original phase data.

subplot(2,1,1) % Divide plot area in two for

% magnitude plot.

semilogx(w(:,:),M2) % Plot magnitude response after

% subtracting.

grid on % Turn on grid for magnitude plot.

xlabel('Frequency (rad/sec)') % Add x-axis label.

ylabel('Gain dB') % Add y-axis label.

subplot(2,1,2) % Divide plot area in two for phase

% plot.

semilogx(w,P2) % Plot the phase response after

% subtracting.

grid on % Turn on grid for phase plot.

title('Experimental Minus 25/(s^2+2*0.22*5s+5^2)')

% Add title.

xlabel('Frequency (rad/sec)') % Add x-axis label.

ylabel('Phase deg') % Add y-axis label.

'This completes a portion of Example 10.18.'

'The student should continue the program for practice.'

pause

Chapter 11: Design via Frequency Response
ch11apB1 (Example 11.1)



We can design via gain adjustment on the Bode plot using MATLAB. You will input the desired percent
overshoot from the keyboard. MATLAB will calculate the required phase margin and then search the
Bode plot for that phase margin. The magnitude at the phase‐margin frequency is the reciprocal of the
required gain. MATLAB will then plot a step response for that gain. Let us look at Example 11.1 in the
text.

'(ch11apB1) Example 11.1' % Display label.

clf % Clear graph.

numg=[100]; % Define numerator of G(s).

deng=poly ([0 -36 -100]); % Define denominator of G(s).

G=tf(numg,deng) % Create and display G(s).

pos=input ('Type %OS'); % Input desired percent overshoot.

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.

Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi);

% Calculate required phase margin.

w=0.01:0.01:1000; % Set range of frequency from 0.01

% to 1000 in steps of 0.01.

[M,P]=bode(G,w); % Get Bode data.

Ph=-180+Pm; % Calculate required phase angle.

for k=1: 1: length (P); % Search Bode data for required

% phase angle.

if P(k)-Ph <=0; % If required phase angle is found,

% find the value of

M=M(k); % magnitude at the same frequency.

'Required K' % Display label.

K=1/M % Calculate the required gain.

break % Stop the loop.

end % End if.

end % End for.

T=feedback(K*G,1); % Find T(s) using the calculated K.

step(T) % Generate a step response.

title (['Closed-Loop Step Response for K= ',num2str(K)])

% Add title to step response.

pause

ch11apB2 (Example 11.2)
Let us use MATLAB to design a lag compensator. The program solves Example 11.2 in the text and
follows the same design technique demonstrated in that example. You will input the value of gain to
meet the steady‐state error requirement followed by the desired percent overshoot. MATLAB then
designs a lag compensator, evaluates Kv, and generates a closed‐loop step response.

'(ch11apB2) Example 11.2' % Display label.

clf % Clear graph.

K=input('Type value of K to meet steady-state error requirement');

% Input K.

pos=input ('Type %OS '); % Input desired percent overshoot.



numg=[100*K]; % Define numerator of G(s).

deng=poly([0 -36 -100]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping

% ratio.

Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)+10;

% Calculate required phase margin.

w=0.01:0.01:100; % Set range of frequency from 0.01

% to 1000 in steps of 0.01.

[M,P]=bode(G,w); % Get Bode data.

Ph=-180+Pm; % Calculate required phase angle.

for k=1:1:length(P); % Search Bode data for required

% phase angle.

if P(k)-Ph <=0; % If required phase angle is found,

% find the value of

M=M(k); % magnitude at the same frequency.

wf=w(k); % At this frequency the magnitude

% plot must go through 0 dB.

break % Stop the loop.

end % End if.

end % End for.

wh=wf/10; % Calculate the high-frequency

% break of the lag compensator.

wl=(wh/M); % Calculate the low-frequency

% break of the lag compensator;

% found from lag compensator,

% Gc(s)=Kc(s+wh)/(s+wl), high & low

% frequency gain requirements.

% At low w, gain=1. Thus,

% Kc*wh/wl=1. At high w, gain=1/M.

% Thus Kc=1/M. Hence

% Kc=wl/wh=1/M, or wl=wh/M.

numc=[1 wh]; % Generate numerator of lag

% compensator, Gc(s).

denc=[1 wl]; % Generate denominator of lag

% compensator, Gc(s).

Kc=wl/wh; % Generate K for Gc(s).

'Lag compensator' % Display label.

Kc % Display lag compensator K.

'Gc(s)' % Display label.

Gc=tf(Kc*numc,denc) % Create and display Gc(s).



'Gc(s)G(s)' % Display label.

GcG=Gc*G % Create and display Gc(s)G(s).

s=tf([1 0],1); % Create transfer function,'s'.

sGcG=s*GcG; % Create sGc(s)G(s).

sGcG=minreal(sGcG); % Cancel common terms.

Kv=dcgain(sGcG) % Evaluate Kv.

T=feedback(GcG,1); % Create T(s).

step(T) % Generate a closed-loop, lag-

% compensated step response.

title ('Closed-Loop Step Response for Lag-Compensated System')

% Add title to step response.

pause

ch11apB3 (Example 11.3)
Let us use MATLAB to design a lead compensator. The program solves Example 11.3 in the text and
follows the same design technique demonstrated in that example. You will enter desired percent
overshoot, peak time, and Kv. MATLAB then designs the lead compensator using Bode plots, calculates
Kv, and plots a closed‐loop step response.

'(ch11apB3) Example 11.3' % Display label.

clf % Clear graph.

pos=input ('Type %OS '); % Input desired percent overshoot.

Tp=input('Type peak time '); % Input desired peak time.

Kv=input('Type value of Kv '); % Input Kv.

numg=[100]; % Define numerator of G(s).

deng=poly ([0 -36 -100]); % Define denominator of G(s).

G=tf(numg,deng); % Create G(s).

s=tf([1 0],1); % Create transfer function,'s'.

sG=s*G; % Create sG(s).

sG=minreal(sG); % Cancel common factors.

K=dcgain(Kv/sG); % Solve for K.

'G(s)' % Display label.

G=zpk(K*G) % Put K into G (s), convert to

% factored form, and display.

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping

% ratio.

Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi);

% Calculate required phase margin.

wn=pi/(Tp*sqrt(1-z^2)); % Calculate required natural

% frequency.

wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2));

% Determine required bandwidth.

w=0.01:0.5:1000; % Set range of frequency from 0.01

% to 1000 in steps of 0.5



[M,P]=bode(G,w); % Get Bode data.

[Gm,Pm,Wcg,Wcp]=margin(G); % Find current phase margin.

Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi);

% Calculate required phase margin.

Pmreqc=Pmreq+10; % Add a correction factor of 10

% degrees.

Pc=Pmreqc-Pm; % Calculate phase contribution

% required from lead compensator.

% Design lead compensator

beta=(1-sin(Pc*pi/180))/(1+sin(Pc*pi/180));

% Find compensator beta.

magpc=1/sqrt(beta); % Find compensator peak magnitude.

for k=1:1:length(M); % Find frequency at which

% uncompensated system has a

% magnitude of 1/magpc.

% This frequency will be the new

% phase margin frequency.

if M(k)-(1/magpc) <=0; % Look for peak magnitude.

wmax=w(k); % This is the frequency at the

% peak magnitude.

break % Stop the loop,

end % End if.

end % End for.

% Calculate lead compensator zero, pole, and gain.

zc=wmax*sqrt(beta); % Calculate the lead compensators'

% low break frequency.

pc=zc/beta; % Calculate the lead compensators'

% high break frequency.

Kc=1/beta; % Calculate the lead compensators'

% gain.

'Gc(s)' % Display label.

Gc=tf(Kc*[1 zc],[1 pc]); % Create Gc(s).

Gc=zpk(Gc) % Convert Gc (s) to factored form

% and display.

'Ge(s)=G(s)Gc(s)' % Display label.

Ge=G*Gc % Form Ge(s)=Gc(s)G(s).

sGe=s*Ge; % Create sGe(s).

sGe=minreal(sGe); % Cancel common factors.

Kv=dcgain(sGe) % Calculate Kv.

T=feedback(Ge,1); % Find T(s).

step(T) % Generate closed-loop, lead-

% compensated step response.

title('Lead-Compensated Step Response')



% Add title to lead-compensated

% step response.

pause

ch11apB4 (Example 11.4)
Let us use MATLAB to design a lag–lead compensator. The program solves Example 11.4 in the text and
follows the same design technique demonstrated in that example. You will enter desired percent
overshoot, peak time, and Kv. MATLAB then designs the lag–lead compensator using Bode plots,
calculates Kv, and plots a closed‐loop step response.

'(ch11apB4) Example 11.4' % Display label.

clf % Clear graph.

pos=input('Type %OS '); % Input desired percent overshoot.

Tp=input('Type peak time '); % Input desired peak time.

Kv=input('Type value of Kv '); % Input desired Kv.

numg=[1]; % Define numerator of G(s).

deng=poly([0 -1 -4]); % Define denominator of G(s).

G=tf(numg,deng); % Create G(s) without K.

s=tf([1 0],1); % Create transfer function,'s'.

sG=s*G; % Create sG(s).

sG=minreal(sG); % Cancel common factors.

K=dcgain(Kv/sG); % Solve for K.

'G(s)' % Display label.

G=tf(K*numg,deng); % Put K into G(s).

G=zpk(G) % Convert G(s) to factored form and

% display.

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.

Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi);

% Calculate required phase margin.

wn=pi/(Tp*sqrt(1-z^2)); % Calculate required natural

% frequency.

wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2));

% Determine required bandwidth.

wpm=0.8*wBW; % Choose new phase-margin

% frequency.

[M,P]=bode(G,wpm); % Get Bode data.

Pmreqc=Pmreq-(180+P)+5; % Find phase contribution required

% from lead compensator

% with additional 5 degrees.

beta=(1-sin(Pmreqc*pi/180))/(1+sin(Pmreqc*pi/180));

% Find beta.

% Design lag compensator zero, pole,

% and gain.

zclag=wpm/10; % Calculate zero of lag compensator.



pclag=zclag*beta; % Calculate pole of lag compensator.

Kclag=beta; % Calculate gain of lag compensator.

'Lag compensator, Glag(s)' % Display label.

Glag=tf(Kclag*[1 zclag],[1 pclag]); % Create lag compensator.

Glag=zpk(Glag) % Convert Glag(s) to factored form

% and display.

% Design lead compensator zero,

% pole, and gain.

zclead=wpm*sqrt(beta); % Calculate zero of lead

% compensator.

pclead=zclead/beta; % Calculate pole of lead

% compensator.

Kclead=1/beta; % Calculate gain of lead

% compensator.

'Lead compensator' % Display label.

Glead=tf(Kclead*[1 zclead],[1 pclead]);

% Create lead compensator.

Glead=zpk(Glead) % Convert Glead(s) to factored form

% and display.

'Lag-Lead Compensated Ge(s)' % Display label.

Ge=G*Glag*Glead % Create compensated system,

% Ge(s)=G(s) Glag(s) Glead(s).

sGe=s*Ge; % Create sGe(s).

sGe=minreal(sGe); % Cancel common factors.

Kv=dcgain(sGe) % Calculate Kv.

T=feedback(Ge,1); % Find T(s).

step(T) % Generate closed-loop, lag-lead-

% compensated step response.

title('Lag-Lead-Compensated Step Response')

% Add title to lag-lead-

% compensated

% step response.

pause

Chapter 12: Design via State Space
ch12apB1 (Example 12.1)
We can use MATLAB to design controller gains using pole placement. You will enter the desired percent
overshoot and settling time. We introduce the following commands: [num,den]=ord2(wn,z), which
produces a second‐order system, given the natural frequency(wn)and the damping ratio(z). Then we use
the denominator(den)to specify the dominant poles; and K=acker (A,B,‐poles), which calculates
controller gains from the system matrix(A), the input matrix(B), the desired poles(poles). Let us look at
Example 12.1 in the text.

'(ch12apB1) Example 12.1' % Display label.



clf % Clear graph.

numg=20*[1 5]; % Define numerator of G(s).

deng=poly([0 -1 -4]); % Define denominator of G(s).

'Uncompensated G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

pos=input('Type desired %OS'); % Input desired percent overshoot.

Ts=input('Type desired settling time');

% Input desired settling time.

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.

wn=4/(z*Ts); % Calculate required natural

% frequency.

[num,den]=ord2(wn,z); % Produce a second-order system

% that meets the transient response

% requirements.

r=roots(den); % Use denominator to specify

% dominant poles.

poles=[r(1) r(2) -5.1]; % Specify pole placement for all

% poles.

characteristiceqdesired=poly(poles)

% Form desired characteristic

% polynomial for display.

[Ac Bc Cc Dc]=tf2ss(numg,deng); % Find controller canonical form

% of state-space representation

% of G(s).

P=[0 0 1;0 1 0;1 0 0]; % Transformation matrix for

% controller canonical to phase-

% variable form.

Ap=inv(P)*Ac*P; % Transform Ac to phase-variable

% form.

Bp=inv(P)*Bc; % Transform Bc to phase-variable

% form.

Cp=Cc*P; % Transform Cc to phase-variable

% form.

Dp=Dc; % Transform Dc to phase-variable

% form.

Kp=acker(Ap,Bp,poles) % Calculate controller gains in

% phase-variable form.

Apnew=Ap-Bp*Kp; % Form compensated A matrix.

Bpnew=Bp; % Form compensated B matrix.

Cpnew=Cp; % Form compensated C matrix.

Dpnew=Dp; % Form compensated D matrix.

[numt,dent]=ss2tf(Apnew,Bpnew,Cpnew,Dpnew);



% Form T(s) numerator and

% denominator.

'T(s)' % Display label.

T=tf(numt,dent) % Create and display T(s).

poles=roots(dent) % Display poles of T(s).

Tss=ss(Apnew,Bpnew,Cpnew,Dpnew) % Create and display Tss, an LTI

% state-space object.

step(Tss) % Produce compensated step

% response.

title('Compensated Step Response')

% Add title to compensated step

% response.

pause

ch12apB2 (Example 12.2)
We can test controllability by using the MATLAB command Cm=ctrb(A,B)to find the controllability
matrix given the system matrix(A)and the input matrix(B). This command is followed by rank(Cm)to test
the rank of the controllability matrix(Cm). Let us apply the commands to Example 12.2.

'(ch12apB2) Example 12.2' % Display label.

A=[-1 1 0;0 -1 0;0 0 -2] % Define compensated A matrix.

B=[0;1;1] % Define compensated B matrix.

Cm=ctrb(A,B) % Calculate controllability

% matrix.

Rank=rank(Cm) % Find rank of controllability

% matrix.

pause

ch12apB3 (Example 12.4)
If we design controller gains using MATLAB, we do not have to convert to phase‐variable form.
MATLAB will give us the controller gains for any state‐space representation we input. Let us look at
Example 12.4 in the text.

'(ch12apB3) Example 12.4' % Display label.

clf % Clear graph.

A=[-5 1 0;0 -2 1;0 0 -1]; % Define system matrix A.

B=[0;0;1]; % Define input matrix B.

C=[-1 1 0]; % Define output matrix C.

D=0; % Define matrix D.

pos=input('Type desired %OS'); % Input desired percent overshoot.

Ts=input('Type desired settling time')

% Input desired settling time.

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.

wn=4/(z*Ts); % Calculate required natural

% frequency.



[num,den]=ord2(wn,z); % Produce a second-order system

% that meets the transient

% requirements.

r=roots(den); % Use denominator to specify

% dominant poles.

poles=[r(1) r(2) -4]; % Specify pole placement for all

% poles.

K=acker(A,B,poles) % Calculate controller gains.

Anew=A-B*K; % Form compensated A matrix.

Bnew=B; % Form compensated B matrix.

Cnew=C; % Form compensated C matrix.

Dnew=D; % Form compensated D matrix.

Tss=ss(Anew,Bnew,Cnew,Dnew); % Form LTI state-space object.

'T(s)' % Display label.

T=tf(Tss); % Create T(s).

T=minreal(T) % Cancel common terms and display

% T(s).

poles=pole(T) % Display poles of T(s).

step(Tss) % Produce compensated step

% response.

title('Compensated Step Response')

% Add title to compensated step

% response.

pause

ch12apB4 (Example 12.5)
We can design observer gains by using the command l=acker(A',C',poles)'. Notice we use the
transpose of the system matrix(A) and output matrix(C)along with the desired poles(poles). Let us look
at Example 12.5 in the text.

'(ch12apB4) Example 12.5' % Display label.

numg=[1 4]; % Define numerator of G(s).

deng=poly([-1 -2 -5]); % Define denominator of G(s).

'G(s)' % Display label.

G=tf(numg,deng) % Create and display G(s).

[Ac,Bc,Cc,Dc]=tf2ss(numg,deng); % Transform G(s) to controller

% canonical form in state space.

Ao=Ac'; % Transform Ac to observer

% canonical form.

Bo=Cc'; % Transform Bc to observer

% canonical form.

Co=Bc'; % Transform Cc to observer

% canonical form.

Do=Dc; % Transform Dc to observer

% canonical form.



r=roots([1 2 5]) % Find the controller-compensated

% system poles.

poles=10*[r'10*real(r(1))] % Make observer poles 10x bigger.

lp=acker(Ao',Co',poles)' % Find the observer gains in

% observer canonical form.

pause

ch12apB5 (Example 12.6)
We can test observability using the MATLAB command Om=obsv(A,C)to find the observability matrix
given the system matrix(A)and the output matrix(C). This command is followed by rank(Om)to test the
rank of the observability matrix (Om). Let us apply the commands to Example 12.6.

'(ch12apB5) Example 12.6' % Display label.

A=[0 1 0;0 0 1;-4 -3 -2] % Define compensated A matrix.

C=[0 5 1] % Define compensated C matrix.

Om=obsv(A,C) % Form observability matrix.

Rank=rank(Om) % Find rank of observability

% matrix.

pause

ch12apB6 (Example 12.8)
We can design observer gains using the command l=acker (A',C',poles)'without transforming to
observer canonical form. Let us look at Example 12.8 in the text.

'(ch12apB6) Example 12.8' % Display label.

A=[-5 1 0;0 -2 1;0 0 -1]; % Define system matrix A.

B=[0;0;1]; % Define input matrix B.

C=[1 0 0]; % Define output matrix C.

D=0; % Define matrix D.

poles=roots([1 120 2500 50000]) % Specify pole placement for all

% poles.

l=acker(A',C',poles)' % Calculate observer gains.

pause

Chapter 13: Digital Control Systems
ch13apB1 (Example 13.4)
We can convert G1(s) in cascade with a zero‐order hold (z.o.h.) to G(z) using MATLAB's G=c2d
(G1,T,'zoh')command, where G1 is an LTI continuous‐system object and G is an LTI sampled‐system
object. T is the sampling interval and 'zoh' is a method of transformation that assumes G1(s) in cascade
with a z.o.h. We simply put G1(s) into the command (the z.o.h. is automatically taken care of) and the
command returns G(z). Let us apply the concept to Example 13.4. You will enter T through the keyboard.

'(ch13apB1) Example 13.4' % Display label.

T=input('Type T'); % Input sampling interval.

numg1s=[1 2]; % Define numerator of G1(s).

deng1s=[1 1]; % Define denominator of G1(s).

'G1(s)' % Display label.



G1=tf(numg1s,deng1s) % Create G1(s) and display.

'G(z)' % Display label.

G=c2d(G1,T,'zoh') % Convert G1(s) in cascade with

% z.o.h. to G(z) and display.

pause

ch13apB2
We also can use MATLAB to convert G(s) to G(z) when G(s) is not in cascade with a z.o.h. The command
H=c2d(F,T,'zoh')transforms F(s) in cascade with a z.o.h. to H(z), where 
H(z) = ((z − 1)/z) * z{F(s)/s}. If we let F(s) = sG(s), the command solves for H(z), where 
H(z) = ((z − 1) /z) * z{G(s)}. Hence, z {G (s)} = (z/ [z − 1]) * H (z). In summary, input 
F (s) = sG (s), and multiply the result of H=c2d(F,T,'zoh')by (z/ [z − 1]) . This process is equivalent to
finding the z‐transform. We convert G (s) = (s + 3) / (s2 + 6s + 13) into G(z). You will enter T, the
sampling interval, through the keyboard. T is used to form H(z). We use an unspecified sampling
interval, T=[ ], to form z/(z − 1).

'(ch13apB2)' % Display label.

T=input('Type T'); % Input sampling interval.

numgs=[1 3]; % Define numerator of G(s).

dengs=[1 6 13]; % Define denominator of G(s).

'G(s)' % Display label.

Gs=tf(numgs,dengs) % Create and display G(s).

Fs=Gs*tf([1 0],1); % Create F(s)=sG(s).

Fs=minreal(Fs); % Cancel common poles and zeros.

Hz=c2d(Fs,T,'zoh'); % Convert F(s) to H(z) assuming

% z.o.h.

Gz=Hz*tf([1 0],[1 -1],[ ]); % Form G(z)=H(z)*z/(z-1).

'G(z)' % Display label.

Gz=minreal(Gz) % Cancel common poles and zeros.

pause

ch13apB3 Creating Digital Transfer Functions Directly

Vector Method, Polynomial Form
A digital transfer function can be expressed as a numerator polynomial divided by a denominator
polynomial, that is, F(z) = N(z)/D(z). The numerator, N(z), is represented by a vector, numf, that
contains the coefficients of N(z). Similarly, the denominator, D(z), is represented by a vector, denf, that
contains the coefficients of D(z). We form F(z) with the command, F=tf(numf,denf,T), where T is the
sampling interval. F is called a linear time‐invariant (LTI) object. This object, or transfer function, can be
used as an entity in other operations, such as addition or multiplication. We demonstrate with 
F(z) = 150(z2 + 2z + 7)/(z2 − 0.3z + 0.02). We use an unspecified sampling interval, T=[]. Notice
after executing the tf command, MATLAB prints the transfer function.

Vector Method, Factored Form
We also can create digital LTI transfer functions if the numerator and denominator are expressed in
factored form. We do this by using vectors containing the roots of the numerator and denominator.
Thus, G (s) = K * N (z) /D (z) can be expressed as an LTI object using the command,



G=zpk(numg,deng,K,T), where numg is a vector containing the roots of N(z), deng is a vector containing the
roots of D(z), K is the gain, and T is the sampling interval. The expression zpk stands for zeros (roots of
the numerator), poles (roots of the denominator), and gain, K. We demonstrate with 
G(z) = 20(z + 2)(z + 4)/ [(z − 0.5) (z − 0.7) (z − 0.8)] and an unspecified sampling interval. Notice
after executing the zpk command, MATLAB prints the transfer function.

Rational Expression in z Method, Polynomial Form (Requires Control System Toolbox 9.7)
This method allows you to type the transfer function as you normally would write it. The statement
z=tf('z') must precede the transfer function if you wish to create a digital LTI transfer function in
polynomial form equivalent to using G=tf(numg, deng,T).

Rational Expression in z Method, Factored Form (Requires Control System Toolbox 9.7)
This method allows you to type the transfer function as you normally would write it. The statement
z=zpk('z')must precede the transfer function if you wish to create a digital LTI transfer function in
factored form equivalent to using G=zpk(numg,−deng,K,T).

For both rational expression methods the transfer function can be typed in any form regardless of
whether z=tf('z') or z=zpk('z') is used. The difference is in the created digital LTI transfer function.
We use the same examples above to demonstrate the rational expression in z methods.

'(ch13apB3)' % Display label.

'Vector Method, Polynomial Form' % Display label.

numf=150*[1 2 7] % Store 150(z^2+2z+7) in numf and

% display.

denf=[1 -0.3 0.02] % Store(z^2-0.3z+0.02) in denf and

% display.

'F(z)' % Display label.

F=tf(numf,denf,[ ]) % Form F(z) and display.

clear % Clear previous variables from

% workspace.

'Vector Method, Factored Form' % Display label.

numg=[-2 -4] % Store (s+2)(s+4) in numg and

% display.

deng=[0.5 0.7 0.8] % Store (s-0.5)(s-0.7)(s-0.8) in

% deng and display.

K=20 % Define K.

'G(z)' % Display label.

G=zpk(numg,deng,K,[ ]) % Form G(z) and display,

clear % Clear previous variables from

% workspace.

'Rational Expression Method, Polynomial Form'

% Display label.

z=tf('z') % Define z as an LTI object in

% polynomial form.

F=150*(z^2+2*z+7)/(z^2-0.3*z+0.02)

% Form F(z) as an LTI transfer

% function in polynomial form.



G=20*(z+2)*(z+4)/[(z-0.5)*(z-0.7)*(z-0.8)]

% Form G(z) as an LTI transfer

% function in polynomial form.

clear % Clear previous variables from

% workspace.

'Rational Expression Method, Factored Form'

% Display label.

z=zpk('z') % Define z as an LTI object in

% factored form.

F=150*(z^2+2*z+7)/(z^2-0.3*z+0.02)

% Form F(z) as an LTI transfer

% function in factored form.

G=20*(z+2)*(z+4)/[(z-0.5)*(z-0.7)*(z-0.8)]

% Form G(z) as an LTI transfer

% function in factored form. pause

ch13apB4
We also can use MATLAB to convert G(z) to G(s) when G(s) is not in cascade with a z.o.h. First, we
create a sampled LTI transfer function, as discussed in ch13p3. The command F=d2c(H,'zoh')
transforms H(z) to F(s) in cascade with a z.o.h., where H(z) = ((z − 1)/z) z{F(s)/s}. If we consider 
F (s) = sG (s), the command solves for sG(s) given H(z). Finally, sG (s) /s = G (s) yields the final
result. In summary, form H(z), where H(z) = ((z − 1) /z)G(z). Use F=d2c(H,'zoh') to find 
F (s) = sG (s). Divide the result by s and obtain G(s). We convert G (z) = z/ (z − 0.3) into G(s). You
will enter T, the sampling interval, through the keyboard.

'(ch13apB4)' % Display label.

T=input('Type T '); % Input sampling interval.

numgz=[1 0]; % Define numerator of G(z).

dengz=[1 -.3]; % Define denominator of G(z).

'G(z)' % Display label.

Gz=tf(numgz,dengz,T) % Create and display G(z).

Hz=Gz*tf([1 -1],[1 0],T); % Create H(z)=((z-1)/z)*G(z).

Hz=minreal(Hz); % Cancel common poles and zeros.

Fs=d2c(Hz,'zoh'); % Convert from H(z) to F(s)=sG(s).

Gs=Fs*tf(1,[1 0]); % Create G(s)=F(s)(1/s).

'G(s)' % Display label.

Gs=minreal(Gs) % Cancel common poles and zeros.

pause

ch13apB5 (Example 13.6)
We can use MATLAB to find the gain for stability. Let us look at Example 13.6 in the text.

'(ch13apB5) Example 13.6' % Display label.

numgas=27; % Define numerator of Ga(s).

dengas=[1 27 0]; % Define denominator of Ga(s).



'Ga(s)' % Display label.

Ga=tf(numgas,dengas) % Create and display Ga(s).

'G(z)' % Display label.

Gz=c2d(Ga,0.1,'zoh') % Find G(z) assuming Ga(s) in

% cascade with z.o.h. and display.

for K=1:0.1:50; % Set range of K to look for

% stability.

Tz=feedback(K*Gz,1); % Find T(z).

r=pole(Tz); % Get poles for this value of K.

rm=max(abs(r)); % Find pole with maximum absolute

% value for this value of K.

if rm>=1, % See if pole is outside unit

% circle.

break; % Stop if pole is found outside

% unit circle.

end; % End if.

end; % End for.

K % Display K value.

r % Display closed-loop poles for

% this value of K.

rm % Display absolute value of pole.

pause

ch13apB6 (Example 13.9)
We can use MATLAB's command dcgain(Gz) to find steady‐state errors. The command evaluates the dc
gain of Gz, a digital LTI transfer function object, by evaluating Gz at z = 1. We use the dc gain to
evaluate, Kp, Kv, and Ka. Let us look at Example 13.9 in the text. You will input T, the sampling interval,
through the keyboard to test stability.

'(ch13apB6) Example 13.9' % Display label.

T=input('Type T '); % Input sampling interval.

numg1s=[10]; % Define numerator of G1(s).

deng1s=poly([0 -1]); % Define denominator of G1(s).

'G1(s)' % Display label.

G1s=tf(numg1s,deng1s) % Create and display G1(s).

'G(z)' % Display label.

Gz=c2d(G1s,T,'zoh') % Convert G1(s) and z.o.h. toG(z)

% and display.

'T(z)' % Display label.

Tz=feedback(Gz,1) % Create and display T(z).

'Closed-Loop z-Plane Poles' % Display label.

r=pole(Tz) % Check stability.

M=abs(r) % Display magnitude of roots.

pause



Kp=dcgain(Gz) % Calculate Kp.

GzKv=Gz*(1/T)*tf([1 -1],[1 0],T); % Multiply G(z) by(1/T)*(z-1).

% Also, divide G(z) by z , which

% makes transfer function proper

% and yields same Kv.

GzKv=minreal(GzKv,0.00001); % Cancel common poles and zeros.

Kv=dcgain(GzKv) % Calculate Kv.

GzKa=Gz*(1/T^2)*tf([1 -2 1],[1 0 0],T); % Multiply G(z) by (1/T^2)(z-1)^2.

% Also, divide G(z)by z^2 , which

% makes the transfer function

% proper and yields the same Ka.

GzKa=minreal(GzKa,0.00001); % Cancel common poles and zeros.

Ka=dcgain(GzKa) % Calculate Ka.

pause

ch13apB7 (Example 13.10)
We now use the root locus to find the gain for stability. First, we create a digital LTI transfer‐function
object for G (z) = N (z) /D (z) , with an unspecified sampling interval. The LTI object is created using
tf(numgz,dengz,[]), where numgz represents N(z), dengz represents D(z), and[]indicates an unspecified
sampling interval. MATLAB produces a z‐plane root locus along with the unit circle superimposed using
the command, zgrid ([],[]). We then interactively select the intersection of the root locus and the unit
circle. MATLAB responds with the value of gain and the closed‐loop poles. Let us look at Example 13.10.

'(ch13apB7) Example 13.10' % Display label.

clf % Clear graph.

numgz=[1 1]; % Define numerator of G(z).

dengz=poly([1 0.5]); % Define denominator of G(z).

'G(z)' % Display label.

Gz=tf(numgz,dengz,[]) % Create and display G(z).

rlocus(Gz) % Plot root locus.

zgrid([],[]) % Add unit circle to root locus.

title (['z-Plane Root Locus']) % Add title to root locus.

[K,p]=rlocfind(Gz) % Allows input of K by selecting

% point on graphic.

pause

ch13apB8 (Example 13.11)
We now use the root locus to find the gain to meet a transient response requirement. After MATLAB
produces a z‐plane root locus, along with damping ratio curves superimposed using the command zgrid,
we interactively select the desired operating point at a damping ratio of 0.7, thus determining the gain.
MATLAB responds with a gain value as well as the step response of the closed‐loop sampled system
using step(Tz), where Tz is a digital LTI transfer‐function object. Let us look at Example 13.11.

'(ch13apB8) Example 13.11' % Display label.

clf % Clear graph.

numgz=[1 1]; % Define numerator of G(z).



dengz=poly([1 0.5]); % Define denominator of G(z).

'G(z)' % Display label.

Gz=tf(numgz,dengz,[]) % Create and display G(z).

rlocus(Gz) % Plot root locus.

axis([0,1,-1,1]) % Create close-up view.

zgrid % Add damping ratio curves to root

% locus.

title(['z-Plane Root Locus']) % Add title to root locus.

[K,p]=rlocfind(Gz) % Allows input of K by selecting

% point on graphic.

'T(z)' % Display label.

Tz=feedback(K*Gz,1) % Find T(z).

step(Tz) % Find step response of gain-

% compensated system.

title (['Gain Compensated Step Response'])

% Add title to step response of

% gain-compensated system.

pause

ch13apB9 (Example 13.12)
Let us now use MATLAB to design a digital lead compensator. The s‐plane design was performed in
Example 9.6. Here we convert the design to the z‐plane and run a digital simulation of the step response.
Conversion of the s‐plane lead compensator, Gc(s)=numgcs/dengcs, to the z‐plane compensator,
Gc(z)=numgcz/dengcz, is accomplished using the Gcz=c2d(numgcs,dengcs,T,'tustin') command to
perform a Tustin transformation, where T=sampling interval, which for this example is 1/300. This
exercise solves Example 13.12 using MATLAB.

'(ch13apB9) Example 13.12' % Display label.

clf % Clear graph.

T=0.01 % Define sampling interval.

numgcs=1977*[1 6]; % Define numerator of Gc(s).

dengcs=[1 29.1]; % Define denominator of Gc(s).

'Gc(s) in polynomial form' % Print label.

Gcs=tf(numgcs,dengcs) % Create Gc(s) in polynomial form

% and display.

'Gc(s) in polynomial form' % Display label.

Gcszpk=zpk(Gcs) % Create Gc(s) in factored form

% and display.

'Gc(z) in polynomial form via Tustin Transformation'

% Display label.

Gcz=c2d(Gcs,T,'tustin') % Form Gc(z) via Tustin

% transformation.

'Gc(z) in factored form via Tustin Transformation'

% Display label.

Gczzpk=zpk(Gcz) % Show Gc(z) in factored form.



numgps=1; % Define numerator of Gp(s).

dengps=poly([0 -6 -10]); % Define denominator of Gp(s).

'Gp(s) in polynomial form' % Display label.

Gps=tf(numgps,dengps) % Create Gp(s) in polynomial form

% and display.

'Gp(s) in factored form' % Display label.

Gpszpk=zpk(Gps) % Create Gp(s) in factored form

% and display.

'Gp(z) in polynomial form' % Display label.

Gpz=c2d(Gps,T,'zoh') % Form Gp(z) via zoh transformation.

'Gp(z) in factored form' % Display label.

Gpzzpk=zpk(Gpz) % Form Gp(z) in factored form.

Gez=Gcz*Gpz; % Form Ge(z)= Gc(z)Gp(z).

'Ge(z)=Gc(z)Gp(z) in factored form' % Display label.

Gezzpk=zpk(Gez) % Form Ge(z) in factored form

% and display.

'z-1' % Display label.

zm1=tf([1 -1],1,T) % Form z-1.

zm1Gez=minreal(zm1*Gez,0.00001); % Cancel common factors.

'(z-1)Ge(z) for finding steady-state error'

% Display label.

zm1Gezzpk=zpk(zm1Gez) %Form & display(z-1)Ge(z) in

% factored form.

Kv=(1/T)*dcgain(zm1Gez) % Find Kv.

'T(z)=Ge(z)/(1+Ge(z))' % Display label.

Tz=feedback(Gez,1) % Find closed-loop

% transfer function, T(z)

step(Tz,0:T:2) % Find step response.

title('Closed-Loop Digital Lead Compensated Step Response')

% Add title to step response.

B.3 Command Summary
abs(x) Obtain absolute value of x.
acker(A,B,poles) Find gains for pole placement.
angle(x) Compute the angle of x in radians.
atan(x) Compute arctan(x).
axis([xmin,xmax,ymin,ymax]) Define range on axes of a plot.
bode(G,w) Make a Bode plot of transfer function G(s) over a range of frequencies, ω.

Field ω is optional.
break Exit loop.
c2d(G,T,'tustin') Convert G(s) to G(z) using the Tustin transformation. T is the sampling

interval.
c2d(G,T,'zoh') Convert G(s) in cascade with a zero‐order hold to G(z). T is the sampling



interval.
canon(S,'modal') Convert an LTI state‐space object, S, to parallel form.
clear Clear variables from workspace.
clf Clear current figure.

conv([a b c d],[e f g h]) Multiply (as3 + bs2 + cs + d) by (es3 + fs2 + gs + h).

ctrb(A,B) Find controllability matrix.
d2c(G,'zoh') Convert G(z) to G(s) in cascade with a zero‐order hold.
dcgain(G) Find dc gain for G(s) (i.e., s = 0), or G(z) (i.e., z = 1).
eig(A) Find eigenvalues of matrix A.
end End the loop.
exp(a) Obtain ea.
feedback(G,H,sign) Find T (s) = G (s) / [1 ± G (s)H (s)]. Sign =−1 or is optional for

negative feedback systems.Sign = +1 for positive feedback systems.

grid on Put grid lines on a graph.
hold off Turn off graph hold; start new graph.
imag(P) Form a matrix of the imaginary parts of the components of matrix P.
input('str') Permit variable values to be entered from the keyboard with prompt str.
interp1 (x,y,x1) Perform table lookup by finding the value of y at the value of x = x1.
inv(P) Find the inverse of matrix P.
length(P) Obtain dimension of vector P.
log(x) Compute natural log of x.
log10(x) Compute log to the base 10 of x.
margin(G) Find gain and phase margins, and gain and phase margin frequencies of

transfer function, G(s).
Return [Gain margin, Phase margin, 180° frequency, 0 dB frequency].

max(P) Find the maximum component of P.
minreal(G,tol) Cancel common factors from transfer function G(s) within tolerance, tol.

If 'tol' field is blank, a default value is used.
ngrid Superimpose grid over a Nichols plot.
nichols(G,w) Make a Nichols plot of transfer function G(s) over a range of frequencies,

ω.Field ω is optional.
nyquist(G,w) Make a Nyquist diagram of transfer function G(s) over a range of

frequencies, ω.Field ω is optional.
obsv(A,C) Find observability matrix.

ord2(wn,z) Create a second‐order system, G (s) = 1/ [s2 + 2ζωns + ω2
n].

pade(T,n) Obtain nth order Padé approximation for delay, T.
pause Pause program until any key is pressed.
plot(t1,y1,t2,y2,t3,y3) Plot y1 versus t1, y2 versus t2, and y3 versus t3 on the same graph.
pole(G) Find poles of LTI transfer function object, G(s).
poly([−a −b −c]) Form polynomial (s + a) (s + b) (s + c).

polyval(P,a) Find polynomial P(s) evaluated at a, that is, P(a).
rank(A) Find rank of matrix A.
real(P) Form a matrix of the real parts of the components of matrix P.
residue(numf,denf) Find residues of F(s) = numf/denf.



rlocfind(GH) Allow interactive selection of points on a root locus plot for loop gain,
G(s)H(s). Return value for K and all closed‐loop poles at that K.

rlocus(GH,K) Plot root locus for loop gain, G(s)H(s), over a range of gain, K. The K field
is optional.

roots(P) Find roots of polynomial, P.
semilogx(w,P1) Make a semilog plot of P1 versus log10(ω).

series(G1,G2) Find G1 (s)G2 (s).

sgrid(z,wn) Overlay z (ζ) and wn(ωn) grid lines on a root locus.

sin(x) Find sin(x).
sqrt(a) Compute √a.

ss2tf(A,B,C,D,1) Convert a state‐space representation to a transfer function. Return
[num,den].

ss(A,B,C,D) Create an LTI state‐space object, S.
ss(G) Convert an LTI transfer function object, G(s), to an LTI state‐space

object.
ssdata(S) Extract A, B, C, and D matrices from LTI state‐space object, S.
step(G1,G2,.. Gn,t) Plot step responses of G1 (s) through Gn (s) on one graph over a range of

time, t.Field t is optional as are fields G2 through Gn.
subplot(xyz) Divide plotting area into an x by y grid with z as the window number for

the current plot.
tan(x) Find tangent of x radians.
text(a,b,'str') Put str on graph at graph coordinates, x = a, y = b.
tf2ss(numg,deng) Convert G(s) = numg/deng to state space in controller canonical form.

Return [A,B,C,D].
vpa(a,D) Calculate a with D digits and convert to a symbolic with D digits.
tf2zp(numg,deng) Convert G(s) = numg/deng in polynomial form to factored form.

Return[zeros, poles, gains].
tf(numg,deng,T) Create an LTI transfer function, G(s) = numg/deng, in polynomial form.T

is the sampling interval and should be used only if G is a sampled
transfer function.

tf(G) Convert an LTI transfer function, G(s), to polynomial form.
tfdata(G,'v') Extract numerator and denominator of an LTI transfer function, G(s),

and convert values to a vector. Return [num, den].
title('str') Put title str on graph.
xlabel('str') Put label str on x‐axis of graph.
ylabel('str') Put label str on y‐axis of graph.
zgrid Superimpose z(ζ) and wn (ωn) grid curves on a z‐plane root locus.

zgrid([ ],[ ]) Superimpose the unit circle on a z‐plane root locus.
zp2tf ([−a −b]',[−c −d]',

K)

Convert F (s) = K (s + a) (s + b) / (s + c) (s + d) to polynomial form.
Return[num,den].

zpk(numg,deng,K,T) Create an LTI transfer function, G(s) = numg/deng, in factored form.T is
the sampling interval and should be used only if G is a sampled transfer
function.

zpk(G) Convert an LTI transfer function, G(s), to factored form.
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Appendix C
Simulink Tutorial
C.1 Introduction
Readers who are studying MATLAB may want to explore the
functionality and convenience of Simulink. Before proceeding, the
reader should have studied Appendix B, the MATLAB Tutorial,
including Section B.1, which is applicable to this appendix.

Simulink Version 9.0(R2017b) and MATLAB Version 9.3(R2017b) are
required in order to use Simulink. In addition, if you wish to pursue the
design of PID controllers discussed in Section C.4, you will need the
Simulink Control Design Version 5.0(R2017b) add-on.

The models described in this appendix are available in the Control
Systems Engineering Toolbox folder. The code will also run on
workstations that support MATLAB. Consult the MATLAB Installation
Guide for your platform for minimum system hardware requirements.

Appendix C Models

Simulink is used to simulate systems. It uses a graphical user interface
(GUI) for you to interact with blocks that represent subsystems. You
can position the blocks, resize the blocks, label the blocks, specify block
parameters, and interconnect blocks to form complete systems from
which simulations can be run.

Simulink has block libraries from which subsystems, sources (i.e.,
function generators), and sinks (i.e., scopes) can be copied. Subsystem
blocks are available for representing linear, nonlinear, and discrete
systems. LTI objects can be generated if the Control System Toolbox is
installed.

Help is available at the top of the MATLAB R2017b window. Click
the circled question mark and select Simulink. Help is also available
for each block in the block library and is accessed either by right‐
clicking a block's icon in the Simulink Library Browser and
selecting Help for... or by double‐clicking the block's icon and then
clicking the Help button. Finally, screen tips are available for some

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Simulink_Files_for_Appendix_C.zip


toolbar buttons. Let your mouse's pointer rest on the button for a few
seconds to see the explanation.

C.2 Using Simulink
The following, summarize the steps to take to use Simulink. Section C.3
will present four examples that demonstrate and clarify these steps.

1. Access Simulink  The Simulink Start Page, from where we
begin Simulink, is accessed by typing simulink in the MATLAB
Command Window or by clicking on the Simulink button on
the toolstrip, shown circled in Figure C.1.

In response, MATLAB displays the Simulink Start Page shown
in Figure C.2(a). We now create an untitled window, Figure
C.2(b), by clicking on the model button (shown circled in Figure
C.2(a)) on the Simulink Blank Model Start Page. You will
build your system in this window. Existing models may be opened
by clicking on the Open file button on the Simulink Start Page
toolbar. This button is in the left‐hand column of the Simulink
Start Page. Existing models may also be opened from the
Searchbar below the Toolstrip on the MATLAB window.

2. Select blocks  Press the Simulink Library Browser button
shown encircled in Figure C.2(b). Figure C.3(a) shows the
Simulink Library Browser from which all blocks can be
accessed. The left‐hand side of the browser shows major libraries,
such as Simulink, as well as underlying block libraries, such as
Continuous. The right‐hand side of Figure C.3(a) also shows the
underlying block libraries. To reveal a block library's underlying
blocks, select the block library on the left‐hand side or double‐click
the block library on the right‐hand side. As an example, the
Continuous library blocks under the Simulink major library are
shown exposed in Figure C.3(b). Figure C.3(c) and C.3(d) shows
some of the Sources and Sinks library blocks, respectively.

Another approach to revealing the Simulink block library is to
type open_system (simulink) in the MATLAB Command
Window. The window shown in Figure C.4 is the result. Double‐
clicking any of the libraries in Figure C.4 reveals an individual
window containing that library's blocks, equivalent to the right‐



hand side of the Simulink Library Browser as shown in the
examples of Figure C.3.

3. Assemble and label subsystems  Drag required subsystems
(blocks) to your model window from the browser, such as those
shown in Figure C.3. Also, you may access the blocks by double‐
clicking the libraries shown in Figure C.4. You can position, resize,
and rename the blocks. To position, drag with the mouse; to resize,
click on the subsystem and drag the handles; to rename, click on
the existing name, select the existing text, and type the new name.

4. Interconnect subsystems and label signals  Position the
pointer on the small arrow on the side of a subsystem, press the
mouse button, and drag the resulting cross‐hair pointer to the
small arrow of the next subsystem. A line will be drawn between
the two subsystems. Blocks may also be interconnected by single‐
clicking the first block followed by single‐clicking the second block
while holding down the control key. You can move line segments
by positioning the pointer on the line, pressing the mouse button,
and dragging. Branches to line segments can be drawn by
positioning the pointer where you want to create a line segment,
holding down the mouse's right button, and dragging the resulting
cross hairs. A new line segment will form. Signals can be labeled
by double‐clicking the line and typing. Finally, labels can be placed
anywhere by double‐clicking and typing into the resulting box.

5. Choose parameters for the subsystems  Double‐click a
subsystem in your model window and type in the desired
parameters. Some explanations are provided in the Block
Parameters window. Press the Help button in the Block
Parameters window for more details. Explore other options by
right‐clicking on a block.

6. Choose parameters for the simulation  Select Model
Configuration Parameters under the Simulation menu in
your model window to set additional parameters, such as
simulation time. Press the Help button in the Configuration
Parameters window for more details.

7. Start the simulation  Make your model window the active
window. Double‐click the Scope block (typically, the scope is used
to view the simulation results) to display the Scope window.



Select Run under the Simulation menu in your model window
or click on the Run icon on the toolbar of your model window as
shown in Figure C.2(b). Clicking the Stop icon will stop the
simulation before completion.

8. Interact with the plot  In the Scope window, using the toolbar
buttons, you can zoom in and out, change axes ranges, save axis
settings, and print the plot. Right‐clicking on the Scope window
brings up other choices.

9. Save your model  Saving your model, by choosing Save under
the File menu, creates a file with an .mdl extension, which is
required.

FIGURE C.1 MATLAB Window showing how to access
Simulink. The Simulink Start Page button is shown circled



FIGURE C.2 a. Simulink Start Page window showing the
Blank Model button encircled; b. resulting untitled model
window







FIGURE C.3 Simulink block libraries: a. Simulink Library
Browser; b. Continuous systems; c. Sources d. Sinks



FIGURE C.4 Simulink Block Library window

C.3 Examples
This section will present four examples of the use of Simulink to
simulate linear, nonlinear, and digital systems. Examples will show the
Simulink block diagrams as well as explain the settings of parameters
for the blocks. Finally, the results of the simulations will be shown.



Example C.1 Simulation of Linear Systems
Our first example develops a simulation of three linear systems to
compare their step responses. In particular, we solve Example 4.8
and reproduce the responses shown in Figure 4.24. Figure C.5
shows a Simulink block diagram formed by following Steps 1
through 5 in Section C.2 as follows:

FIGURE C.5 Simulink block diagram for Example C.1

Access Simulink; select, assemble, and label subsystems 
The source is a 1‐volt step input, obtained by dragging the Step
block from the Simulink Library Browser under Sources to
your model window.

The first system, T1, consists of two blocks, Gain and Transfer
Fcn. Gain is obtained by dragging the Gain block from the
Simulink Library Browser under Math Operations to your
model window. Transfer function, T1, is obtained by dragging the



Transfer Fcn block from the Simulink Library Browser under
Continuous to your model window. Systems T2 and T3 are
created similarly.

The three output signals, C1, C2, and C3, are multiplexed for
display into the single input of a scope. The Mux (multiplexer) is
obtained by dragging the Mux block from the Simulink Library
Browser under Signal Routing to your model window.

The sink is a scope, obtained by dragging the Scope block from the
Simulink Library Browser under Sinks to your model window.

Alternatively, all blocks can be dragged from the Library:
simulink window shown in Figure C.4. The Mux can be found
under Signal Routing in the Library: simulink window.

The labels for the blocks can be changed to those shown in Figure
C.5 by following Step 3 in Section C.2.

Interconnect subsystems and label signals Follow Step 4 to
interconnect the subsystems and label the signals. You must set the
mux's parameters before the wiring can be completed. See the next
paragraph.

Choose parameters for the subsystems Let us now set the
parameters of each block using Step 5. The Block Parameters
window for each block is accessed by double‐clicking the block on
your model window. Figure C.6 shows the Block Parameters
windows for the 1-volt step input, gain, transfer function 1, and
mux. Set the parameters to the required values as shown.









FIGURE C.6 Block parameters windows for a. 1-Volt
step source; b. gain; c. transfer function 1; d. mux

The scope requires further explanation. Double‐clicking the Scope
block in your model window accesses the scope's display, Figure
C.7(a).











FIGURE C.7 Windows for Configuration Properties
Scope and Style…: a. Scope; b. Scope parameters, Time
tab; c. Scope parameters, Display tab; d. Scope
parameters, Logging tab; e. Style Scope

Clicking the Configuration Properties Scope tab on the Scope
drop‐down menu, shown in Figure C.7(a), accesses the
Configuration Properties Scope window as shown in Figure



C.7(b). The Configuration Properties Scope window contains
four tabs, Main, Time, Display, and Logging, as shown in
Figure C.7(b), C.7(c), and C.7(d).

Finally, clicking the Style…tab on the Scope drop-down menu
reveals the Style Scope window, Figure C.7(e).

Choose parameters for the simulation Follow Step 6 to set
simulation parameters. Figure C.8 shows the resulting
Configuration Parameters window. Among other parameters,
the simulation start and stop times can be set.

FIGURE C.8 Configuration Parameters window

Start the simulation Now run the simulation by following Step
7. Figure C.9 shows the result in the Scope window. Color can be
changed in the Style Scope window for each plot.



FIGURE C.9 Scope window after Example C.1
simulation stops

Interact with the plot The toolbar of the Scope window shown
in Figure C.9 has several buttons and drop‐down menus that can be
used to interact with the plot. Explore the function and operation of
each.



Example C.2 Effect of Amplifier Saturation on
Motor's Load Angular Velocity
This example, which generated Figure 4.29 in the text, shows the
use of Simulink to simulate the effect of saturation nonlinearity on
an open‐loop system. Figure C.10 shows a Simulink block diagram
formed by following Steps 1 through 5 in Section C.2 above.

Saturation nonlinearity is an additional block that we have not used
before. Saturation is obtained by dragging to your model window
the Saturation block in the Simulink Library Browser
window under Discontinuities as shown in Figure C.11(a) and
setting its parameters to those shown in Figure C.11(b).

FIGURE C.10 Simulink block diagram for Example C.2





FIGURE C.11 a. Simulink library for nonlinearities; b.
parameter settings for saturation

Now run the simulation by making your model window active and
selecting Run under the Simulation menu of your model window
or clicking on the Run button on your model window toolbar.
Figure C.12 shows the result in the Scope window.



FIGURE C.12 Scope window after simulation of Example
C.2 stops. The lower curve is the output with saturation



Example C.3 Simulating Feedback Systems
Simulink can be used for the simulation of feedback systems.
Figure C.13(a) is an example of a feedback system with saturation.

In this example, we have added a feedback path (see Step 4 in
Section C.2) and a summing junction, which is obtained by
dragging the Sum block from the Simulink Library Browser,
contained in the Math Operations library, to your model
window. The Function Block Parameters: Sum window,
Figure C.13(b), shows the parameter settings for the summer. You
can set the shape as well as set the plus and minus inputs.

In the list of signs, the “|”symbol signifies a space. We place it at the
beginning to start the signs at “nine o'clock,” conforming to our
standard symbol, rather than at “12 o'clock.” The result of the
simulation is shown in Figure C.14.





FIGURE C.13 a. Simulation block diagram for a
feedback system with saturation; b. block parameter
window for the summer

FIGURE C.14 Simulation output for Example C.3



Example C.4 Simulating Digital Systems
This example demonstrates two methods of generating digital
systems via Simulink for the purpose of simulation, as shown in
Figure C.15.

FIGURE C.15 Simulink block diagram for simulating
digital systems two ways

The first approach uses a linear transfer function cascaded with a
Zero‐Order Hold block obtained from the Simulink Library
Browser under the Discrete block library, shown on the right‐
hand side of Figure C.16. The second method uses a discrete
transfer function also obtained from the Simulink Library
Browser under the Discrete block library. The remainder of the
block diagram was obtained by methods previously described.



FIGURE C.16 Simulink library of discrete blocks

The block parameters for the Zero‐Order Hold and Discrete
Transfer Fcn blocks are set as shown in Figures C.17(a) and
C.17(b), respectively.



FIGURE C.17 Function Block parameter windows for: a.
Zero‐Order Hold block; b. Discrete Transfer Fcn block



Select Model Configuration Parameters under the
Simulation menu in your model window and set the simulation
stop time to 4 seconds, the type to fixed‐step, and the solver to
ode4 (Runge‐Kutta). The result of the simulation is shown in
Figure C.18.



FIGURE C.18 Outputs of the digital systems



C.4 Using Simulink for Control System Design
In this section we show how to use Simulink to design control systems
to meet specifications previously discussed in this book. We can make
gain adjustments and design compensators using our Simulink system
along with other windows that give us instant verification of our
design. Specifically, we will concentrate on the design of PID
compensators. We will show that PID compensators can be designed
automatically or by adjusting design tools, such as response time and
transient behavior. As we make adjustments, we see the immediate
result of our design in lists of specifications or time responses along
with the automatic calculation of the PID gains.

In order to perform control system design, you will need to add the
Simulink® Control Design™ module Version 5.0 (R2017b), which
contains all the necessary tools. Simulink designs PID controllers using
derivative control with a low-pass filter to reduce noise. The design
requires negative values of derivative gain, which you will notice in the
design examples. We first cover the automated design of PID
controllers. Next, we cover PID design using graphical methods.

Automated Design of PID Controllers
The automated design of PID gains generates reasonable robustness
and response time. After the initial design, further adjustments are
available, including response time, bandwidth, and phase margin. Let
us first enumerate the steps involved, followed by an example.

1. Create a Simulink diagram  Begin with a linear or nonlinear
feedback control system containing a PID controller.

2. Set initial values for the PID controller  Double-click the
PID controller and launch the Block Parameters: PID
Controller window. On the MAIN tab, input nominal values for
the Controller parameters. Click Apply.

3. Tune the PID controller  Click Tune…in the Block
Parameters: PID Controller window. The system is linearized
and the PID Tuner window is launched showing the nominal
values response (Block response) and the designed response
(Tuned response). Click the Show parameters button on the
Toolstrip of the PID Tuner window to expose performance



data, including the designed PID gains. If the response meets
requirements, then click the Update Block button on the
Toolstrip of the PID Tuner window to write the PID parameters
to the controller.

4. Modify the design via interactive tuning  If required,
change the performance by moving the Response Time and
Transient Behavior sliders in the middle of the Toolstrip of
the PID Tuner window. Click the Update Block to write the
PID parameters to the controller. If the system is nonlinear, you
should run the simulation to see the effect of the nonlinearity on
the designed response.



Example C.5 Automated Design of a PID
Controller
In this example we follow the previously enumerated steps to
automate the design of a PID controller for the system of Figure
C.19. The requirements are (1) less than 1 second settling time; and
(2) less than 5% overshoot.

FIGURE C.19 Simulink block diagram for automated
design of a PID controller

Create a Simulink diagram We create the Simulink block
diagram of Figure C.19 where the PID controller block is found
in the Simulink Library Browser as shown in Figure
C.3(a).

Set initial values for the PID controller Double-clicking
the PID controller results in Figure C.20. Choose initial values
as shown and click Apply.

Tune the PID controller Click Tune…in Figure C.20 to
launch the PID Tuner window shown in Figure C.21(a). Click
the Show Parameters button, shown encircled, on the
Toolstrip of the PID Tuner window to display parameters
and performance.

Modify the design via interactive tuning  Since the
percent overshoot requirement is not met, we follow the



instructions in Step 4 on page C-19. We continue tuning the
controller using the Response Time and Transient
Bahavior sliders. Finally, click the encircled Update Block
button to write the PID parameters to the controller. The final
design is shown in Figure C.21(b).

FIGURE C.20 Block Parameters window for the PID
controller



FIGURE C.21 PID Tuner window: a. before
additional tuning; b. after additional tuning

Automated Tuning of PID Controllers and
Graphical Design
In this subsection, we begin PID design with automated tuning
followed by graphical design of our choice using Bode plots, root locus,
etc. Let us first enumerate the steps involved followed by an example.

1. Create a Simulink diagram  Begin with a linear or nonlinear
feedback control system containing a PID controller.

2. Begin compensator design by first performing automatic
tuning  From the menu bar of your Simulink block diagram



select Analysis/Control Design/Control System Tuner…
which launches the Control System Tuner window. Select the
Tuning tab.

3. Select block to tune  In the Control System Tuner click
Select Blocks. The Select Tuned Blocks window appears.
Click on Add Blocks and select the PID controller. Click OK.
The result appears in the Data Browser in the Control System
Tuner window.

4. Choose the closed‐loop response that will be analyzed  
Click on New Goal and select Transient response matching.
A Transient Goal window results. Specify response inputs,
response outputs, Input Signal Selection, Desired Transient
Response, and Options. Click Apply and OK. Your choice
appears in the Data Browser and in a plot of the actual and
desired response. Right‐click on the graph for more information
about the plots. Click Tune to see the effect of the tuning on the
actual response. Select the Control System tab in the Control
System Tuner and click on Update Blocks to transfer the
automated tuning design to the actual system. Click Apply in the
Block Parameters: PID Controller to complete the transfer.

5. Continue with graphical design setup if response
requirements were not met with automatic tuning  From
the menu bar of your Simulink block diagram select
Analysis/Control Design/Control System Designer…In the
resulting Edit Architecture — Simulink Configuration
window click Add Blocks…under the Blocks tab and select the
block to tune. Click OK. Next, select the Signals tab and select
the output signal of the block to tune. Select Tuning Methods
from the Control System tab followed by a choice of the Root
Locus Editor. Click Plot and the root locus is presented.

6. Perform root locus design  Right‐click the root locus and
select Design Requirements/New. From the resulting window,
make a selection from the drop-down menu under Design
requirements type. Repeat for additional requirements. The
design boundaries then appear on the root locus. You now can
move closed‐loop points along the root locus to change gain or
move controller poles and zeros to effect closed‐loop poles that
meet the design requirements.



7. Test the design  Under the Control System tab choose New
Plot and select New Step. In the drop‐down menu for Select
Response to Plot choose New Input‐Output Transfer
Response. In the New Step to Plot resulting window specify
the closed‐loop input and output signals. Click Plot. Right‐click
the plot and choose Characteristics. The characteristics chosen
will show up on the plot from which a determination may be made
that the design requirements have been achieved. If further design
is not required, click Update Blocks under the Control System
tab to load your design into the Simulink model. Click Apply in
the Block Parameters: PID Controller to complete the
transfer.

8. Run a simulation on the Simulink model  



Example C.6 Automated Tuning of a PID
Controller and Graphical Design
In this example we follow the previously enumerated steps to
automatically design a PID controller for the system of Figure C.19
and follow with further improvement in performance using root
locus. The requirements are: (1) less than 1 second settling time;
and (2) less than 4% overshoot.

Create a Simulink diagram  We create the Simulink block
diagram of Figure C.19 where the PID controller block is found in
the Simulink Library Browser as shown in Figure C.3(b). We
first perform automatic tuning.

Begin Compensator design In Figure C.19, we select
Analysis/Control Design/Control System Tuner…,
launching the Control System Tuner window shown in Figure
C.22. Click on New Goal in Figure C.22 and select Transient
response matching. In the resulting Transient Goal window
shown in Figure C.23, specify response inputs and outputs, input
signal selection, and Desired Transient Response. In Figure
C.23 the Desired Transient Response is indicated by a second-
order system that has the desired settling time and percent
overshoot. Finally, input any other Options. Click Apply and OK.
Actual and Desired plots are then displayed in the Control
System Tuner window shown in Figure C.24. Right-click on the
graph and select Characteristics to help you evaluate
performance. If you are unsatisfied with desired performance and
are ready to make further improvements through graphical design,
then click Tune under the Tuning tab followed by clicking the
Update Blocks button under the Control System tab to port
your automatically designed values to your Simulink diagram. Click
Apply in the Block Parameters: PID Controller window if
necessary.



FIGURE C.22 Control System Tuner window before
selecting block to tune





FIGURE C.23 Transient Goal window

FIGURE C.24 Control System Tuner window with Target
transient response plots with Control System tab
selected

Continue improvement with graphical design using root
locus From the menu bar of your Simulink block diagram select
Analysis/Control Design/Control System Designer…In the
resulting Edit Architecture ‐ Simulink Configuration window
click Add Blocks…under the Blocks tab and select the PID
controller as the block to tune as shown in Figure C.25(a). Next,
select the Signals tab and select the output of the PID controller.
Click OK in Figure C.25(b). Now select Tuning Methods under
the Control System tab of the Control System Designer
window. Choose the Root Locus Editor from the drop-down
menu, Select the response to edit, and click Plot as shown in Figure
C.26. Right-click the resulting root locus plot and select Design
Requirements/New…Choose settling time and percent
overshoot. Figure C.27(a) shows the root locus with the settling
time and percent overshoot boundaries. We can improve the



settling time by moving the PID pole at −8 and keeping the closed-
loop poles within the boundaries shown. The improved root locus is
shown in Figure C.27(b)





FIGURE C.25 Edit Architecture — Simulink
Configuration: a. Blocks tab; b. Signals tab



FIGURE C.26 Select Response to Edit - Root Locus
window





FIGURE C.27 Root locus plots with design boundaries:
a. Original ; b. After moving compensator pole

Test the design Under the Control System tab choose New
Plot and select New Step. The New Step to plot window results
and is shown filled out in Figure C.28. Click Plot. Right click the
plot and select Characteristics to put settling time and percent
overshoot on the plot. Let your mouse pause over the indicated
point to get a label showing the numerical results. Figure C.29
shows the final successful design.



FIGURE C.28 New Step to Plot window



FIGURE C.29 Final designed response showing settling
time

Summary
This appendix explained Simulink, its advantages, and how to use it.
Examples were taken from Chapters Chapter 4, Chapter 5, and Chapter
13 and demonstrated the use of Simulink for simulating linear,
nonlinear, and digital systems.

In addition, we showed how to use the Simulink Control Design add-on
to automatically tune PID controllers and perform shaping of graphical
design tools in order to meet performance requirements.

The objective of this appendix was to familiarize you with the subject
and get you started using Simulink. There are many blocks,
parameters, and preferences that could not be covered in this short
appendix. You are encouraged to explore and expand your use of
Simulink by using the on‐screen help that was explained earlier. The



references in the Bibliography of this appendix also provide an
opportunity to learn more about Simulink.
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Appendix D
LabVIEW Tutorial
D.1 Introduction
LabVIEW is a programming environment that is presented here as an
alternative to MATLAB. Although not necessary, the reader is
encouraged to become acquainted with MATLAB before proceeding,
since familiarity with MATLAB can enhance the understanding of the
relationship between textual (MATLAB) and graphical (LabVIEW)
programming languages and extend the functionality of LabVIEW. In
this tutorial, we will show how to use LabVIEW to (1) analyze and
design control systems, and (2) simulate control systems. This
appendix was developed using LabVIEW 2017.

LabVIEW is a graphical programming environment that produces
virtual instruments (VI's). A VI is a pictorial reproduction of a
hardware instrument on your computer screen, such as an oscilloscope
or waveform generator. The VI can consist of various controls and
indicators, which become inputs and outputs, respectively, to your
program. Underlying each control and indicator is an associated block
of code that defines its operation. The LabVIEW model thus consists of
two windows: (1) Front Panel, which is a replica of the hardware
front panel showing the controls and indicators, and (2) Block
Diagram, which contains the underlying code for the controls and
indicators on the Front Panel.
Associated with the Front Panel window is a Controls palette
window containing numerous icons representing controls and
indicators. The icons can be dragged onto a Front Panel window to
create that control or indicator. Simultaneously, the associated code
block is formed on the Block Diagram window.

Alternately, the block diagram can be formed first, and then the front
panel is created from the block diagram. Associated with the Block
Diagram window is a Functions palette window containing
numerous icons representing a wide range of functions. Icons can be
dragged onto a Block Diagram window to create that code block.



For example, Figure D.1(a) is the front panel of a signal generator. The
generator consists of a control to select the signal type and a waveform
graph that shows the output waveform. Figure D.1(b) shows the
underlying code, which is contained in the code blocks. Here, the signal
type selector is a control, while the waveform graph is an indicator.
Later we will show how to make connections to other VI's. The palette
windows for the front panel and block diagram are shown respectively
in Figures D.1(c) and (d). VI's in this appendix can be found in the
Control Systems Engineering Toolbox.









FIGURE D.1 A LabVIEW function generator VI: a. Front
Panel window; b. Block Diagram window; c. Controls
palette; d. Functions palette

Figure D.1(a)

D.2 Control Systems Analysis, Design, and
Simulation
LabVIEW can be used as an alternative to or in conjunction with
MATLAB to analyze, design, simulate, build, and deploy control
systems. In addition to LabVIEW, you will need the LabVIEW Control
Design and Simulation Module. Finally, as an option that will be
explained later, you may want to install the MathScript RT Module.

Analysis and design can be thought of as similar to writing MATLAB
code, while simulation can be thought of as similar to Simulink. In
LabVIEW, analysis and design, as opposed to simulation, are handled
from different subpalettes of the Functions window's Control &
Simulation palette. See Figure D.1(d). Analysis and design, and
simulation will typically begin with the Block Diagram window,
where icons representing code blocks will be interconnected.
Parameters used by the code can be conveniently selected, changed,
and passed to the code through VI controls on the Front Panel
window created from the code icons. Any results, such as time
response, can be displayed through VI indicators on the Front Panel
window created from the code icons.

D.3 Using LabVIEW
The following steps start you on your way to using LabVIEW for
control systems analysis, design, and simulation. These steps will be
illustrated in the examples that follow.

1. Start LabVIEW LabVIEW starts with the window shown in
Figure D.2, where you can select a New VI or Open an existing VI
from the File menu. Alternatively, existing VI's can be opened
from the Open Existing table on the right. Selecting a new or
existing VI brings up the Front Panel and Block Diagram
windows shown in Figure D.1. If necessary, a window can be

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


opened from the Window tab on the menu bar of the Front
Panel and Block Diagram.

Right‐click the Block Diagram window to bring up the
Functions palette and click the thumb tack in the upper left‐
hand corner to dock the window. Repeat for the Front Panel
window to access the Controls palette.

2. Select blocks Make the Block Diagram window active, or
access it from Window on the menu bar. Right‐click the Block
Diagram window or use the View menu to bring up the
Functions palette. Expand the palette window by clicking the
double‐up arrows at the bottom. At the top of the palette window
click Customize, and select View This Palette As/Category
(Icons and Text) to add a text description below each icon. For
control systems analysis, design, and simulation, expand Control
& Simulation in the Functions palette by clicking the arrow to
the left of this category.

If you are performing a simulation, click the subpalette
Simulation. If you are performing control system analysis or
design, click the subpalette Control Design. A small tab on the
upper‐left above the subpalette indicates additional underlying
palettes or blocks.

If the name of the icon is incomplete, resting the mouse over the
icon will bring up its complete identification. To obtain detailed
help about an icon, right‐click the icon and select Help.

3. Move blocks to the block diagram window To move the icon
to the Block Diagram, left‐click the mouse to attach the icon
(some icons take a little time to complete this operation). When
the pointer turns into a hand, click the spot on the Block
Diagram where you want to place the icon.

4. Obtain information about the block You will now want to
obtain information about how to interconnect the block to other
blocks and pass parameters to the block as well as other
characteristics about the block. Select the yellow question mark at
the right of the Block Diagram toolbar to turn on the Context
Help window. This window will provide help about a particular
icon if you rest your mouse over that icon. Additional help is
available under the Help menu on the Block Diagram menu



bar. Finally, right‐click the icon to bring up a menu with additional
choices, such as Properties, if any. In particular, you will use this
menu to create the block's front panel's controls and indicators.
This front panel will be your interface with the block to choose
parameters and see responses.

5. Interconnect and label blocks Once blocks are placed on the
Block Diagram they can be moved about by clicking on them or
dragging your mouse across several of them to establish a selection
pattern. After the selection pattern has been established, depress
the mouse left button and drag to a new location. To delete a
block, select the block and press the Backspace button on your
keyboard.

The context help for the block includes a description of the block's
terminals. Let your mouse rest on a terminal until the mouse
pointer turns into a spool of wire. Click the terminal and then
move the mouse to the next icon's terminal where you want to
make the connection. Click the destination terminal to complete
the wiring. Notice that the terminal in the Context Help window
blinks when your mouse resides above that terminal on the block,
ensuring that you are on the correct terminal. If you make an
error in wiring, click on the wire and press the Backspace
button on your keyboard or right‐click the wire and select Delete
Wire Branch.

Block labels can be displayed or hidden. Right‐click on the block
to bring up the pop‐up menu and check or uncheck Visible
Items/Label to display or hide, respectively, the label. Double‐
clicking on the label above some blocks will allow you to select
and change the text. One click of the mouse on the label will place
a selection pattern around the label and allow you to hold down
the left key of the mouse and move the label to a different
location.

6. Create the interface to your block You will now want to
create the interface to your block in order to control or select
functions, specify parameters, or view responses. This interface
will be accessed via the Front Panel window. Right‐click a
terminal on a block for which you want to create an interface. On
the pop‐up menu, choose Create/Control to be able to interact
with the block or Create/Indicator to view a response or setting.



7. Set the controls Switch to the Front Panel window and set
your controls. For example, enter parameter values, select
functions, etc. If you want to change values and at some future
time return to the current values, click on Edit on the Block
Diagram menu bar and select Make Current Values Default.
To return to the default values in the future, click on Edit on the
Block Diagram menu bar and select Reinitialize Values to
Default.

8. Run the program Click on the arrow at the left of the toolbar on
either the Block Diagram or Front Panel window to run the
program. The program can be run continuously by clicking the
curved arrows button on the toolbar second from the left.
Continuously running your program permits changing functions
and parameter values during execution.

In order to identify the buttons, let your mouse rest on a button to
bring up a context menu. Stop your simulation by pressing the
red‐dot button, third from the left. If you are performing control
systems analysis and design, another way to continuously run the
program is to place a While Loop around your block diagram.
The loop is available in the Functions palette at
Express/Execution Control/While Loop. This loop also
places a Stop button on the Front Panel. The program executes
until you press the stop button. In lieu of the Stop button, any
true/false Boolean can be wired to the condition block (red dot)
created inside the While Loop.

If you are performing simulation, you can use a Simulation
Loop available in the Functions palette at Control &
Simulation/Simulation/Control & Simulation Loop. Place
the Control & Simulation Loop around your simulation block
diagram by dragging the mouse. Right‐click on the Control &
Simulation Loop outline and choose Configure Simulation
Parameters… to determine the parameters for executing the
simulation. The Front Panel indicators and controls are also
configurable. Right‐click on the indicator or control and select
Properties.



FIGURE D.2 LabVIEW window

D.4 Analysis and Design Examples
In this section, we will present some examples showing the use of
LabVIEW for the analysis and design of control systems. In the next
section, examples of the use of LabVIEW for simulation will be
presented.

Analysis and design examples use icons selected from the Control
Design subpalette under the Control & Simulation palette. In the
next section showing examples of simulation, we will use icons taken
from the Simulation subpalette under the Control Design and
Simulation palette.



Example D.1 Open‐Loop Step Response

Analysis and design usually begins by selecting icons from the
Control Design subpalette and dragging them to the Block
Diagram window. The icons represent blocks of code and the
cascading of code blocks can be thought of as a sequence of lines of
code. Thus, an advantage of LabVIEW over MATLAB is that the
programmer does not need to memorize coding language. For
example, consider the MATLAB code shown in TryIt D.1 that
produces the step response of G(s) = 100/(s2 + 2s + 100).

TryIt D.1

numg=100; deng=[1 2 100]; ‘G(s)’ G=tf(numg,deng) step(G); 
title(‘Angular Velocity’) 

This step response can be produced in LabVIEW without knowing
any coding language. We now demonstrate by following each step
of Section D.3:

1. Start LabVIEW Start LabVIEW and select New VI from the
File menu shown in Figure D.2.

2. Select blocks From the Functions palette, select the blocks
shown in Figure D.3(a) and (b).

3. Move/blocks to the Block Diagram window Drag your
icons one at a time to the Block Diagram window, Figure
D.4.

4. Obtain information about the block Right‐click each of
the blocks and be sure the first two items under Visible Items
are checked. Look at the CD Construct Transfer Function
Model.vi. A Polymorphic VI Selector is shown at the
bottom of the icon.

Click the selector to bring up the menu. Select Single-Input-
Single-Output (SISO). This block effectively creates the



transfer function shown in the first four steps of the MATLAB
code in TryIt D.1.

Repeat for the CD Draw Transfer Function Equation.vi
and select Transfer Function (TF) from the Polymorphic VI
Selector. This block will write the transfer function
symbolically in the display. Your selection from the
polymorphic vi selector should match the format of the
transfer function created by the CD Construct Transfer
Function Model.vi.
Repeat for the CD Step Response.vi. and select TF from
the Polymorphic VI Selector. This block will collect the
data for the step response and permit plotting the data. This
block effectively creates the last two commands of the
MATLAB code shown in TryIt D.1.

5. Interconnect and label blocks You should now have the
Block Diagram window shown in Figure D.4. Interconnect
the code blocks. Click on the question mark on the right side of
the toolbar to bring up the context menu. As your mouse
passes above an icon, its context menu appears, showing the
terminals. See Figure D.5. Interconnect the terminals by letting
the mouse rest on a terminal until it becomes a spool of wire.

Click on the terminal and then click on the destination
terminal. The two terminals will appear as wired together.
Continue wiring terminals until you have the Block
Diagram window shown in Figure D.6. Mid‐wire connections
as shown can be made by letting your mouse rest at the
connection point until it becomes a spool of wire.

6. Create the interface to your block You will now want to
create the interface to specify parameters and view responses.
This step will create the interface that will be accessed on the
Front Panel window. The interfaces we will create are:

CD Construct Transfer Function Model.vi input
parameter controls. Right‐click on the numerator terminal
shown in Figure D.5 and select Create/Control. Repeat
for the denominator.

CD Step Response.vi response plot indicator. Right‐
click on the Step Response Graph terminal and select



Create/Indicator.

CD Draw Transfer Function Equation.vi symbolic
transfer function indicator. Right‐click on the Equation
terminal and select Create/Indicator. Your Block
Diagram should now look similar to Figure D.7(a).

As an option, you can create transfer functions using a
MathScript block if the MathScript RT Module is installed.
This option is generally compatible with MATLAB's M‐file
code statements for creating your transfer function. Interfaces
are then created to pass parameters to and from the M‐file
code. You should be familiar with MATLAB to use this option.
The MathScript block is found in Functions in the
Programming/Structures/MathScript palette. You
create M‐file code inside the MathScript block. Inputs,
outputs, and controls are created as follows. Right‐click on the
left side of the MathScript Node and select Add Input.
Name the input K. Right-click your terminal K and select
Create/Control. A control is formed on both the Block
Diagram and Front Panel. Repeat the same process to
create inputs and controls for parameters a and b. Now create
the output to the MathScript Node. Right-click the right-
hand side of the MathScript Node and select Add
Output/G. After wiring your inputs and outputs, your Block
Diagram will be that shown in Figure D.7(b).

On the Block Diagram window menu bar, select
Window/Show Front Panel. You will see the Front
Panel shown in Figure D.8 created by your interfaces. You
can double‐click the labels above your interfaces either in the
Front Panel window or the Block Diagram window to
change the label to be more descriptive of your project.

7. Set the controls Using the Front Panel window, enter
polynomial coefficients for the numerator and denominator in
ascending order—lowest to highest. The selector to the left of
the numerator and denominator shows the power of s for the
left‐most coefficient. Increasing the counter allows entry of
higher‐order coefficients not visible originally. To make all
coefficients of a polynomial visible, let the mouse move on the
right‐hand edge of the polynomial indicator until the pointer



becomes a double arrow and blue dots appear at the left and
right edges of the entire polynomial indicator. You can then
drag the right blue dot to expose more cells.

Familiarize yourself with the choices on the menu bar as well
as those on the pop‐up menus created when you right‐click on
any indicator or control. For example, under the Edit menu,
among other choices, you can Make Current Values
Default or Reinitialize Values to Default. Right‐clicking
the indicators or controls brings up a menu from which,
among other choices, Properties can be selected to configure
the indicator or control as desired.

8. Run the program Figure D.9 shows Example D.1 after
execution. The figure shows the values entered, the equation,
and the step response. Execution was initiated by clicking the
arrow at the left of the toolbar.

The program can run continuously by clicking the curved
arrows on the toolbar. Now, change values; hit the Enter key
and see the results immediately displayed. Stop the program
execution by clicking on the red hexagon on the toolbar.
Another way of continuously running the program is to place
a While Loop around the block diagram as shown in Figure
D.10(a). The loop is accessed from
Functions/Express/Execution Control as shown in
Figure D.10(b). After selecting the While Loop, drag the
cursor across the block diagram to create the continuous loop.
A stop button will appear on the block diagram as well as on
the Front Panel. At the lower right is a Conditional
Terminal icon, which can be used to control the While
Loop. The reader should consult the on‐line documentation
for further information.





FIGURE D.3 Selecting a. CD Construct… and CD Draw…;
b. CD Step Response



FIGURE D.4 Block Diagram window

FIGURE D.5 Context Help for CD Construct Transfer
Function Model.vi



FIGURE D.6 Interconnected blocks



Figure D.7(a)

Figure D.7b

FIGURE D.7 Block Diagram window: a. with Control
Design blocks and interfaces; b. with MathScript block

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


FIGURE D.8 Front Panel: a. for Block Diagram shown in
Figure D.7(a); b. for Block Diagram shown in Figure
D.7(b)



Figure D.9a

Figure D.9b

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip
https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


FIGURE D.9 Front Panel after execution: a. for block
diagram in Figure D.7(a); b. for block diagram in Figure
D.7(b)



Figure D.10

FIGURE D.10 a. Block diagram with While Loop; b.
Functions palette showing While Loop location

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip




Example D.2 Closed‐Loop Step Response

In this example, we show how to display the step response of a
unity‐feedback system. For variety, we represent the open‐loop
system as a ratio of zeros over poles with a multiplying gain,
analogous to MATLAB's zpk function. In the previous example, we
represented the system as a ratio of polynomials, analogous to
MATLAB's tf function.

1. Select blocks The zero‐pole‐gain transfer function is obtained
from the Functions palette as shown in Figure D.11(a). We
place this transfer function in the forward path of a unity‐
feedback system by following its block with a Feedback block
obtained from the Functions palette as shown in Figure
D.11(b). If the Model 2 input to the Feedback block is left
unconnected, then a unity‐feedback interconnection is
assumed. Other options for interconnection, such as parallel
and series, are shown on the palette of Figure D.11(b).

2. Interconnect and label blocks Producing the closed‐loop step
response is similar to Example D.1, except the step‐response
blocks are placed at the output of the Feedback block. The
equation writer is wired to the system output as in Example
D.1. All data types must be compatible and are shown selected
with the pull‐down menu at the base of the blocks. If you select
Automatic in the pull‐down menu, LabVIEW will select the
correct form for you as you connect the blocks.

The final Block Diagram and Front Panel for this example
are shown in Figure D.12 (a) and (b), respectively. Notice that
you enter open‐loop poles, zeros, and gain on the Front
Panel in place of polynomial open‐loop numerator and
denominator coefficients.







FIGURE D.11 a. Obtaining zero‐pole‐gain transfer
function from the Functions palette; b. obtaining
Feedback interconnection from Functions palette

Figure D.12

FIGURE D.12 a. Block Diagram for Example D.2; b.
Front Panel for Example D.2

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


Example D.3 Root Locus Analysis and Design
We can obtain root locus plots by adding the Root Locus block
obtained from the Functions palette as shown in Figure D.13. The
Root Locus block is connected to the output of the open‐loop
system and a Root Locus Graph indicator is formed at the output
of the Root Locus block. The resultant Block Diagram and
Front Panel are shown in Figure D.14(a) and (b) respectively.



FIGURE D.13 Functions palette showing location of
Root Locus block



Figure D.14

FIGURE D.14 Windows showing root locus analysis: a.
Block Diagram; b. Front Panel

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


Figure D.13 shows other characteristic blocks that can be added.
For example, closed‐loop poles and zeros, as well as damping ratio
and natural frequency, can be displayed.



Example D.4 Open‐ and Closed‐Loop Sinusoidal
Frequency Analysis and Design
We can obtain open‐ and closed‐loop sinusoidal frequency response
curves by replacing the Root Locus block with the Bode block to
yield the open‐loop frequency response. A copy of the Bode block
can be added at the output of the Feedback block to obtain the
closed‐loop frequency response. Figure D.15 shows where to obtain
the Bode block.



FIGURE D.15 Functions window showing frequency
response blocks, such as Bode, Nyquist, Nichols, and
Gain and Phase Margin blocks

Figure D.16 shows the Block Diagram and Front Panel with
open‐ and closed‐loop Bode analysis. In order to display the plots,
the indicators shown at the outputs of the Bode blocks were
created.





Figure D.16

FIGURE D.16 Bode analysis via LabVIEW: a. Block
Diagram; b. Front Panel

Figure D.15 shows other alternatives for frequency response
analysis. For example, in addition to the Bode plots, you can create
an indicator telling you the gain and phase margins by using the
Gain and Phase Margin block. Figure D.17 shows that result.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip




Figure D.17

FIGURE D.17 Bode analysis with gain and phase margin:
a. Block Diagram; b. Front Panel

Finally, if you need to use Nyquist or Nichols charts, the associated
blocks are shown in Figure D.15 and can replace the Bode blocks.

D.5 Simulation Examples
Whereas the LabVIEW block sequence for design and analysis is
analogous to following the code statement sequence in a MATLAB M‐

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


file, the LabVIEW block sequence for simulation is analogous to
following the block sequence of a Simulink diagram.

In this section, we show examples of simulation using LabVIEW. For
control system simulation, icons for the block diagram are taken from
the Simulation subpalette under the Control & Simulation palette.
Our examples will parallel the examples shown in Appendix C which
uses Simulink.



Example D.5 Simulation of Linear Systems
Create Block Diagram and Front Panel Figure D.18 shows
the Block Diagram and Front Panel for simulating a linear
system. The simulation reproduces Example C.1 in Appendix C,
which uses Simulink. Blocks are selected from the Simulation
subpalette under the Control & Simulation palette and must be
placed within the Simulation Loop obtained from
Functions/Control & Simulation/Simulation/Control &
Simulation Loop. We now enumerate the detailed steps required
to create the Block Diagram and Front Panel:

1. Transfer functions are obtained from Functions/Control &
Simulation/Simulation/Continuous Linear
Systems/Transfer Function. Right‐click on each transfer
function and select Configuration to enter the parameter
values shown in Figure D.18(a) or equivalently in Figure C.5.

2. The gain block is obtained from Functions/Control &
Simulation/Simulation/Signal Arithmetic/Gain. Right‐
click on the Gain block and select Configuration to enter the
parameter value.

3. The step‐input block is obtained from Functions/Control &
Simulation/Simulation/Signal Generation/Step
Signal. Right‐click on the Step Signal block and select
Configuration to enter the parameter value.

4. In order to display the three step‐response curves
simultaneously, we use a Build Array block obtained from
Functions/Programming/Array/Build Array. Drag the
bottom of the icon to expose the correct number of inputs
(three for this case).

5. To create the display, we use the Simulation Time
Waveform block obtained from Functions/Control &
Simulation/Simulation/Graph Utilities/Simtime
Waveform. Right‐click the output of the Simtime
Waveform block and select Create/Indicator to produce
the Waveform Chart icon and the Front Panel display.



Configure simulation loopFinally, set the simulation
parameters by right‐clicking the Simulation Loop and selecting
Configure Simulation Parameters.… Set the parameters as
shown in Figure D.19.

Configure graph parameters On the Front Panel, right‐click
the graph and select Properties to configure graph parameters if
required. Select the legend and expand it vertically to expose all
three plot identities. The titles in the legend can be changed to
reflect meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow
at the extreme left of the toolbar on the Front Panel window. You
can erase curves between trials by right‐clicking the display and
selecting Data Operations/Clear Chart.



Figure D.18

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


FIGURE D.18 Simulation of linear systems: a. Block
Diagram; b. Front Panel









FIGURE D.19 Configuring the Simulation Loop
parameters: a. Simulation parameters; b. Timing
parameters



Example D.6 Effect of Amplifier Saturation on
Motor's Load Angular Velocity
Create Block Diagram and Front Panel The Block Diagram
and Front Panel for simulating a dc motor with and without
saturation are shown in Figure D.20. The Saturation block is
obtained from Control & Simulation/Simulation/Nonlinear
Systems/Saturation.

Configure simulation loop Configure the simulation loop as
shown in figure D.19, except change the Final Time (s) in Figure
D.19(a) to 10.

Configure graph parameters On the Front Panel, right-click
the graph and select Properties to configure graph parameters.
Select the Scales tab and enter 10 in the Maximum box as shown
in Figure D.21. Select the legend and expand it vertically to expose
both plot identities. The titles in the legend can be changed to
reflect meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow
at the extreme left of the toolbar on the Front Panel window. You
can erase curves between trials by right‐clicking the display and
selecting Data Operations/Clear Chart.



Figure D.10

FIGURE D.20 Simulation of a dc motor with and
without saturation: a. Block Diagram; b. Front Panel

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


FIGURE D.21 Chart Properties: Waveform Chart
Window



Example D.7 Simulating Feedback Systems
Create Block Diagram and Front Panel The Block Diagram
and Front Panel for simulating feedback systems is shown in
Figure D.22. The Summation block is obtained from Control &
Simulation/Simulation/Signal Arithmetic/Summation.

Configure Summation and other blocks Right‐click the
Summation block and select Configuration…. Repeat for other
blocks.

Configure simulation loop Configure the simulation loop as
shown in Figure D.19, except change the Final Time (s) in Figure
D.19(a) to 10.

Configure graph parameters On the Front Panel, right-click
the graph and select Properties to configure graph parameters.
Select the Scales tab and enter 10 in the Maximum box as shown
in Figure D.21.

Run the simulation Perform the simulation by clicking the arrow
at the extreme left of the toolbar on the Front Panel window. You
can erase curves between trials by right‐clicking the display and
selecting Data Operations/Clear Chart.



Figure D.22

FIGURE D.22 Simulation of feedback systems: a. Block
Diagram; b. Front Panel

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip




Example D.8 Simulating Digital Systems with the
Simulation Palette
Digital systems, such as Example C.4 in Appendix C, can be
simulated using LabVIEW. However, there are restrictions on the
transfer functions used in the simulation. LabVIEW requires that
all inputs to the transfer functions be present at the beginning of
the simulation or else a cycle error will result. Unfortunately, this
requirement limits the use of transfer functions to those with a
denominator of higher order than the numerator. Under these
conditions, the reader is advised to use either MATLAB or the
Control Design palette rather than the Simulation palette of the
Control & Simulation function.

Our first digital example will simulate a digital feedback system
using the Simulation palette with proper transfer functions. The
next example will simulate Example C.4 in Appendix C, which does
not have proper transfer functions, using LabVIEW's Control
Design palette.

Create Block Diagram and Front Panel The Block Diagram
and Front Panel for simulating digital systems is shown in Figure
D.23. The Discrete Zero‐Order Hold block is obtained from
Control Design & Simulation/Simulation/Discrete Linear
Systems/Discrete Zero‐Order Hold. The Discrete Transfer
Function is obtained from Control &
Simulation/Simulation/Discrete Linear Systems/Discrete
Transfer Function.



Figure D.23

FIGURE D.23 Simulation of digital systems with
Simulation palette: a. Block Diagram; b. Front Panel

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


Configure Discrete Zero‐Order Hold and other blocks
Right click the Discrete Zero‐Order Hold block and select
Configuration…. Set the sample period to 0.5 second. Configure
the transfer functions as shown on the Block Diagram. Configure
the Step Signal to be a unit step.

Configure simulation loop Configure the simulation loop as
shown in Figure D.19.

Configure graph parameters On the Front Panel, right-click
the graph and select Properties to configure graph parameters.
Select the Scales tab and enter 3 in the Maximum box for the x
axis and 1 for the y axis. Select the legend and expand it vertically to
expose both plot identities. The titles in the legend can be changed
to reflect meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow
at the extreme left of the toolbar on the Front Panel window. You
can erase curves between trials by right‐clicking the display and
selecting Data Operations/Clear Chart.

The simulation shows the difference in responses obtained by (1)
modeling the digital system as a zero‐order hold cascaded with a
linear system (Plot 0), or (2) modeling the system with a digital
transfer function (Plot 1).



Example D.9 Simulating Digital Systems with the
Control Design Palette
In order to avoid cycle errors in LabVIEW, we use the Control
Design palette when we have transfer functions for which the
numerator and denominator are of the same order. This example
reproduces Simulink Example C.4.

Create Block Diagram and Front Panel The Block Diagram
and Front Panel for this example are shown in Figure D.24. Wire
the blocks as shown.



Figure D.24

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/Labview_Files_for_Appendix_D.zip


FIGURE D.24 Simulation of digital systems with the
Control Design palette: a. Block Diagram; b. Front Panel

Most of the blocks were previously discussed in Examples D.1 and
D.2. Digital transfer functions are created using the same blocks as
continuous systems, but with a nonzero Sampling Time(s) input.

The CD Convert Continuous to Discrete.vi, is obtained from
Functions/Control Design & Simulation/Control
Design/Model Conversion/CD Convert Continuous to
Discrete.vi.
The Build Array is obtained from
Functions/Programming/Array/Build Array. Expand the
Build Array block to show two inputs.

Configure parameters for Build Array Right‐click on Build
Array and select Concatenate Inputs. Right‐click again on
Build Array and select Create/Indicator.

Select and then right‐click the indicator on the front panel and
choose Replace.1 Using the resulting palettes as shown in Figure
D.25, select the XY Graph.2



FIGURE D.25 Choosing XYGraph

On the front panel expand the legend to show two graphs. Title the
legend components as shown. Change the x‐ and y‐axes’ starting
and ending points as desired by right‐clicking the graph and
selecting Properties. In the Properties window, select Scales
and enter the desired information. Finally, select Plots and enter
your choices.

Right‐click the graph on the front panel and select Data
Operations and make your current values the default. Also, right‐
click again and choose to reinitialize to your default values. You
may also choose to clear the current plot.

Configure parameters for CD Convert Continuous to
Discrete.vi Right‐click and create a control for Sample Time(s),
Numerator, and Denominator as described in Example D.1. Set
the values as shown on the Front Panel.
Configure parameters for CD Construct Transfer
Function Model.vi as a discrete model Right‐click and create
a control for Sample Time(s), Numerator, and Denominator



as described in Example D.1. Set the values as shown on the Front
Panel.
Configure parameters for all CD Draw Transfer Function
Equation.vi Right‐click and create a control for Equation as
described in Example D.1. Set the values as shown on the Front
Panel.
Run simulation See Example D.1 for a description. The results
are shown in Figure D.24(b).

D.6 Interfacing with External Hardware
This section provides an introduction to the use of LabVIEW virtual
instruments to control external hardware with the NI myDAQ for
students. Specifically, we concentrate on using the NI myDAQ to
analyze and design an actual feedback system used in the Hardware
Exploration Laboratory file located at
www.wiley.com/go/Nise/ControlSystemsEngineering8e.

1. Required Hardware NI myDAQ is a data acquisition module
that is ideal for student experimentation, since it is portable and of
low cost. In order to perform the experiments, you will need a
motor control chip and a gearmotor. Although other alternatives
exist, we use the following: (1) ROHM motor control chip,
BA6956; and (2) 9.7:1 metal gearmotor 25Dx48L mm HP with 48
CPR encoder, which can be obtained from www.pololu.com.

2. Required Software The software required to support the
experiments are: (1) LabVIEW or the Student Version of LabVIEW
and (2) NI ELVISmx Soft Front Panel (SFP) Instruments,
which comes bundled with the NI myDAQ. NI ELVISmx
provides virtual instruments that will generate input signals to and
acquire output signals from your external control system.

3. Basic Configuration Figure D.26 shows the NI myDAQ and
the basic configuration that will be used to perform control system
design and analysis. Detailed wiring diagrams will accompany
specific experiments.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e




FIGURE D.26 a. NI myDAQ; b. basic configuration
showing NI myDAQ interfaced with motor control chip
and gearmotor; c. interconnected hardware

4. Launching NI myDAQ The NI myDAQ kit comes with the
following cables and connectors: (1) USB cable; (2) 20-position
screw terminal connector; (3) audio cable; and (4) DMM banana
cable. The following steps will launch the NI myDAQ and NI
ELVISmx, which provides convenient virtual instruments for
control and data acquisition.

Step 1: Be sure LabVIEW is installed on your computer.

Step 2: Install the NI myDAQ software.

Step 3: Connect the NI myDAQ to your computer via the USB
cable.

Step 4: After NI myDAQ is recognized, NI ELVISmx should
launch automatically. If NI ELVISmx does not launch, then
manually launch from the Start menu National
Instruments/NI ELVISmx Instrument Launcher. Figure
D.27 shows the window containing the virtual instruments



available from NI ELVISmx. Clicking on any instrument will
bring up that VI.

FIGURE D.27 The NI ELVISmx Instrument Launcher
window

Simple Experiments Using the NI myDAQ
1. Measuring battery voltage using the NI myDAQ Digital

Multimeter (DMM) With myDAQ connected to your computer,
launch the DMM shown in Figure D.27. Attach the DMM probes
between the myDAQ and a battery as shown in Figure D.28(a).
Press the green Run arrow.





FIGURE D.28 Battery voltage measurement: a.
Connections to myDAQ; b. DMM reading

2. The NI myDAQ audio equalizer With myDAQ connected to
your computer, launch the Audio Equalizer in the
Instruments & Apps menu shown in Figure D.27. Attach an
audio cable from your music source to AUDIO IN on your
myDAQ. Similarly, attach speakers or an earphone to the AUDIO



OUT. Press the blue Start arrow. You can now adjust volume,
bass, midtone, and treble as well as watch the audio waveform in
time or frequency. The Audio Equalizer is shown in Figure
D.29.

FIGURE D.29 The NI myDAQ Audio Equalizer

Summary
This appendix presented LabVIEW as an alternative to MATLAB for
analysis, design, and simulation. Our discussion was divided into
analysis and design, and simulation.

Analysis and design is performed by interconnecting code blocks,
which is analogous to writing in‐line code for MATLAB M‐files. Since
the LabVIEW code blocks are represented by icons, an advantage of
using LabVIEW is that you do not have to know specific code
statements.

Simulation is performed by interconnecting code blocks and is
analogous to Simulink flow diagrams.



LabVIEW has more extensive applications. You can create virtual
instruments on your computer monitor that can operate external
hardware and transmit and receive telemetric data. We covered a few
of these applications in this appendix using the NI myDAQ. It is left to
the interested reader to pursue more of these applications.
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Appendix E
MATLAB's GUI Tools Tutorial
E.1 Introduction
Readers who are studying MATLAB may want to explore the
convenience of MATLAB's Linear System Analyzer. Before
proceeding, the reader should have studied Appendix B, the MATLAB
Tutorial, including Section B.1, which is applicable to this appendix.

MATLAB Version 9.3(R2017b), MATLAB's Control System Toolbox
Version 10, Simulink Version 9.0, and Simulink Control Design
Version 5 are required in order to use the tools described in this
appendix.

Consult the MATLAB Installation Guide for your platform for
minimum system hardware requirements. The M and Simulink files for
the examples in this appendix are located in the Control Systems
Engineering Toolbox.

E.2 The Linear System Analyzer: Description
The Linear System Analyzer is a convenient way to obtain and view
time and frequency response plots of LTI transfer functions and obtain
measurements from these plots. In particular, some of the graphs the
Linear System Analyzer can create are step and impulse responses,
Bode, Nyquist, Nichols, and pole‐zero plots. In addition, the values of
critical points on these plots can be displayed with a click of the mouse.
Table E.1 shows the critical points that are available for each plot.



TABLE E.1

Critical points available for each plot in MATLAB's Linear
System Analyzer

Peak value:
peak time

or
frequency

Settling
time

Rise
time

Steady
state
value

Gain/phase
margins;

zero
dB/180°

frequencies

Pole‐
zero
value

Step • • • •
Impulse • •
Bode • •
Nyquist • •
Nichols • •
Pole‐
zero

•

E.3 Using the Linear System Analyzer
In this section we give you steps you may follow to use the Linear
System Analyzer to plot time and frequency responses. If you have
trouble, help is available on the Linear System Analyzer window
menu bar. Help is also available from the MATLAB window by typing
Linear System Analyzer in the Search Documentation tab. The
following summarize the steps you may take to obtain plots from the
Linear System Analyzer.

1. Access the Linear System Analyzer  The Linear System
Analyzer, shown in Figure E.1, may be accessed by typing
linearSystemAnalyzer in the MATLAB Command Window
or by executing this command in an M‐file. The Linear System
Analyzer can be obtained from the APPS tab in the MATLAB
window.

2. Create LTI transfer function Create LTI transfer functions for
which you want to obtain responses. The transfer functions can be
created in an M‐file or in the MATLAB Command Window.



Run the M‐file or MATLAB Command Window statements to
place the transfer function in the MATLAB workspace. All LTI
objects in the MATLAB workspace can be exported to the Linear
System Analyzer.

3. Select LTI transfer functions for the Linear System
Analyzer Choose Import…under the File menu in the Linear
System Analyzer window and select all LTI objects whose
responses you wish to display in the Linear System Analyzer
sometime during your current session.

4. Select the LTI objects for the next response plot Right‐click
anywhere in the Linear System Analyzer plot area to produce a
pop‐up menu as shown in Figure E.1. Under Systems, select or
deselect the objects whose plots you want or do not want to show
in the Linear System Analyzer. More than one LTI transfer
function may be selected.

5. Select the plot type Right‐click anywhere in the Linear
System Analyzer plot area to produce a pop‐up menu as shown
in Figure E.1. Under Plot Types, select the type of plot you want
to show in the Linear System Analyzer.

6. Select the characteristics Right‐click anywhere in the Linear
System Analyzer plot area to produce a pop‐up menu as shown
in Figure E.1. Under Characteristics, select the characteristics of
the plot you want displayed. More than one characteristic may be
selected. For each characteristic chosen, a point will be placed on
the plot at the appropriate location.

7. Interact with the Plot:
Zoom in Select the Zoom In button (with the + sign) on the
tool bar. Hold the mouse button down and drag a rectangle on
the plot over the area you want to enlarge. Let go of the mouse
button. You may also click the mouse. Each click zooms you in
closer.

Zoom out Select the Zoom Out button (with the − sign) on
the tool bar. Click on the plot. Each click widens your view.

Grid Select Grid in the right‐click menu to toggle the grid on
and off. The right‐click menu will not work if any zoom button
on the tool bar is selected.



Normalize Select Normalize in the right‐click menu to
normalize all curves in view.

Full view Select Full View in the right‐click menu to return
to the full view of your plot after zooming.

Characteristics Read the values of the characteristics by
placing the mouse on the characteristics point on the plot.
Left‐click the mouse to keep the values displayed.

Properties Select Properties in the right‐click menu to
change the appearance of the graph. You can change the title,
axis labels, x and y limits, font size and styles, colors, and
response characteristics definitions.

Coordinates and curve Left‐click the mouse at any point
on the plot to read the system identification and the
coordinates. Right-click to manipulate the identification
display.

Add text and graphics Under the File menu, choose Print
to Figure. The tool bar of this figure has additional tools for
adding text, arrows, and lines.

Additional plot‐edit capabilities The Edit menus of the
Linear System Analyzer and the figures created by
selecting Print to Figure offer a wide variety of control over
the plot presentation.



FIGURE E.1 Linear System Analyzer showing right‐click
pop‐up menu

E.4 Linear System Analyzer Examples
This section presents five examples of the use of the Linear System
Analyzer taken from Chapters 4, 10, and 13. The examples will show
the M‐files along with the resulting Linear System Analyzer window.



Example E.1 Step Response

PROBLEM:
This example, taken from Example 4.8 in the text, shows the use of
the Linear System Analyzer to display simultaneously three step
responses as well as their peak time, settling time, rise time, and
steady‐state values. Let us follow the steps listed in Section E.3.

Access the Linear System Analyzer and create the LTI
objects Follow Steps (1) and (2) in Section E.3 to access the
Linear System Analyzer and generate the LTI transfer
functions. Figure E.2(a) shows the M‐file used to generate the
three transfer functions.



FIGURE E.2 Linear System Analyzer used for step
response: a. M‐file; b. Linear System Analyzer

Select transfer functions for viewing responses After
running the M‐file, follow Steps (3) and (4) in Section E.3 and
select T1, T2, and T3.



Select the plot type Follow Step (5) in Section E.3 and select
Step.

Select the Characteristics Follow Step (6) in Section E.3
and select Peak Response, Settling Time, Rise Time, and
Steady State.

Interact with the plot Follow Step (7) in Section E.3 and
interact with the plot. In particular, read the peak value and
peak time of T3's step response. Figure E.2(b) shows the
Linear System Analyzer window with the responses,
system T3's rise time, and system T2's settling time.



Example E.2 Nyquist Diagram and Gain/Phase
Margins

PROBLEM:
This example, taken from Example 10.8 in the text, shows the use
of the Linear System Analyzer in plotting a Nyquist diagram and
obtaining gain margin, phase margin, zero dB frequency, and 180°
frequency. To create this plot follow Step (1) through (4) in Section
E.3 using the M‐file shown in Figure E.3(a). Then use the right‐
click menu and select Nyquist under Plot Type. To find the gain
and phase margins as well as the gain and phase margin
frequencies, use the right‐click menu and select All Stability
Margins under Characteristics. Figure E.3(b) shows the
resulting Linear System Analyzer window. The system's gain
margin and 180° frequency are displayed along with the phase
margin and zero dB frequency.



FIGURE E.3 Linear System Analyzer used for Nyquist
diagram: a. M‐file; b. Linear System Analyzer



Example E.3 Bode Plots and Gain/Phase
Margins

PROBLEM:
This example, taken from Example 10.10 in the text, shows the use
of the Linear System Analyzer in making a Bode plot and
obtaining gain margin, phase margin, zero dB frequency, and 180°
frequency. To create this plot, follow Steps (1) through (4) in
Section E.3 using the M‐file shown in Figure E.4(a). Then use the
right‐click menu and select Bode under Plot Type. To find the
gain and phase margins as well as the gain and phase margin
frequencies, use the right‐click menu and select All Stability
Margins under Characteristics. Use the right‐click menu and
select Grid. Figure E.4(b) shows the resulting Linear System
Analyzer window. The system's phase margin and 0 dB frequency
are displayed along with the gain margin and 180° frequency.



FIGURE E.4 Linear System Analyzer used for Bode plot:
a. M‐file; b. Linear System Analyzer

Since Example 10.10 used asymptotic approximations to determine
the characteristics, such as gain and phase margin, there will be
some discrepancy between the characteristics found using the



Linear System Analyzer, which uses the exact frequency
response, and the results of Example 10.10.



Example E.4 Nichols Chart and Gain/Phase
Margins

PROBLEM:
This example, which reproduces Figure 10.47 in the text, shows the
use of the Linear System Analyzer in making a Nichols chart
and obtaining gain margin, phase margin, zero dB frequency, and
180° frequency. To create this plot follow Step (1) through (4) in
Section E.3 using the M‐file shown in Figure E.5(a). Then use the
right‐click menu and select Nichols under Plot Type.



FIGURE E.5 Linear System Analyzer used for Nichols
chart: a. M‐file; b. Linear System Analyzer



To find the gain and phase margins as well as the gain and phase
margin frequencies, use the right‐click menu and select All
Stability Margins under Characteristics. Use the right‐click
menu to select Grid. Finally, select Zoom In from the toolbar and
drag your mouse over a portion of the Nichols plot to create the
close‐up view shown in Figure E.5(b). Figure E.5(b) also shows the
points from which gain and phase margins and frequencies can be
read.



Example E.5 Step Response for Digital systems

PROBLEM:
This example shows the use of the Linear System Analyzer to
produce step responses for digital system. To create this plot follow
Steps (1) through (4) in Section E.3 using the M‐file shown in
Figure E.6(a). Then use the right‐click menu and select Step under
Plot Type. Figure E.6(b) shows the Linear System Analyzer
window with the digital step response.



FIGURE E.6 Linear System Analyzer used for digital
step response: a. M‐file; b. Linear System Analyzer



E.5 Simulink and the Linear Analysis Tool
Readers who are using Simulink may use the Linear Analysis Tool
to obtain responses and their characteristics directly from Simulink
models. All of the response plots and characteristics available to you in
the Linear Analysis Tool using transfer functions generated in
MATLAB and placed in the MATLAB workspace are available to you
from your Simulink model. Any nonlinear blocks in your Simulink
model are linearized by the Simulink Linear Analysis Tool before
presenting the requested response curve. You will be able to:

1. Set a point on your Simulink model where the input signal will be
applied.

2. Set output points on your Simulink model where responses will be
obtained.

3. Specify operating conditions, such as initial conditions and input
value.

E.6 Using the Linear Analysis Tool with Simulink to
Analyze a Response
In this section we present the steps you may follow to use the Linear
Analysis Tool with Simulink in order to analyze a response. Help is
available on the tabs bar of the MATLAB Window. Type Linear
Analysis Tool in the Search Documentation box. In the resulting
window select the tool for documentation. The following summarize
the steps you may take to use the Linear Analysis Tool with
Simulink. We use the system from Example C.3 to demonstrate.

1. Access a Simulink Model Start with your Simulink model
window shown in Figure E.7

2. Define the input and output of your linearized model
Right click on the selected input point and choose Linear
Analysis Points then Open-loop input on the drop‐down
menu. Right click on the selected output point and choose Linear
Analysis Points then Open-loop output on the drop‐down
menu. The input and output points are shown on the Simulink
model of Figure E.7.



3. Open Linear Analysis Tool Under the Analysis menu select
Control Design followed by Linear Analysis…. In response,
MATLAB opens the Linear Analysis Tool Window, Figure E.8.

4. Specify the Operating Conditions Any nonlinear blocks in
your Simulink model must be linearized about an equilibrium
point. The default setting for the equilibrium points are the initial
values used in your Simulink model. Typically these values are
zero unless you changed them in your Simulink model. Thus, if
you agree with the default initial conditions, then go immediately
to Step 5. However, if you wish to change the initial conditions,
select the drop‐down menu under the Linear Analysis tab
marked Operating Point and change the value. Consult Help
for more details.

5. Generate the Response to Be Analyzed For this example
click on Step. In response the system is linearized, placed in the
Linear Analysis Workspace, and plots of the closed-loop step
response are generated. Right-click the response and choose
Characteristics. Select desired characteristics on the drop-down
menu. In response, MATLAB puts dots on the plot. The final result
is shown in Figure E.9

FIGURE E.7 Simulink model window showing Input Point
and Output Point



FIGURE E.8 Linear Analysis Tool window



FIGURE E.9 Simulink Linear Analysis Tool showing
response and characteristics

MATLAB files and Simulink model.

E.7 The Control System Designer: Description
The Control System Designer is a convenient and intuitive way to
obtain, view, and interact with a system's root locus and Bode plots.
The tool also has the option of using a Nichols chart. After the tool
produces these plots, you can do the following with the root locus: (1)
drag closed‐loop poles along the root locus and read gain, damping
ratio, natural frequency, and pole location, (2) view immediate changes
in the Bode plots, and (3) view immediate changes in the system's
closed‐loop response via the New Plot drop-down menu. You can add
poles, zeros, and compensators, which can be interactively changed to
see the immediate effects on the root locus, Bode plots, and time
response.

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Simulink_Files_for_Appendix_E.zip


You can do the following with the Bode plots: (1) effect a gain change
by moving the Bode magnitude curve up and down and reading the
gain, gain margin, gain margin frequency, phase margin, phase margin
frequency, and whether the loop is stable or unstable, (2) view
immediate changes on the root locus, and (3) view immediate changes
in the system's closed‐loop response via the New Plot drop-down
menu. You can add poles, zeros, and compensators, which can be
interactively changed to see the immediate effect on the Bode plots,
root locus, and time response.

Finally, you can add root locus or Bode plot design constraints that are
then displayed on the respective plot.

E.8 Using the Control System Designer
How to use the Control System Designer is covered in detail in
Appendix C. The reader is referred to Appendix C, Section C.4 for
detailed instruction and an example. To call up the Control System
Designer in MATLAB use the command controlSystemDesigner.

Summary
This appendix described three MATLAB GUI tools: the Linear System
Analyzer, the Simulink Linear Analysis Tool, and the Control System
Designer, for which you were referred to Appendix C for details.

We described how to use MATLAB's Linear System Analyzer to obtain
time and frequency response plots, as well as critical points on those
plots, for transfer functions within the MATLAB workspace. Several
examples covering step responses for continuous and sampled systems,
Nyquist diagrams, Bode plots, and Nichols charts were given.

In addition, several preferences that we did not describe are available
from the Linear System Analyzer Edit menu. Within that menu,
choose Plot Configurations… to select a response layout. Line
Styles… allows you to change the color, marker, and line style orders.
The interested reader should consult the Control System Toolbox
reference listed in the Bibliography of this appendix for more details
about options not covered in this appendix as well as additional
instruction about the Linear System Analyzer.



The Simulink Linear Analysis Tool extends the usefulness of the Linear
System Analyzer to Simulink diagrams. Simulink models are linearized
before presenting the response curves in the Simulink Linear Analysis
Tool. You may set the input and output points at any appropriate place
on the Simulink diagram. You may make changes to the Simulink
diagram and simultaneously display the response of each mode in the
Simulink Linear Analysis Tool.

The Control System Designer is a convenient and intuitive way to
obtain, view and interact with a system's root locus, Bode plot, and
Nichols plot. You can move closed‐loop poles along the root locus and
immediately read the values of gain, locations of closed‐loop poles, and
characteristics of performance, Furthermore, you can see the changes
in the open‐loop frequency response as well as the closed‐loop
response if you have those responses selected. Gain also can be
adjusted on the open‐loop frequency response plots, and the effect can
be seen immediately on the root locus and closed‐loop responses.
Finally, you can add compensators and see the immediate effect on the
root locus, open‐loop frequency response plots, and the closed‐loop
responses.

In conclusion, it should be pointed out that results obtained from the
GUIs might be different from the analysis presented in the chapters.
For example, the GUIs use nonasymptotic frequency response plots to
obtain results, while our analysis and design may have used asymptotic
Bode plots. Another example is settling time. In Chapter 4 we
approximated the settling time so that it was measured at the peaks.
With the GUIs the actual settling time is used, that is, the time the
curve first enters and stays within the ±2% boundary.
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Appendix F
MATLAB's Symbolic Math Toolbox Tutorial
F.1 Introduction
Readers who are studying MATLAB may want to explore the additional functionality of
MATLAB's Symbolic Math Toolbox. Before proceeding, the reader should have studied Appendix
B, the MATLAB tutorial, including Section B.1, which is applicable to this appendix.

MATLAB's Symbolic Math Toolbox Version 8.0 in addition to MATLAB Version 9.3 (R2017b) and
the Control System Toolbox Version 10.3 is required in order to add symbolic mathematics
capability to your M‐files.

The M‐files in this appendix are available elsewhere on this Web site.

Symbolic math commands are used in your MATLAB M‐files right along with your standard
MATLAB statements. The only additional requirement is to declare symbolic variables before they
are used with the statement syms x1 x2..., where xi are symbolic variables.

Some of the added capabilities that the Symbolic Math Toolbox yields for control systems analysis
and design include the following:

1. Functions and equations can be entered symbolically. That is, alpha characters as well as
numerical characters can be used in your M‐files. For example, you can enter B=x∧2+3*x+7,
instead of B=[1 3 7]. You could even enter B=a*x∧2+b*x+c and obtain its factors as

[         2          1/2]
[   -b + (b - 4 a c)    ]
[1/2--------------------]
[         a             ]
[                       ]
[         2          1/2]
[    -b - (b - 4 a c)   ]
[1/2--------------------]
[         a             ]

2. Symbolic expressions can be manipulated algebraically and simplified.

3. Transfer functions can be typed almost as written, making your M‐files more readable. For
example, the statement, G=(s+1)*(s+2)/[(s∧2+3*s+10)*(s+4)] would replace the three
statements, numg=poly([−1 −2]), deng=conv([1 3 10),[1 4]), and G=tf(numg,deng).

4. Laplace and z‐transforms as well as their inverses can be entered and found in symbolic form.

5. Functions can be “pretty printed” for clarity in the MATLAB Command Window and
printed output.

These are only a few advantages of using the Symbolic Math Toolbox. This appendix will explore
more. The reader is encouraged not to stop exploration at the end of Appendix F, since there is so
much more than can be covered here. The Bibliography at the end of this appendix gives
references for further pursuit.

The M-files for Appendix F can be found in the Control Systems Engineering Toolbox. Symbolic
Math Toolbox examples are included for Chapters 2, 3, 4, 6, and 13. The reader is encouraged,
however, to apply what is learned to other chapters.



F.2 Symbolic Math Toolbox Examples

Chapter 2: Modeling in the Frequency Domain
ch2apF1
MATLAB's calculating power is greatly enhanced using the Symbolic Math Toolbox. In this
example, we demonstrate its power by calculating inverse Laplace transforms of F(s). The
beginning of any symbolic calculation requires defining the symbolic objects. For example, the
Laplace transform variable, s, or the time variable, t, must be defined as a symbolic object. This
definition is performed using the syms command. Thus, syms s defines s as a symbolic object; syms
t defines t as a symbolic object; and syms s t defines both s and t as symbolic objects. We need
only define objects that we input to the program. Variables produced by the program need not be
defined. Thus, if we are finding inverse Laplace transforms, we need only define s as a symbolic
object, since t results from the calculation. Once the object is defined, we can then type F as a
function of s as we normally would write it. We do not have to use vectors to represent the
numerator and denominator. The Laplace transforms or time functions can also be printed in the
MATLAB Command Window as we normally would write it. This form is called pretty
printing. The command is pretty(F), where F is the function we want to pretty print. In the code
below, you can see the difference between normal printing and pretty printing if you run the code
without the semicolons at the steps where the functions, F or f, are defined. Once F is defined as
F(s), we can find the inverse Laplace transform using the command ilaplace(F). In the following
example, we find the inverse Laplace transforms of the frequency functions in the examples used
for Cases 2 and 3 in Section 2.2 in the text.

'(ch2apF1)' % Display label.

syms s % Construct symbolic object for

% Laplace variable 's'.

'Inverse Laplace transform' % Display label.

F=2/[(s+1)*(s+2)^2]; % Define F(s) form case 2 example.

'F(s) from case 2' % Display label.

pretty (F) % Pretty print F(s)

f=ilaplace(F); % Find inverse Laplace transform.

'f(t) for case 2' % Display label.

pretty(f) % Pretty print f(t) for Case 2.

F=3/[s*(s^2+2*s+5)]; % Define F(s) from Case 3 example.

'F(s) for Case 3' % Display label.

pretty(F) % Pretty print F(s) for Case 3.

f=ilaplace(F); % Find inverse Laplace transform.

'f(t) for Case 3' % Display label.

pretty(f) % Pretty print f(t) for Case 3.

Pause

ch2apF2
In this example, we find Laplace transforms of time functions using the command, laplace(f),
where f is a time function, f(t). As an example, we use the time functions that resulted from the
calculations in Cases 2 and 3 in Section 2.2 in the text and work in reverse to obtain their Laplace
transforms. We will see that the command, laplace(f), yields F(s) in partial fractions. In addition

https://drbuc2jl8158i.cloudfront.net/vs/ss19/ss19_VS_Nise_Control_Systems_Engin_8e/MATLAB_Files_for_Appendix_F.zip
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to pretty printing discussed in the previous example, the Symbolic Math Toolbox contains other
commands that can change the look of the displayed result for readability and form. Some of these
commands are: collect(F)—collect common coefficient terms of F; expand(F)—expands product
of factors of F; factor(F)—factors F; simple(F)—finds simplest form of F with the least number
of terms; simplify(F)—simplifies F; vpa(expression, places)—standing for variable precision
arithmetic, this command converts fractional symbolic terms into decimal terms with a specified
number of decimal places. For example, the symbolic fraction, 3/16, would be converted to 0.1875
if the argument, places, were 4. In the example below, we find the Laplace transform of a time
function. The result is displayed as partial fractions. To combine the partial fractions, we use the
command, simplify(F), where F is the Laplace transform of f(t) found using laplace(f). Finally,
we use F=vpa(F,3) to convert the symbolic fractions to decimals in the displayed result.

'(ch2apF2)' % Display label.

syms t % Construct symbolic object for

% time variable 't'.

'Laplace transform' % Display label.

'f(t) from Case 2' % Display label.

f=2*exp(-t)-2*t*exp(-2*t)-2*exp(-2*t); % Define f(t) from Case 2 example.

pretty(f) % Pretty print f(t) from Case 2

% example.

F(s) for Case 2 % Display label.

F=laplace(f); % Find Laplace transform.

pretty(F) % Pretty print partial fractions of

% F(s) for Case 2.

F=simplify(F); % Combine partial fractions.

pretty(F) % Pretty print combined partial

% fractions.

'f(t) for Case 3' % Display label.

f=3/5-3/5*exp(-t)* [cos(2 * t)+(1/2) *sin(2 * t)]; % Define f(t) from Case 3 example.

pretty (f) % Pretty print f(t) for Case 3.

F(s) for Case 3 - Symbolic fractions' % Display label.

F=laplace(f); % Find Laplace transform.

pretty(F) % Pretty print partial fraction of

% F(s) for Case 3.

'F(s) for Case 3 - Decimal representation' % Display label.

F=vpa(F,3); % Convert symbolic numerical

% fractions to 3-place decimal

% representation for F(s).

pretty(F) % Pretty print decimal

% representation.

'F(s) for Case 3 - Simplified % Display label.

F=simplify(F); % Combine partial fractions.

pretty(F) % Pretty print combined partial

% fractions.



pause

ch2apF3
MATLAB's Symbolic Math Toolbox may be used to simplify the input of complicated transfer
functions as follows: Initially, input the transfer function G(s) = numg/deng via symbolic math
statements. Then convert G(s) to an LTI transfer function object. This conversion is done in two
steps. The first step uses the command [numg,deng]=numden(G) to extract the symbolic numerator
and denominator of G. The second step converts, separately, the numerator and denominator to
vectors using the command sym2poly(S), where S is a symbolic polynomial. The last step consists
of forming the LTI transfer function object by using the vector representation of the transfer
function's numerator and denominator. As an example, we form the LTI object 
G(s) = [54(s + 27)(s

3 +  52s
2 + 37s + 73)]/[s(s

4 + 872s
3 + 437s

2 + 89s + 65) (s
2 + 79s + 36)]

, making use of MATLAB's Symbolic Math Toolbox for simplicity and readability.

'(ch2apF3)' % Display label.

syms s % Construct symbolic object for

% frequency variable 's'.

G=54*(s+27)*(s^3+52*s^2+37*s+73)... 

/(s*(s^4+872*s^3+437*s^2+89*s+65)*(s^2+79*s+36));

% Form symbolic G(s).

Symbolic G(s)' % Display label.

pretty(G) % Pretty print symbolic G(s).

[numg,deng]=numden(G); % Extract symbolic numerator and

% denominator.

numg=sym2poly(numg); % Form vector for numerator of

% G(s).

deng=sym2poly(deng); % Form vector for denominator of

% G(s).

'LTI G(s) in Polynomial Form' % Display label.

Gtf=tf(numg,deng) % Form and display LTI object for

% G(s) in polynomial form.

'LTI G(s) in Factored Form' % Display label.

Gzpk=zpk(Gtf) % Convert G(s) to factored form.

pause

ch2apF4 (Example 2.10)
MATLAB's Symbolic Math Toolbox may be used to simplify the solution of simultaneous
equations by using Cramer's rule. A system of simultaneous equations can be represented in
matrix form by Ax = B, where A is the matrix formed from the coefficients of the unknowns in the
simultaneous equations, x is a vector containing the unknowns, and B is a vector containing the
inputs. Cramer's rule states that xk the kth element of the solution vector, x, is found using 
xk = det (Ak) /det (A), where A k is the matrix formed by replacing the kth column of matrix A
with the input vector, B. In the text, we refer to det(A) as “delta.” In MATLAB, matrices are
written with a space or comma separating the elements of each row. The next row is indicated
with a semicolon or carriage return. The entire matrix is then enclosed in a pair of square
brackets. Applying the above to the solution of Example 2.10: A=[(R1+L*s)−L*s;−L*s (L*s+R2+
(1/(c*s)))] and Ak=[(R1+L*s) V;−L*s 0]. The function det(matrix) evaluates the determinant of
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the square matrix argument. Let us now find the transfer function G(s) = I2(s)/V(s), asked for in
Example 2.10. The command simplify(S), where S is a symbolic function, is introduced in the
solution. Simplify(S) simplifies the solution by shortening the length of S. The use of simplify(I2)
shortens the solution by combining like powers of the Laplace variable, s.

'(ch2apF4) Example 2.10' % Display label.

syms s R1 R2 L c V % Construct symbolic objects for

% frequency variable 's', and

% 'R1', 'R2', 'L', 'c', and 'V'.

% Note: Use lower-case 'c'

% in declaration for

% capacitor.

A2=[(R1+L*s)V;-L*s 0] % Form Ak = A2.

A=[(R1+L*s)-L*s;-L*s (L*s+R2+(1/(c*s)))] % Form A.

I2=det(A2)/det(A); % Use Cramer's rule to solve for

% I2(s).

I2=simplify(I2); % Reduce complexity of I2(s)

G=I2/V; % Form transfer function,

% G(s) = I2(s)/V(s).

'G(s)' % Display label.

pretty (G) % Pretty print G(s).

pause

Chapter 3: Modeling in the Time Domain
ch3apF1 (Example 3.6)
MATLAB's Symbolic Math Toolbox may be used to perform matrix operations. The code for these
operations is intuitive and readable. The operations are addition (+), subraction (−), inverse
(∧−1), and matrix raised to a power n (∧n). We demonstrate by solving Example 3.6 in the text
using Eq. 3.73 directly.

'(ch3apF1) Example 3.6' % Display label.

syms s % Construct symbolic object for

% frequency variable 's'.

A=[0 1 0;0 0 1;-1 -2 -3]; % Create matrix A.

B=[10;0;0]; % Create vector B.

C=[1 0 0]; % Create vector C.

D=0; % Create D.

I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.

'T(s)' % Display label.

T=C*((s*I-A)^-1)* B+D; % Find transfer function.

pretty(T) % Pretty print transfer function.

pause
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Chapter 4: Time Response
Ch4apF1 (Example 4.11)
MATLAB's Symbolic Math Toolbox, with its ability to perform matrix operations, lends itself to
the Laplace transform solution of state equations. Also, the command [V,D]=eig(A) allows us to
find the eigenvalues of a square matrix, A, which are the diagonal elements of diagonal matrix D.
We demonstrate by solving Example 4.11.

'(ch4apF1) Example 4.11' % Display label.

syms s % Construct symbolic object for

% frequency variable 's'.

'a' % Display label.

A=[0 1 0;0 0 1;-24 -26 -9]; % Create matrix A.

B=[0;0;1]; % Create vector B.

X0=[1;0;2]; % Create initial condition vector,

% X(0).

U=1/(s+1); % Create U(s).

I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.

X=((s*I-A)^-1)*(X0+B*U); % Find Laplace transform of state

% vector.

x1=ilaplace(X(1)); % Solve for X1(t).

x2=ilaplace(X(2)); % Solve for X2(t).

x3=ilaplace(X(3)); % Solve for X3(t).

y=x1+x2; % Solve for output, y(t).

y=vpa(y,3); % Convert fractions to decimals.

'y(t)' % Display label.

pretty(y) % Pretty print y(t).

'b' % Display label.

[V,D]=eig(A); % Find eigenvalues, which are the

% diagonal elements of D.

'Eigenvalues on diagonal' % Display label.

D % Display D.

pause

ch4apF2 (Example 4.12/4.13)
In this example, we use MATLAB's Symbolic Math Toolbox to solve state equations in the time
domain. We make use of the Symbolic Math Toolbox's ability to perform integration. We first
solve for the state‐transition matrix by taking the inverse Laplace transform of (sI − A)

−1. We
then use the convolution integral to obtain the solution. Integration is performed using the
command int(S,v,a,b), where S is the function to be integrated, v is the variable of integration, a
is the lower limit of integration, and b is the upper limit of integration. As an example we solve
Example 4.12 in the text. The state‐transition matrix is obtained by the method demonstrated in
Example 4.13 in the text.

'(ch4apF2) Example 4.12/4.13' % Display label.
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syms s t tau % Construct symbolic object for

% frequency variable ' s', 't',

% and 'tau'.

'a' % Display label.

A=[0 1;-8 -6] % Create matrix A.

B=[0;1] % Create vector B.

X0=[1;0] % Create initial condition vector,

% X(0).

U=1 % Create u(t).

I=[1 0;0 1]; % Create identity matrix.

'E=(s*I-A)^-1' % Display label.

E=((s*I-A)^-1) % Find Laplace transform of state-

% transition matrix,(sI-A)^-1.

Fi11=ilaplace(E(1,1)); % Take inverse Laplace transform

Fi12=ilaplace(E(1,2)); % of each element

Fi21=ilaplace(E(2,1)); % of (sI-A)^-1

Fi22=ilaplace(E(2,2)); % to find state-transition matrix.

'Fi(t)' % Display label.

Fi=[Fi11 Fi12;Fi21 Fi22]; % Form state-transition matrix,

% Fi(t).

pretty(Fi) % Pretty print state-transition

% matrix, Fi(t).

Fitmtau=subs(Fi,t,t-tau); % Form Fi(t-tau).

'Fi(t-tau)' % Display label.

pretty(Fitmtau) % Pretty print Fi(t-tau).

X=Fi*X0+int(Fitmtau*B*1,tau,0,t); % Solve for X(t).

X=expand(X); % Expand X for clearer display.

'X(t)' % Display label.

pretty(X) % Pretty print X (t).

pause

Chapter 6: Stability
ch6apF1 (Example 6.2)
MATLAB's Symbolic Math Toolbox may be used conveniently to calculate the values in a Routh
table. The toolbox is particularly useful for more complicated tables, where symbolic objects, such
as epsilon, are used. In this example, we represent each row of the Routh table by a vector.
Expressions are written for subsequent row elements by using the equations given in Table 6.2 of
the text. The MATLAB command det(M) is used to find the determinant of the square matrix, M, as
shown for each row element in Table 6.2. Further, we test the previous row's first element to see if
it is zero. If it is zero, it is replaced by epsilon, e, in the next row's calculation. The preceding logic
is performed using MATLAB's IF/ELSE/END as shown in the code below.
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We now demonstrate the making of a Routh table using the Symbolic Math Toolbox for a problem
that requires the epsilon method to complete the table. The following program produces the
Routh table for Example 6.2 in the text. Also, for clarity, we convert all rows to symbolic objects,
simplify, and pretty print after forming the table. CAUTION: In general, the results of this
program are not valid if an entire row is zero as e approaches zero, such as [e 0 0 0]. This case
must be handled differently, as discussed in text Section 6.3 in the subsection, “Entire Row Is
Zero.”

'(ch6apF1) Example 6.2' % Display label.

% -det([si() si(); sj() sj()])/sj()

% Template for use in each cell.

syms e % Construct a symbolic object for

% epsilon.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s5=[1 3 5 0 0]; % Create s^5 row of Routh table.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s4=[2 6 3 0 0]; % Create s^4 row of Routh table.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0

s3=[e...

-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];

% Create s^3 row of Routh table

% if 1st element is 0.

else 

s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1)...

-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];

% Create s^3 row of routh table

% if 1st element is not zero.

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0

s2=[e... -det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];

% Create s^2 row of Routh table

% If 1st element is 0.

else 

s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1)... 

-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];

% Create s^2 row of Routh table

% if 1st element is not zero.

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0

s1=[e...

-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table

% if 1st element is 0.

else 

s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1)...

-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table

% if 1st element is not zero.



end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1)... 

-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

's5' % Display label.

s5=sym(s5); % Convert s5 to a symbolic object.

s5=simplify(s5); % Simplify terms in s^5 row.

pretty(s5) % Pretty print s^5 row.

's4' % Display label.

s4=sym(s4); % Convert s4 to a symbolic object.

s4=simplify(s4); % Simplify terms in s^4 row.

pretty(s4) % Pretty print s^4 row.

's3' % Display label.

s3=sym(s3); % Convert s3 to a symbolic object.

s3=simplify(s3); % Simplify terms in s^3 row.

pretty(s3) % Pretty print s^3 row.

's2' % Display label.

s2=sym(s2); % Convert s2 to a symbolic object.

s2=simplify(s2); % Simplify terms in s^2 row.

pretty(s2) % Pretty print s^2 row.

's1' % Display label.

s1=sym(s1); % Convert s1 to a symbolic object.

s1=simplify(s1); % Simplify terms in s^1 row.

pretty(s1) % Pretty print s^1 row.

's0' % Display label.

s0=sym(s0); % Convert s0 to a symbolic object.

s0=simplify(s0); % Simplify terms in s^0 row.

pretty(s0) % Pretty print s^0 row.

pause

ch6apF2 (Example 6.9)
MATLAB's Symbolic Math Toolbox also may be used conveniently to calculate the values in a
Routh table that contains a variable gain, K. The technique is similar to the previous example,
ch6sp1, except that K, rather than e, is used as the symbolic object. We now demonstrate the
solution of Example 6.9 in the text using MATLAB and MATLAB's Symbolic Math Toolbox.

'(ch6apF2) Example 6.9' % Display label.

% -det([si() si();sj() sj()])/sj() % Template for use in

each cell.

syms K % Construct a symbolic

object for

% gain, K.
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%s3=[1 77 0 0]; % Create s^3 row of

Routh table.

s2=[18 K 0 0]; % Create s^2 row of

Routh table.

s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1)... -det([s3(1)

s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of

Routh table.

s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1)... -det([s2(1)

s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of

Routh table.

's3' % Display label.

s3=sym(s3); % Convert s3 to a

symbolic object.

s3=simplify(s3); % Simplify terms in s^3

row.

pretty(s3) % Pretty print s^3 row.

's2' % Display label.

s2=sym(s2); % Convert s2 to a

symbolic object.

s2=simplify(s2); % Simplify terms in s^2

row.

pretty(s2) % Pretty print s^2 row.

's1' % Display label.

s1=sym(s1); % Convert s1 to a

symbolic object.

s1=simplify(s1); % Simplify terms in s^1

row.

pretty(s1) % Pretty print s^1 row.

's0' % Display label.

s0=sym(s0); % Convert s0 to a

symbolic object.

s0=simplify(s0); % Simplify terms in s^0

row.

pretty(s0) % Pretty print s^0 row.

pause

Chapter 13: Digital Control Systems
ch13apF1 (Example 13.1)
MATLAB's Symbolic Math Toolbox and the command ztrans(f) can be used to find the z‐
transform of a time function, f, represented as f(nT). MATLAB assumes that the default sampled‐
time independent variable is n and the default transform independent variable is z. If you want to
use k instead of n, that is, f(kT), use ztrans(f,k,z). This command overrides MATLAB's defaults
and assumes the sampled‐time independent variable to be k. Let us solve Example 13.1 using
MATLAB's Symbolic Math Toolbox.

'(ch13apF1) Example 13.1' % Display label.

syms n T % Construct symbolic objects for
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%'n' and 'T'.

'f(nT)' % Display label.

f=n*T; % Define f(nT).

pretty(f) % Pretty print f(nT).

'F(z)' % Display label.

F=ztrans(f); % Find z-transform, F(z).

pretty(F) % Pretty print F(z).

pause

ch13apF2 (Example 13.2)
MATLAB's Symbolic Math Toolbox and the command iztrans(F) can be used to find the time‐
sampled function represented as f(nT), given its z‐transform, F(z). If you want the sampled time
function returned as f(kT), then change MATLAB's default independent sampled‐time variable by
using the command iztrans(F,k). Let us solve Example 13.2 using MATLAB's Symbolic Math
Toolbox.

'(ch13apF2) Example 13.2' % Display label.

syms z k % Construct symbolic objects for

% 'z' and 'k'.

'F(z)' % Display label.

F=0.5*z/((z-0.5)*(z-0.7)); % Define F(z).

pretty (F) % Pretty print F(z).

'f(kT)' % Display label.

f=iztrans(F,k); % Find inverse z-transform, f(kT).

pretty(f) % Pretty print f(kT).

'f(nT)' % Display label.

f=iztrans(F); % Find inverse z-transform, f(nT).

pretty(f) % Pretty print f(nT).

pause

ch13apF3 (Example 13.4)
MATLAB's Symbolic Math Toolbox can be used to find the z‐tansform of a transfer function, G(s),
in cascade with a z.o.h. Two new commands are introduced. The first, compose(f,g), allows a
variable g to replace the variable t in f(t). We use this command to replace t in g 2(t) with nT
before taking the z‐transform. The other new command is subs(S,old,new). Subs stands for
symbolic substitution. Old is a variable contained in S. New is a numerical or symbolic quantity to
replace old. We use subs to replace T in G(z) with a numerical value. To find the z‐transform of a
transfer function, G(s), in cascade with a z.o.h. by using MATLAB's Symbolic Math Toolbox, we
perform the following steps: (1) Construct G2 (s) = G (s) /s; (2) find the inverse Laplace
transform of G 2(s); (3) replace t with nT in g 2(t); (4) find G (z) = (1 − z

−1) G2 (z); (5)
substitute a numerical value for T. Let us solve Example 13.4 using MATLAB's Symbolic Math
Toolbox.

'(ch13apF3) Example 13.4' % Display label.

syms s z n T % Construct symbolic objects for
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% 's', 'z', 'n', and 'T'.

G2s=(s+2)/(s*(s+1)); % Form G2(s)=G(s)/s.

'G2(s)=G(s)/s' % Display label.

pretty(G2s) % Pretty print G2(s).

'g2(t)' % Display label.

g2t=ilaplace(G2s); % Find g2(t).

pretty(g2t) % Pretty print g2(t).

g2nT=compose(g2t,n*T); % Find g2 (nT).

'g2(nT)' % Display label.

pretty(g2nT) % Pretty print g2(nT).

Gz=(1-z^-1)* ztrans(g2nT); % Find G(z) = (1-z^-1)G2(z).

Gz=simplify(Gz); % simplify G(z).

'G(z)=(1-z^-1)G2(z)' % Display label.

pretty(Gz) % Pretty print G(z).

Gz=subs(Gz,T,0.5); % Let T=0.5 in G(z).

Gz=vpa(simplify(Gz),4); % Simplify G(z) and evaluate

% numerical values to 4 places.

'G(z) evaluated for T=0.5' % Display label.

pretty(Gz) % Pretty print G(z) with numerical

% values.

pause

F.3 Command Summary
diff (S,'x') Differentiate the symbolic function, S, with respect to variable, x.

compose(f,g) Substitute g(y) for x in f(x).

expand(x) Expand a symbolic function.

ilaplace(X) Find inverse Laplace transform of X(s).

int(S,v,a,b) Integrate S with respect to v from lower limit a to upper limit b.

iztrans(F,k) Find inverse z‐transform. Finds f(kT) given F(z).

Without optional field, k, finds f(nT).

laplace(x) Find Laplace transform of x(t).

numden(G) Extract symbolic numerator and denominator from G(s).

pretty(x) Pretty print x.

simple(x) Find simplest from of symbolic object x.

simplify(x) Simplify x.

subs(S,old,new) Substitute new for old in symbolic S.

sym(v) Convert v to a symbolic object.

syms x y z Declare x, y, and z to be symbolic objects.

sym2poly(P) Convert symbolic polynomial, P, to a vector.

vpa(x,D) Use variable precision arithmetic. Convert fractional symbolic values to



decimal with D places.

ztrans(f) Find z‐transform of f(nT).
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Appendix G
Matrices, Determinants, and Systems of Equations
G.1 Matrix Definitions and Notations

Matrix
An m × n matrix is a rectangular or square array of elements with m rows and n columns. An
example of a matrix is shown in Eq. (G.1).

G(s) = [54(s + 27)(s3 +  52s2 + 37s + 73)]/[s(s4 + 872s3 + 437s2 + 89s + 65) (s2 + 79s + 36)]
xk = det (Ak) /det (A) (sI − A)−1 G2 (s) = G (s) /s G (z) = (1 − z−1) G2 (z)

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮
am1 am2 … amn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

For each subscript, aij, i = the row, and j = the column. If m = n, the matrix is said to be a square
matrix.

Vector
If a matrix has just one row, it is called a row vector. An example of a row vector follows:

B =[ b11 b12 … b1n ]

If a matrix has just one column, it is called a column vector. An example of a column vector
follows:

C =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

c11

c12

⋮
cm1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Partitioned Matrix
A matrix can be partitioned into component matrices or vectors. For example, let

A =

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥ ⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥ ⎥ ⎥ ⎥
⎦

=[ A11 A12

A21 A22
]
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where

A11 =
⎡
⎢
⎣

a11 a12

a21 a22

a31 a32

⎤
⎥
⎦

; A12 =
⎡
⎢
⎣

a13 a14

a23 a24

a33 a34

⎤
⎥
⎦

A21 =[ a41 a42 ]; A22 =[ a43 a44 ]

Null Matrix
A matrix with all elements equal to zero is called the null matrix; that is, aij = 0 for all i and j. An
example of a null matrix follows:

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

0 0 0 0 … 0 0
0 0 0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Diagonal Matrix
A square matrix where all elements not on the diagonal are equal to zero is said to be a diagonal
matrix; that is, aij = 0 for i ≠ j. An example of a diagonal matrix follows:

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 0 0 … 0
0 a22 0 … 0
0 0 a33 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 … ann

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

Identity Matrix
A diagonal matrix with all diagonal elements equal to unity is called an identity matrix and is
denoted by I; that is, aij = 1 for i = j, and aij = 0 for i ≠ j. An example of an identity matrix follows:

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 0 0 … 0
0 1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 1

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

Symmetric Matrix
A square matrix for which aij = aji is called a symmetric matrix. An example of a symmetric
matrix follows:

A =
⎡
⎢
⎣

3 8 7
8 9 2
7 2 4

⎤
⎥
⎦
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Matrix Transpose
The transpose of matrix A, designated AT, is formed by interchanging the rows and columns of A.
Thus, if A is an m × n matrix with elements aij, the transpose is an n × m matrix with elements aji.
An example follows. Given

A =

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 7 9
2 6 −3
4 8 5

−1 3 −2

⎤
⎥ ⎥ ⎥ ⎥
⎦

then

A
T =

⎡
⎢
⎣

1 2 4 −1
7 6 8 3
9 −3 5 −2

⎤
⎥
⎦

Determinant of a Square Matrix
The determinant of a square matrix is denoted by det A, or

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮

am1 am1 … amn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

The determinant of a 2 × 2 matrix,

A =[ a11 a12

a21 a22
]

is evaluated as

det A =
∣
∣
∣
a11 a12

a21 a22

∣
∣
∣
= a11a22 − a21a12

Minor of an Element
The minor, Mij of element aij of det A is the determinant formed by removing the ith row and the
jth column from det A. As an example, consider the following determinant:

det A =
∣
∣ 
∣
∣

3 8 7
6 9 2
5 1 4

∣
∣ 
∣
∣

The minor M32 is the determinant formed by removing the third row and the second column from
det A. Thus,



(G.15)

(G.16)

(G.17)

(G.18)

(G.19)

(G.20)

(G.21)

(G.22)

M32 =
∣
∣
∣
3 7
6 2

∣
∣
∣
=−36

Cofactor of an Element
The cofactor, Cij, of element aij of det A is defined to be

Cij = (−1)(i+j)
Mij

For example, given the determinant of Eq. (G.14)

C21 = (−1)(2+1)
M21 = (−1)3∣

∣
∣
8 7
1 4

∣
∣
∣
=−25

Evaluating the Determinant of a Square Matrix
The determinant of a square matrix can be evaluated by expanding minors along any row or
column. Expanding along any row, we find

det A =
n

∑
k=1

aikCik

where n = number of columns of A; j is the jth row selected to expand by minors; and Cik is the
cofactor of aik. Expanding along any column, we find

det A =
m

∑
k=1

akjCkj

where m = number of rows of A; j is the jth column selected to expand by minors; and Ckj is the
cofactor of akj. For example, if

A =
⎡
⎢
⎣

1 3 2
−5 6 −7

8 5 4

⎤
⎥
⎦

then, expanding by minors on the third column, we find

det A = 2
∣
∣
∣
−5 6

8 5
∣
∣
∣
−(−7)

∣
∣
∣
1 3
8 5

∣
∣
∣
+4

∣
∣
∣

1 3
−5 6

∣
∣
∣
=−195

Expanding by minors on the second row, we find

det A =−(−5)
∣
∣
∣
3 2
5 4

∣
∣
∣
+6

∣
∣
∣
1 2
8 4

∣
∣
∣
−(−7)

∣
∣
∣
1 3
8 5

∣
∣
∣
=−195

Singular Matrix
A matrix is singular if its determinant equals zero.



(G.23)

(G.24)

(G.25)

(G.26)

(G.27)

Nonsingular Matrix
A matrix is nonsingular if its determinant does not equal zero.

Adjoint of a Matrix
The adjoint of a square matrix, A, written adj A, is the matrix formed from the transpose of the
matrix A after all elements have been replaced by their cofactors. Thus,

adj A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

C11 C12 … C1n

C21 C22 … C2n

⋮ ⋮ ⋮ ⋮

Cn1 Cn2 … Cnn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

T

For example, consider the following matrix:

A =
⎡
⎢
⎣

1 2 3
−1 4 5

6 8 7

⎤
⎥
⎦

Hence,

adj A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

∣
∣
∣
4 5
8 7

∣
∣
∣

−
∣
∣
∣
−1 5

6 7
∣
∣
∣

∣
∣
∣
−1 4

6 8
∣
∣
∣

−
∣
∣
∣
2 3
8 7

∣
∣
∣

∣
∣
∣
1 3
6 7

∣
∣
∣

−
∣
∣
∣
1 2
6 8

∣
∣
∣

∣
∣
∣
2 3
4 5

∣
∣
∣

−
∣
∣
∣

1 3
−1 5

∣
∣
∣

∣
∣
∣

1 2
−1 4

∣
∣
∣

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

T

=
⎡
⎢
⎣

−12 10 −2
37 −11 −8

−32 4 6

⎤
⎥
⎦

Rank of a Matrix
The rank of a matrix, A, equals the number of linearly independent rows or columns. The rank
can be found by finding the highest‐order square submatrix that is nonsingular. For example,
consider the following:

A =
⎡
⎢
⎣

1 −5 2
4 7 −5

−3 15 −6

⎤
⎥
⎦

The determinant of A = 0. Since the determinant is zero, the 3 × 3 matrix is singular. Choosing the
submatrix

A =[ 1 −5
4 7

]

whose determinant equals 27, we conclude that A is of rank 2.

G.2 Matrix Operations



(G.28)

(G.29)

(G.30)

(G.31)

(G.32)

(G.33)

(G.34)

Addition
The sum of two matrices, written A + B = C, is defined by aij + bij = cij. For example,

[ 2 −1
3 5

]+[ 7 −5
−4 3

]=[ 9 −6
−1 8

]

Subtraction
The difference between two matrices, written A – B = C, is defined by aij – bij = cij. For example,

[ 2 −1
3 5

]−[ 7 −5
−4 3

]=[ −5 4
7 2

]

Multiplication

The product of two matrices, written AB = C, is defined by Cij =
n

∑
k=1

aikbkj. For example, if

A =[ a11 a12 a13

a21 a22 a23
]; B =

⎡
⎢
⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎥
⎦

then

C =[
(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32) (a11b13 + a12b23 + a13b33)

(a21b11 + a22b21 + a23b31) (a21b12 + a22b22 + a23b32) (a21b13 + a22b23 + a23b33)
]

Notice that multiplication is defined only if the number of columns of A equals the number of
rows of B.

Multiplication by a Constant
A matrix can be multiplied by a constant by multiplying every element of the matrix by that
constant. For example, if

A =[ a11 a12

a21 a22
]

then

kA =[ ka11 ka12

ka21 ka22
]

Inverse
An n × n square matrix, A, has an inverse, denoted by A−1, which is defined by

AA
− 1 = I



(G.35)

(G.36)

(G.37)

(G.39)

(G.40)

(G.41)

(G.42)

(G.43)

(G.38)

where I is an n × n identity matrix. The inverse of A is given by

A
− 1 =

For example, find the inverse of A in Eq. (G.24). The adjoint was calculated in Eq. (G.25). The
determinant of A is

det A = 1
∣
∣
∣
4 5
8 7

∣
∣
∣
−(−1)

∣
∣
∣
2 3
8 7

∣
∣
∣
+6

∣
∣
∣
2 3
4 5

∣
∣
∣
=−34

Hence,

A
− 1 = =

⎡
⎢
⎣

0.353 −0.294 0.059
−1.088 0.324 0.235

0.941 −0.118 −0.176

⎤
⎥
⎦

G.3 Matrix and Determinant Identities
The following are identities that apply to matrices and determinants.

Matrix Identities
Commutative Law

A + B = B + A

AB  ≠  BA

Associative Law

A + (B + C) = (A + B) + C

A(BC) = (AB)C

Transpose of Sum

(A + B)T = A
T + B

T

Transpose of Product

(AB)T = B
T

A
T

Determinant Identities
Multiplication of a Single Row or Single Column of a Matrix, A, by a Constant

If a single row or single column of a matrix, A, is multiplied by a constant, k, forming the matrix,
Ã, then

adj A

det A

⎡
⎢
⎣

−12 10 −2
37 −11 −8

−32 4 6

⎤
⎥
⎦

−34



(G.44)

(G.45)

(G.46)

(G.47)

(G.49)

(G.52)

(G.50)

(G.51a)

(G.51b)

(G.48)

det Ã = k det A

Multiplication of All Elements of an n × n Matrix, A, by a Constant

det(kA) = kndet A

Transpose

det A
T = det A

Determinant of the Product of Square Matrices

det AB = det A det B

det AB = det BA

G.4 Systems of Equations

Representation
Assume the following system of n linear equations:

a11x1 + a12x2 + … + a1n = b1

a21x1 + a22x2 + … + a2n = b2

⋮
an1x1 + an2x2 + … + ann = bn

This system of equations can be represented in vector‐matrix form as

Ax = B

where

A =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮
an1 an2 … ann

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

; B =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

b1

b2

⋮
bn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

; x =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

x1

x2

⋮
xn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

For example, the following system of equations,

5x1 + 7x2 = 3

−8x1 + 4x2 =−9

can be represented in vector‐matrix form as Ax = B, or

[ 5 7
−8 4

][ x1

x2
]=[ 3

−9
]

Solution via Matrix Inverse



(G.53)

(G.54)

(G.55)

(G.56)

(G.57)

(G.58)

If A is nonsingular, we can premultiply Eq. (G.50) by A−1, yielding the solution x. Thus,

x = A
− 1

B

For example, premultiplying both sides of Eq. (G.52) by A−1, where

A
− 1 = [ 5 7

−8 4
]

− 1

=[ 0.0526 −0.0921
0.1053 0.0658

]

we solve for x = A−1B as follows:

[ x1

x2
]=[ 0.0526 −0.0921

0.1053 0.0658
][ 3

−9
]=[ 0.987

−0.276
]

Solution via Cramer's Rule
Equation (G.53) allows us to solve for all unknowns, xi, where i = 1 to n. If we are interested in a
single unknown, xk, then Cramer's rule can be used. Given Eq. (G.50), Cramer's rule states that

xk =

where Ak is a matrix formed by replacing the kth column of A by B. For example, solve Eq. (G.52).
Using Eq. (G.56) with

A =[ 5 7
−8 4

]; B =[ 3
−9

]

we find

x1 = = = 0.987

and

x2 = = =−2.276
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det A

∣
∣
∣
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∣
∣
∣
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∣
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Appendix H
Control System Computational Aids
H.1 Step Response of a System Represented in
State Space
In this section, we will discuss how to obtain the step response of
systems represented in state space. We will begin by discussing how
state equations can be used to program a digital computer and
progress to a computer program that you can use to perform step‐
response simulations.

Using State Equations for Computer Simulations
One advantage of state equations is the ability to use this
representation to simulate control systems on the digital computer.
This section is devoted to demonstrating this concept. Consider the
system represented in state‐space by Eqs. (H.1).

[ ẋ1

ẋ2
]=[ 0 1

−2 −3
][x1

x2
]+[ 0

1
]u(t)

y(t)=[ 2 3 ][x1

x2
]



(H.1c)

(H.2a)

(H.2b)

(H.3a)

[
x1(0)

x2(0)
]=[ 1

−2
]

This system is represented in phase‐variable form and has a unit step
input, u(t). We are about to formulate a solution for the system output,
y(t), by numerically integrating the differential equation on the digital
computer. We will use a method called Euler's approximation, where
the area to be integrated is approximated as a rectangle. The solution
obtained on the computer is an actual time waveform plot rather than
the closed‐form expression we arrived at via the Laplace transform.

Writing the state equations explicitly, we have

= x2

=−2x1 − 3x2 + 1

If we approximate dx by Δx and dt by Δt, and multiply through by Δt

Δx1 = x2Δt

dx1

dt

dx2

dt



(H.3b)

(H.4a)

(H.4b)

(H.5)

Δx2 =(−2x1 − 3x2 + 1)Δt

We can say that the value at the next interval for either state variable is
approximately the current value plus the change. Thus,

x1(t + Δt)= x1(t)+Δx1

x2(t + Δt)= x2(t)+Δx2

Finally, from the output Eq. (H.1b), y(t) at the next time interval, y(t +
Δt), is

y(t + Δt)= 2x1(t + Δt)+3x2(t + Δt)

Let us see how this would work on the digital computer. From the
problem statement, x1 and x2 begin at t = 0 with values 1 and −2,
respectively. If we assume a Δt interval of 0.1 second1, the change in x1
and x2 from 0 to 0.1 second is found from Eqs. (H.3) to be,



(H.6a)

(H.6b)

(H.7a)

(H.7b)

(H.8)

Δx1 = x2(0)Δt =−0.2

Δx2 =[−2x1(0)−3x2(0)+1]Δt = 0.5

from which the state variables at t = 0.1 second are found from Eqs.
(H.4) to be

x1(0.1)= x1(0)+Δx1 = 0.8

x2(0.1)= x2(0)+Δx2 =−1.5

Finally, the output at t = 0.1 second is calculated from Eq. (H.5) to be,

y(0.1)= 2x1(0.1)+3x2(0.1)=−2.9

The values of the state variables at t = 0.1 second are used to calculate
the values of the state variables and the output at the next interval of
time, t = 0.2 second. Once again the changes in x1 and x2 are,



(H.9a)

(H.9b)

(H.10a)

(H.10b)

(H.11)

Δx1 = x2(0.1)Δt =−0.15

Δx2 =[−2x1(0.1)−3x2(0.1)+1]Δt = 0.39

from which the state variables at t = 0.2 second are found to be

x1(0.2)= x1(0.1)+Δx1 = 0.65

x2(0.2)= x2(0.1)+Δx2 =−1.11

Finally, the output at t = 0.2 second is calculated as,

y(0.2)= 2x1(0.2)+3x2(0.2)=−2.03

The results are summarized in Figure H.1. Continuing in like manner
until t = tf, the maximum desired time, the response for 0 ≤ t ≤ tf can
be obtained.



FIGURE H.1 State variables and output for the system of
Eqs. (H.1)

Computer Program for Step Response
In this subsection, we will design a computer program that simulates a
system's step response using state equations. The code was developed
using Visual Basic® Version 6 and converted to a stand‐alone
application that runs on a PC2. The resulting application,
recommended for readers who do not have access to MATLAB®, can
be found in the Appendix H folder3. To run the setup program, open
the folder labeled Step Response inside the Appendix H folder and
double‐click on setup icon. For directions on running the program see
the README file inside the Appendix H folder. Let us now summarize
the design of the step response software.

First, we enumerate the software requirements as follows:

1. The user will input (1) system order, (2) components of the
system, input, and output matrix.

2. The user will input the initial conditions.

3. The user will input the following plot parameters: (1) iteration
interval, (2) plot interval, and (3) maximum time.

4. The program will plot the step response as well as listing the
response data.

file:///C:/Users/Gamer/AppData/Local/Temp/calibre_u4bt6w/lqympk_pdf_out/OPS/b08.xhtml


5. The program will replot the step response after allowing the user
to change the initial conditions as well as the plot parameters
without reentering the system.

The program plots the step response of a system represented in state
space and permits the user to choose an iteration interval. A helpful
technique of finding the iteration interval is to run the program with
successively diminishing iteration intervals until reaching an iteration
interval below which there is no appreciable change in the results.

Another parameter the user can select is the print interval which
allows the user to print at a larger time interval than the iteration
interval.

The execution time of the program is also an input parameter. The
user should choose a time for which the output has already reached a
steady‐state value.

A simplified flow‐chart for the program is shown in Figure H.2 and
uses the system of Eqs. (H.1).





FIGURE H.2 Flow‐chart for step response program

Code Module
We now present a sample implementation of the flow‐chart of Figure
H.2. The routine can run independently, as part of a Visual Basic Code
Module, or tailored to another programming language or other
machines, such as hand‐held calculators.

The routine can obtain its input variable values through the Visual
Basic GUI interface, as presented in the sample run below, or through
another program written to pass this code the input variables. The
same is true of the output variables. In the sample run below, output
variables are passed to the Visual Basic GUI interface for display, but
could just as well be passed to another program.

We now list the sample subroutine, which we call CalcStateSpace:

' ********** Input Variables************** 
'Although the following arrays are being dimensioned for a
'100th order system, only a portion of the array, defined by
'the sys_order variable, is used.

Public X(100) As Single        'X vector input.
Public A(100, 100) As Single     'A matrix Input.
Public B(100) As Single        'B matrix Input.
Public C(100) As Single        'C vector Input

Public PRNT_Int 'Print interval input.
Public sys_order 'System order input.
Public DELTAT 'Delta time input.
Public MAXTIME 'Total run-time input.

' ************** Output Variables***********************
Public DELTAX (1000) As Single     'Array holding the time 
for
                        'each point calculated.
Public Y (1000) As Single
                        'Array holding the output
                        'response value for each
                        'point calculated.

' **************Subroutine CalcStateSpace***************
Public Sub CalcStateSpace ()
On Error GoTo errorHandle



' *************Store initial value for plot*************
  Let cx=0
  For i=1 To sys_order
       cx=cx + C(i-1)*X(i - 1)
  Next i
  Y(0)=cx
' ******************** Start plot loop******************
  For K=1 To CInt(MAXTIME/PRNT_Int) Step 1
             'Index for Printing interval

' **************** Start iteration loop******************
    For n=1 To CInt (PRNT_Int/DELTAT) Step 1
                 'Index for iteration interval
      For i=1 To sys_order
        Let ax=0
        For j=1 To sys_order
          ax=ax + A(i - 1, j - 1)*X(j - 1)
        Next j
        DELTAX (i - 1)=(ax+B (i - 1))*DELTAT
                   'Calculate delta X1
        Next i
        For i = 1 To sys_order
              X(i - 1) = X(i - 1) + DELTAX (i - 1)
                    'Calculate next x
        Next i
        Let cx = 0
        For i = 1 To sys_order
          cx = cx + C(i - l)*X(i - 1)
        Next I
      Next n

' ***************** End iteration loop******************
      Y(K) = cx
    Next K
' ***************** End plot loop***********************
    Exit Sub
errorHandle:
      message = "System Error: " + Err.Description
      MsgBox (message)
      On Error GoTo 0
End Sub

As an example, data entry and results for the code shown above are via
a graphical user interface (GUI) developed in Visual Basic 6 and
produced by the stand‐alone application enclosed in this folder. Figure
H.3 shows the GUI interface for data entry using the system of Eqs.



(H.1) as an example. Figure H.4 shows the output window for the
example.

FIGURE H.3 Step response program: GUI interface for
data entry



FIGURE H.4 Step response program: output window

H.2 Root Locus and Frequency Response
In this section we will develop a computer program that can be used as
an alternative to MATLAB to search for points on the root locus and
obtain magnitude and phase frequency response data. The code was
developed using Visual Basic® Version 6 and converted to a stand‐
alone application that runs on a PC. The resulting application,
recommended for readers who do not have access to MATLAB, can be
found in the Appendix H folder at
www.wiley.com/go/Nise/ControlSystemsEngineering8e. To run the
setup program, open the folder labeled Root Locus inside the
Appendix H folder and double‐click on setup icon. For directions on
running the program see the README file inside the Root Locus
folder. The program also can be adapted to hand‐help calculators. Let
us now summarize the design of the step response software.

First, we enumerate the software requirements as follows:

1. The user will input the number of open‐loop poles and zeros.

2. The user will input the values of the open‐loop poles and zeros.

3. The user will select polar or Cartesian coordinates for the test
point.

4. The user will input the coordinates of the test point.

http://www.wiley.com/go/Nise/ControlSystemsEngineering8e


5. The user will initiate the calculation.

6. The program will display the angle and magnitude of the open‐
loop transfer function at the test point as well as the gain.

7. The user can change the open‐loop poles and zeros and the test
point before initiating another calculation.

A simplified flow‐chart for the program is shown in Figure H.5.





FIGURE H.5 Flow‐chart for root locus and frequency
response program

Code Module
We now present a sample implementation of the flow‐chart of Figure
H.5. The routine can run independently, as part of a Visual Basic Code
Module, or tailored to another programming language or other
machines, such as hand‐held calculators.

The routine can obtain its input variable values through the Visual
Basic GUI interface, as presented in the sample run below, or through
another program written to pass this code the input variables. The
same is true of the output variables. In the sample run below, output
variables are passed to the Visual Basic GUI interface for display, but
could just as well be passed to another program.

We now list the sample subroutine, which we call RootLocusCalc:

' ************************* Input Variables 
*************************
Public Polar          'True or False. Determines if input 
test
                 'point is interpreted as polar 
coordinates
                 '(Polar = True or Cartesian 
Coordinates
                 '(Polar = False).

Public testAVal        'Test point x coordinate (Polar = 
False) or
                 'test point magnitude (Polar = 
True).
Public testBVal        'Test point y coordinate (Polar = 
False) or
                 'test point angle (Polar = True).

Public NumPolesVal      'Number of poles in system (0 to 10).
Public NumZerosVal      'Number of Zeros in system (0 to 10).

'The following variables have enough space for 10 poles,
'but only the number of data points referred to by NumPolesVal
'are stored in the array starting at the 0th element.

Public RLPoleRe (10)    'Stores each open-loop poles's real 



part.
Public RLPoleI (10)     'Stores each open-loop poles's 
imaginary part.

'The following variables have enough space for 10 zeros,
'but only the number of data points referred to by NumZerosVal
'are stored in the array starting at the 0th element.

Public RLZeroRe(10)     'Stores each open-loop zero's real 
part.
Public RLZeroIm(10)     'Stores each open-loop zero's 
imaginary part.

' ************************** Output Variables 
**************************
Public RLKval         'Returns the Gain at the given test 
point.
Public RLMagVal       'Returns the magnitude at the given 
test point.
Public RLAngleVal      'Returns the angle in degrees at the 
given
                'test point.

Public ErrorFlag      'If this variable is set to True, then
                'an error occurred during calculation
                'and the output data is disregarded.

' ********************** Subroutine RootLocusCalc 
**********************
Const pi = 3.14159265358979

Public Sub RootLocusCalc ()
   Dim deltaX  As Single
   Dim deltaY  As Single
   ErrorFlag = False
   RecGain = 1
   angle = 0
If Polar = True Then 'Convert polar test point to Cartesian.
      testReVal = testAVal * Cos(testBVal * pi/180)
      testImVal = testAVal * Sin(testBVal * pi/180)
   Else     'Test point is Cartesian - use as is.
      testReVal = testAVal
      testImVal = testBVal
   End If

   For K = 0 To NumPolesVal - 1
      ReVal= RLPoleRe(K)
      ImVal= RLPoleI(K)



      deltaX = testReVal - ReVal
      deltaY = testImVal - ImVal
  If Abs(deltaX) < 0.0000000001 And_   
   Abs(deltaY) < 0.0000000001 Then
    MsgBox ("ERROR: Test point is the same as an " & _
          "open-loop pole. Enter new test point.")
    ErrorFlag = 1
     GoTo exitrootlocus
   Else
     RecGain = RecGain * CartToMag (deltaX, deltaY)
     angle = angle - CartToAngle (deltaX, deltaY)
   End If
  Next K
 For K = 0 To NumZerosVal - 1
  ReVal =RLZeroRe(K)
  ImVal= RLZeroIm(K)

  deltaX = testReVal - ReVal
  deltaY = testImVal - ImVal

   If Abs(deltaX) < 0.0000000001 And_
    Abs(deltaY) < 0.0000000001 Then
     MsgBox ("ERROR: Test point is the same as an " & _
           "open-loop zero. Enter new test point.")
     ErrorFlag = 1
     GoTo exitrootlocus
   Else
      RecGain = RecGain/CartToMag(deltaX, deltaY)
      angle = angle + CartToAngle(deltaX, deltaY)
   End If
  Next K

  angle = angle * 180/pi
  angle = (angle/360 - Fix(angle/360)) * 360
 exitrootlocus:
  If ErrorFlag < > 1 Then
 RLKval = RecGain
  RLMagVal = 1/RecGain
   RLAngleVal = angle
 End If

End Sub

' *********************Function CartToMag*********************
Public Function CartToMag(X As Single, Y As Single) As Single
  CartToMag = Sqr(Abs(X ^ 2 + Y ^ 2))
End Function

' ********************* Function CartToAngle 



*********************
Public Function CartToAngle (deltaX, deltaY) As Single
   If deltaX = 0 Then angle = pi/2 _
   Else angle = Atn(Abs(deltaY)/Abs(deltaX))
   If deltaY >= 0 And deltaX >= 0 Then angle = angle
   If deltaY >= 0 And deltaX < 0 Then angle = (pi - angle)
   If deltaY < 0 And deltaX <= 0 Then angle = -(pi - angle)
   If deltaY < 0 And deltaX > 0 Then angle = -angle
   CartToAngle = angle
End Function

Data entry and results for the code shown above are via a graphical
user interface (GUI) developed in Visual Basic 6 and produced by the
stand‐alone application included in the Appendix H folder. Figure H.6
shows the GUI interface for data entry and results using 
G(s) =  and a test point = −2 + j3 as an example.

(s+1)

s(s+3)(s+5)



FIGURE H.6 Root locus program: GUI interface for data
entry and results

Acknowledgement: The author wants to express appreciation to Alan
H. Nise for the programming and GUI design of the Step Response
Program and the Root Locus and Frequency Response Utility. These
programs were based upon the original programs published in Control
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Notes



1 Δt is selected to be small and, initially, at least an order of magnitude
less than the system's time constants. In order to determine,
empirically, how small Δt should be, the value of Δt can be
successively reduced after each response has been calculated by the
computer until the difference between the current response and the
previous response is negligible. If Δt is too large, then error results
from inaccurately representing the area under the state variable
curve. If Δt is too small, then round‐off error will accumulate
during the computation because of the numerous calculations.

2 Visual Basic is a registered trademark of Microsoft Corporation.

3 MATLAB is a registered trademark of The Math Works, Inc.
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Appendix I
Derivation of a Schematic for a DC Motor
The objective of this appendix is to derive a schematic for an armature‐
controlled dc motor, including parameter relationships.1 This schematic
can then be used to obtain the relationship between the input voltage and
output angular displacement of a motor.

We begin by describing the behavior of electric currents in the presence of
magnetic fields. From Figure I.1, an electric current, i, flowing in a wire of
length, l, in the presence of a magnetic field of strength B feels a force, F,
equal to

F = Bli

FIGURE I.1 Current‐carrying wire in a magnetic field

This principle can be used to build a motor, since the force produced can
be used to turn a rotating member called a rotor. Basically, we attach the
wire to the rotor, create a magnetic field with magnets, and allow the force
to act to turn the rotor. In Figure I.2(a), we show the wire wrapped
longitudinally around a cylindrical rotor, which is called an armature. The
core is made of soft iron that easily conducts magnetic lines of force. The



(I.2)

(I.3)

magnets are cut so that at the surface of the rotor the lines of magnetic
flux are perpendicular. The force produced is tangent to the rotor and
causes the armature to rotate. Each side of the loop feels a force as given
by Eq. (I.1). Thus the total force, F, which acts tangential to the core, is

F = 2Bli

where ia is the current through the wire on the armature. If the radius of
the armature is r, then the developed torque, Tm, is

Tm = rF = r2Blia = Ktia

where Kt = 2Blr is called the torque constant, and ia is called the
armature current. To develop more torque, we can increase the magnetic
field strength, B, or equivalently Kt, by wrapping a coil around the
permanent magnets as shown in Figure I.2(b).

FIGURE I.2 a. Current‐carrying wire on a rotor; b. current‐
carrying wire on a rotor with commutation and coils added to
the permanent magnets to increase magnetic field strength



(I.4)

(I.5)

There is a problem with the motor in Figure I.2(a). As the wire segment
shown near point A′ passes point A, the force will still be downward and
the armature will begin to turn in the opposite direction. To correct for
this reversal, we need to reverse the direction of the current flow, ia when
that wire segment reaches point A. Another reversal is required again at
point A′. Figure I.2(b) shows how we can reverse the current in the wire
every half turn to keep the armature turning in the same direction. Using
slip rings to which the ends of the wire are connected, and brushes, which
are stationary and rub against the slip rings, completing the circuit for ia
to flow, the current reverses every half turn. This arrangement of slip
rings and brushes is called a commutator.

So far we have seen that a force exists on the wire wrapped around the
armature. We now explore the possibility that a voltage is also induced
across the terminals of this wire. Knowledge of this voltage will help us
establish a circuit model for the motor. According to Faraday's law, if a
loop of wire, such as a single loop wrapped around the armature, is placed
in a changing magnetic field, a voltage

vb(t)=−

will be induced across the loop, where vb(t) is the induced voltage and ϕ is
the flux passing through the loop. Assuming that the flux density, B, is a
constant anywhere along the surface of a half cylinder enclosed by the
loop, and using ϕ = BA, where A is the surface area of the enclosed half
cylinder, the induced voltage for our single loop is

vb(t)=−B

To determine the surface area of the half cylinder enclosed by the loop, we
examine Figure I.3, which is an end view of the armature showing the

dϕ

dt

dA

dt
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(I.8)

ends of the wire and the magnetic lines of flux. The area, A1, through
which the flux passes from the center to the surface is the product of the
circumference and length of the cylinder, or

A1 = r(π − θ)l

The area, A2, through which the flux passes from the surface to the center
is

A2 =(rθ)l

Thus,

vb(t)=− =−Brl = 2Brl = 2Brlω = Kbω

For a motor, this induced voltage, vb(t), is called the back electromagnetic
force, or back emf. The constant Kb = 2Blr is called the back emf
constant. Notice that Kt = Kb in a consistent set of units.

dB(A1 − A2)

dt

d(π − 2θ)

dt

dθ

dt



FIGURE I.3 Magnetic flux density passing through a loop of
wire on an armature

Finally, the torque developed can be increased by winding a number of
wire loops on the armature. This is called the armature winding. The
back emf will also be increased because these loops can be thought of as a
series connections where the voltages in each loop will add.

In summary, if a wire carrying current ia(t) passes through a magnetic
field, a torque, Tm(t) = Ktia(t), will be developed. Further, from Faraday's
law the wire will have an induced voltage called the back emf. This voltage
is given by vb(t)= Kbω(t).

From the relationships that we developed, we can create a circuit model
for the motor as shown in Figure I.4. The armature winding is represented
as having resistance, Ra, and, because it is wound around the armature,
inductance, La. The back emf is shown as vb(t) across the rotor. The fixed
field is created by the electromagnets. Shown at the output of the rotor are
the developed torque, Tm(t), and the output angular displacement, θm(t).



FIGURE I.4 DC motor circuit diagram
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Appendix J
Derivation of the Time Domain Solution of
State Equations
J.1 Derivation
Rather than using the Laplace transformation, we can solve the equations
directly in the time domain using a method closely allied to the classical
solution of differential equations. We will find that the final solution consists of
two parts that are different from the forced and natural responses

First, assume a homogeneous state equation of the form

ẋ(t) = Ax(t)

Since we want to solve for x, we assume a series solution, just as we did in
elementary scalar differential equations. Thus,

x(t) = b0 + b1t + b2t
2 + ⋯ + bkt

k + bk+1t
k+1 + ⋯

Substituting Eq. (J.2) into (J.1) we get

b1 + 2b2t + ⋯ + kbkt
k−1 + (k + 1)bk+1t

k + ⋯

= A(b0 + b1t + b2t
2 + ⋯ + bkt

k + bk+1t
k+1 + ⋯)

Equating like coefficients yields



(J.4a)

(J.4b)

(J.4c)

(J.4d)

(J.5)

b1 = Ab0

b2 = Ab1 = A
2
b0

⋮

bk = Akb0

bk+1 = Ak+1b0

⋮

Substituting these values into Eq. (J.2) yields

x(t) = b0 + Ab0t + A2b0t
2 + ⋯ + Akb0t

k + Ak+1b0t
k+1 + ⋯

=(I + At + A
2
t

2 + ⋯ + A
k
t
k + A

k+1
t
k+1 + ⋯)b0

But, from Eq. (J.2),

1
2

1
2

1
k!

1
(k+1)!

1
2

1
k!

1
(k+1)!

1
2

1
k!

1
(k+1)!
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(J.7)

(J.8)

(J.9)

(J.10)

x(0) = b0

1 Therefore,

x(t) =(I + At + A
2
t

2 + ⋯ + A
k
t
k + A

k+1
t
k+1 + ⋯)x(0)

Let

e
At =(I + At + A

2
t

2 + ⋯ + A
k
t
k + A

k+1
t
k+1 + ⋯)

where eAt is simply a notation for the matrix formed by the right‐hand side of
Eq. (J.8). We use this definition because the right‐hand side of Eq. (J.8)
resembles a power series expansion of eat, or

e
at =(1 + at + a

2
t

2 + ⋯ + a
k
t
k + a

k+1
t
k+1 + ⋯)

Using Eq. (J.7), we have

x(t) = e
At

x(0)

1
2

1
k!

1
(k + 1)!

1
2

1
k!

1
(k + 1)!

1
2

1
k!

1
(k + 1)!
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(J.12)

(J.13)

(J.14)

(J.15)

We give a special name to eAt: it is called the state‐transition matrix2, since it
performs a transformation on x(0), taking x from the initial state, x(0), to the
state x(t) at any time, t. The symbol, Φ(t), is used to denote eAt. Thus,

Φ(t) = e
At

and

x(t) = Φ(t)x(0)

There are some properties of Φ(t) that we will use later when we solve for x(t)
in the text. From Eq. (J.12),

x(0) = Φ(0)x(0)

Hence, the first property of Φ(t) is

Φ(0) = I

where I is the identity matrix. Also, differentiating Eq. (J.12) and setting this
equal to Eq. (J.1) yields

ẋ(t) = Φ̇(t)x(0) = Ax(t)

which, at t = 0, yields



(J.16)

(J.17)

(J.18)

(J.19)

(J.20)

Φ̇(0)x(0) = Ax(0)

Thus, the second property of Φ(t) follows from Eq. (J.16):

Φ̇(0) = A

In summary, the solution to the homogeneous, or unforced, system is

x(t) = Φ(t)x(0)

where

Φ(0) = I

and

Φ̇(0) = A

Let us now solve the forced, or nonhomogeneous, problem. Given the forced
state equation



(J.21)

(J.22)

(J.23)

(J.24)

(J.25)

ẋ(t)Ax(t) + Bu(t)

rearrange and multiply both sides by e−At:

e
− At[ẋ(t) − Ax(t)]= e

− At
Bu(t)

Realizing that the left‐hand side is equal to the derivative of the product
e−Atx(t), we obtain

[e− At
x(t)]= e

− At
Bu(t)

Integrating both sides yields

[e− At
x(t)]/

t

0
= e

− At
x(t) − x(0) = ∫

t

0
e

− Aτ
Bu(τ)dτ

since e−At evaluated at t = 0 is the identity matrix (from Eq. (J.8)). Solving for
x(t) in Eq. (J.24) we obtain

x(t) = e
− At

x(0) + ∫
t

0 e
− A(t−τ)

Bu(τ)dτ

= Φ(t)x(0) + ∫
t

0 Φ(t − τ)Bu(τ)dτ

d

dt



where Φ(t) = eAt by definition.
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Appendix K
Solution of State Equations for t0 ≠ 0
In Section 4.11 we used the state‐transition matrix to perform a
transformation taking x(t) from an initial time, t0 = 0, to any time, t ≥ 0, as
defined in Eq. (4.109). What if we wanted to take x(t) from a different
initial time, t0 ≠ 0, to any time t ≥ t0; would Eq. (4.109) and the state‐
transition matrix change? To find out, we need to convert Eq. (4.109) into a
form that shows t0 ≠ 0 as the initial state rather than t0 = 0 (Kuo, 1991).

Using Eq. (4.109), we find x(t) at t0 to be

x(t0) = Φ(t0)x(0) + ∫
t0

0

Φ(t0 − τ)Bu(τ)dτ

Solving for x(0) by premultiplying both sides of Eq. (K.1) by Φ−1 (t0) and
rearranging,

x(0) = Φ
− 1(t0)x(t0) − Φ

− 1(t0) ∫
t0

0

Φ(t0 − τ)Bu(τ)dτ

Substituting Eq. (K.2) into Eq. (4.109) yields



(K.3)

(K.4)

(K.5)

x(t) = Φ(t)(Φ
− 1(t0)x(t0) − Φ

− 1(t0) ∫
t0

0

Φ(t0 − τ)Bu(τ)dτ

+ ∫
t0

0

Φ(t − τ)Bu(τ)dτ

= Φ(t)Φ
− 1(t0)x(t0) − Φ(t)Φ

− 1(t0) ∫
t0

0

Φ(t0 − τ)Bu(τ)dτ

+ ∫
t

0

Φ(t − τ)Bu(τ)dτ

Since Φ(t) = e
At and Φ(− t) = e

− At, Φ(t)Φ(− t) = I. Hence,

Φ
− 1(t) = Φ(− t)

Therefore

Φ(t)Φ
− 1(t0) = e

At
e

− At0 = e
A(t−t0) = Φ(t − t0)

Substituting Eq. (K.5) into Eq. (K.3) yields
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(K.9)

x(t) = Φ(t − t0)x(t0) − ∫
t0

0

Φ(t − t0)Φ(t0 − τ)Bu(τ)dτ

+ ∫
t

0

Φ(t − τ)Bu(τ)dτ

But

Φ(t − t0)Φ(t0 − τ) = e
A(t−t0)

e
A(t0−τ) = e

A(t0−τ) = Φ(t − τ)

Substituting Eq. (K.7) into Eq. (K.6),

x(t) = Φ(t − t0)x(t0) − ∫
t0

0

Φ(t − τ)Bu(τ)dτ + ∫
t

0

Φ(t − τ)Bu(τ)dτ

Combining the two integrals finally yields

x(t) = Φ(t − t0)x(t0) + ∫
t

t0

Φ(t − τ)Bu(τ)dτ

Equation (K.9) is more general than Eq. (4.109) in that it allows us to find
x(t) after an initial time other than t0 = 0. We can see that the state‐
transition matrix, Φ(t – t0), is of a more general form than previously
described. In particular, the state‐transition matrix is also a function of the



initial time. We conclude this section by deriving some important
properties of Φ(t – t0).

Using Eq. (K.4), the inverse of Φ(t – t0) is

Φ
− 1(t − t0) = Φ(t0 − t)

Also, from Eq. (K.7),

Φ(t2 − t0) = Φ(t2 − t1)Φ(t1 − t0)

which states that the transformation from t0 to t2 is the product of the
transformation from t0 to t1 and the transformation from t1 to t2.
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Appendix L
Derivation of Similarity Transformations
L.1 Introduction
In Section 5.7, in the text we saw that systems can be represented with different
state variables even though the transfer function relating the output to the input
remains the same. The various forms of the state equations were found by
manipulating the transfer function, drawing a signal‐flow graph, and then writing
the state equations from the signal‐flow diagram. These systems are called similar
systems. Although their state‐space representations are different, similar systems
have the same transfer function and hence the same poles or eigenvalues.

The question now arises whether we can make transformations among similar
systems from one set of state equations to another without using the transfer
function and signal‐flow graphs. In this Appendix, we will derive this
transformation.

L.2 Expressing Any Vector in Terms of Basis Vectors
Let us begin by reviewing the representation of vector quantities in space. In
Chapter 3, we learned that the state variables form the axes of the state space.
Using a second‐order system as an example, Figure L.1 shows two sets of axes, x1x2
and z1z2.1

FIGURE L.2 State‐space transformations



(L.1)

(L.2)

Thus a state vector, x, in state space can be written either in terms of the state
variables or axes, x1 and x2, or if we call it z, the state variables or axes, z1 and z2. In
other words, the same vector is expressed in terms of different state variables.
From this discussion, we begin to see that the transformation from one set of state
equations to another may be simply the transformation from one set of axes to
another set of axes. Let us look further into this possibility by first clarifying the
ways in which vectors can be represented in space.

Unit vectors, Ux1
, and Ux2

, which are collinear with the axes x1 and x2, form
linearly independent vectors called basis vectors for the space, x1x2. Any vector in
the space can be written in two ways. First, it can be written as a linear combination
of the basis vectors. This linear combination implies vector summation of the basis
vectors to form that vector. Second, any vector can be written in terms of its
components along the axes. Summarizing these two ways of writing a vector, we
have

x = x1Ux1
+ x2Ux2

=[ x1

x2
]

Similarly, the same vector, which will now be called z, can be written in terms of
the basis vectors in the z1z2 space,

z = z1Uz1
+ z2Uz2

=[ z1

z2
]

L.3 Vector Transformations
What is the relationship between the components of x and z in Eqs. (L.1) and
(L.2)? In other words, how do we transform vector x into vector z and vice versa?
To begin we realize that unit vectors Uz1 , and Uz2 , which are collinear with z1 and
z2 and are basis vectors for the space, z1z2, can be also written in terms of the basis
vectors of the x1x2 space. Hence,



(L.3a)

(L.3b)

(L.4)

(L.5)

(L.6)

Uz1
= p11Ux1

+ p21Ux2

Uz2
= p12Ux1

+ p22Ux2

Substituting Eqs. (L.3) into Eq. (L.2), and realizing that the vectors z and x are the
same, yields x in terms of the components of z, or

x = (z1p11+z2p12)Ux1
+(z1p21+z2p22)Ux2

which is equivalent to

x =[ p11 p12

p21 p22
][ z1

z2
]= Pz

and

z = P− 1x

We can think of Eq. (L.5) as a transformation that takes z in the z1z2 plane and
transforms it to x in the x1x2 plane. Hence, if we can find P, we can make the
transformation between the two state‐space representations.

L.4 Finding the Transformation Matrix, P
We can find the transformation matrix, P, from Eqs. (L.3). Since we know all vector
quantities in the equation, we can then solve for pij's. Notice that the columns of P



(L.7)

are the coordinates of the basis vectors of the z1z2 space expressed as linear
combinations of the basis vectors of the x1x2 space as shown in Eqs. (L.3). Thus the
first column of P is Uz1

 and the second column is Uz2
. Partitioning P, we get

P =[Uz1
Uz2

]

Let us look at an example of the transformation of a vector from one space to
another.



(L.8)

(L.9)

(L.10)

Example L.1 Vector Transformations to New Basis

PROBLEM:
Transform the vector

x =
⎡
⎢
⎣

1

2

2

⎤
⎥
⎦

expressed with its basis vectors,

Ux1 =
⎡
⎢
⎣

1

0

0

⎤
⎥
⎦

; Ux2 =
⎡
⎢
⎣

0

1

0

⎤
⎥
⎦

; Ux3 =
⎡
⎢
⎣

0

0

1

⎤
⎥
⎦

;

to a vector expressed in the system,

Uz1 =
⎡
⎢ ⎢
⎣

0

1/√2

1/√2

⎤
⎥ ⎥
⎦

; Uz2 =
⎡
⎢ ⎢
⎣

0

−1/√2

1/√2

⎤
⎥ ⎥
⎦

; Uz3 =
⎡
⎢
⎣

1

0

0

⎤
⎥
⎦

;

SOLUTION:
Using Eq. (L.2) as a guide, the vector z can be written in terms of the basis
vectors, Uzi .
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(L.12)

(L.13)

(L.14)

z = z1Uz1
+ z2Uz2

+ z3Uz3

Substituting the values of each Uzi  given in Eq. (L.10) as components of the
basis vectors, Uxi , Eq. (L.11) is transformed to the components of x,

x = z1

⎡
⎢ ⎢
⎣

0

1/√2

1/√2

⎤
⎥ ⎥
⎦

+z2

⎡
⎢ ⎢
⎣

0

−1/√2

1/√2

⎤
⎥ ⎥
⎦

+z3

⎡
⎢
⎣

1

0

0

⎤
⎥
⎦

=

⎡
⎢ ⎢ ⎢ ⎢
⎣

0z1 + 0z2 + 0z3

(1/√2)z1 −(1/√2)z2 + 0z3

(1/√2)z1 +(1/√2)z2 + 0z3

⎤
⎥⎥⎥⎥
⎦

which can be written as,

x =
⎡
⎢ ⎢
⎣

0 0 1

1/√2 −1/√2 0

1/√2 1/√2 0

⎤
⎥ ⎥
⎦

⎡
⎢
⎣

z1

z2

z3

⎤
⎥
⎦

As we predicted, the columns of P are the basis vectors of the z1z2 space [Eq.
(L.10)]. Also,

z = P− 1x =
⎡
⎢
⎣

0 0.707 0.707

0 −0.707 0.707

1 0 0

⎤
⎥
⎦

⎡
⎢
⎣

1

2

2

⎤
⎥
⎦

=
⎡
⎢
⎣

2.83

0

1

⎤
⎥
⎦

In summary, the vector x = 1 2 2 ]T  in the x1x2 space transforms into 

z = 2.83 0 1 ]T  in the z1z2 space. x and z are the same vector expressed in
different coordinate systems.
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(L.15b)

(L.16a)

(L.16b)

(L.17a)

Now that we are able to transform a state vector into different basis systems, let us
see how to transform the state‐space representation between basis systems.

L.5 Transforming the State Equations
We have seen that the same state vector can be expressed in terms of different basis
vectors. This conversion amounts to selecting a different set of state variables to
represent the same system transfer function.

Let us now convert a state‐space representation with state vector, x, into a state‐
space representation with a state vector, z. Assume the state‐space representation
shown in Eq. (L.15).

ẋ = Ax + Bu

y = Cx + Du

Let x = Pz from Eq. (L.5). Hence,

Pż = APz + Bu

y = CPx + Du

Premultiplying the state equation by P−1,

ż = P− 1APz + P− 1Bu



(L.17b)

(L.18)

(L.19)

(L.20)

y = CPz + Du

Eqs. (L.17) are an alternate representation of a system in state space. The
transformed system matrix is P−1AP, the input coupling matrix is P−1B, the output
matrix is CP, and the feedforward matrix remains D.

We now will show that the transfer function, T(s) = Y(s)/U(s), which relates the
output of the system to its input for the system represented by Eqs. (L.17), is the
same as the system of Eqs. (L.15) if, y and u are scalars, y(t) and u(t).

From Eq. (3.73), the transfer function for the system of Eqs. (L.15) is

T (s) = = C(sI − A) − 1
B + D

The transfer function of the system of Eqs. (L.17) can be found by substituting its
equivalent output, system, input, and feedforward matrices into Eq. (L.18). Hence,
the transfer function for the system of Eqs. (L.17) is

T (s) = = CP(sI − P− 1AP)
− 1

P− 1B + D

Making successive use of the matrix inverse theorem, (MN)−1 = N−1M−1, we find

T (s) = CP[P(sI − P− 1AP)]
− 1

B + D = C[P(sI − P− 1AP)P− 1]B + D

Since (sI − P−1AP)P−1 = (sP−1 − P−1AP),

Y (s)

U(s)

Y (s)

U(s)



(L.21)

(L.22)

(L.23)

(L.24)

(L.25)

T (s) = C[P(sP− 1 − P− 1A)]
− 1

B + D = C[(sI − A)] − 1
B + D

which is identical to Eq. (L.18). Since the transfer function is the same, the system's
poles and zeros remain the same through the transformation.

We can show more formally that the eigenvalues do not change under a similarity
transformation. The characteristic equation for the system prior to the
transformation is det(sI−A) = 0. After the transformation, the characteristic
equation is det(sI−P−1AP) = 0. But, I = P−1P. Therefore, the characteristic
equation after the transformation can be written as

det(sP− 1P − P− 1AP) = det[P− 1(sI − A)P] = 0

Since the determinant of the product of matrices is the product of the
determinants,

det[P− 1(sI − A)P] = det(P− 1)det(sI − A)det(P) = 0

But,

det(P− 1)det(P) = det(I) = 1

Hence,

det(sI − P− 1AP) = det(sI − A) = 0

Eq. (L.25) shows that the eigenvalues do not change under the transformation.



(L.26)

(L.27)

(L.28)

(L.29a)

(L.29b)

In this appendix we have shown that a vector, x, in the x1x2 basis system can be
expressed as a vector, z, in the z1z2 basis system using

x =[
p11 p12

p21 p22
][ z1

z2
]= Pz

Similarly, the inverse is

z = P− 1x

We found that the transformation matrix, P, consists of columns, which are the
coordinates of the basis vectors of the z1z2 space expressed as linear combinations
of the basis vectors of the x1x2 space, or

P =[ Uz1 Uz2 ]

Using the previous results, the state equations can be transformed from the x state
variables to the z state variables using

ż = P− 1APz + P− 1Bu

y = CPz + Du

Finally, we found that the eigenvalues of the x system are the same as those of the z
system. Hence, the transfer function calculated from either system will be the
same.
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Note
1These axes are shown to be orthogonal (90° to each other) for clarity. In general,

the axes need be only linearly independent and are not necessarily at 90°. Linear
independence precludes collinear axes.



(M.1)

(M.2)

(M.3)

(M.4)

(M.5)

Appendix M
Root Locus Rules: Derivations
M.1 Derivation of the Behavior of the Root Locus at Infinity (Kuo, 1987)
Let the open‐loop transfer function be represented as follows:

KG(s)H(s) =

or

KG(s)H(s) =

Performing the indicated division in the denominator, we obtain

KG(s)H(s) =

In order for a pole of the closed‐loop transfer function to exist,

KG(s)H(s) =−1

Assuming large values of s that would exist as the locus moves toward infinity, Eq. (M.3) becomes

sn + (b1 − a1)sn−1 =−K

Factoring out sn, Eq. (M.5) becomes

K(sm + a1s
m−1 + … + am)

(sm+n + b1s
m+n−1 + … + bm+n)

K

( )sm+n+b1sm+n−1+…+bm+n

sm+a1sm−1+…+am

K

sn + (b1 − a1)sn−1 + …



(M.6)

(M.7)

(M.8)

(M.9)

(M.10)

(M.11)

sn(1 + )=−K

Taking the nth root of both sides, we have

s(1 + )
1/n

=−K1/n

If the term

(1 + )
1/n

is expanded into an infinite series where only the first two terms are significant,1 we obtain

s(1 + )= (−K)1/n

Distributing the factor S on the left‐hand side yields

s + = (−K)
1/n

Now, letting s = σ + jω and (−K)
1/n

= ∣
∣K

1/n∣
∣e

j(2k+1)π/n, where

(−1)
1/n

= ej(2k+1)π/n = cos( )+j sin( )

Eq. (M.10) becomes

b1 − a1

s

b1 − a1

s

b1 − a1

s

b1 − a1

ns

b1 − a1

n

(2k + 1)π

n

(2k + 1)π

n



(M.12)

(M.13a)

(M.13b)

(M.14)

(M.15)

(M.16)

σ + jω + =
∣
∣
∣
K1/n

∣
∣
∣
[cos + j sin ]

where k = 0, ± 1, ± 2, ± 3,…Setting the real and imaginary parts of both sides equal to each other, we
obtain

σ + =
∣
∣
∣
K1/n∣

∣
∣
cos

ω =
∣
∣
∣
k1/n∣

∣
∣
sin −

Dividing the two equations to eliminate |K1/n|, we obtain

=

Finally, solving for ω, we find

ω =[tan ][σ + ]

The form of this equation is that of a straight line,

ω = M(σ − σ0)

where the slope of the line, M, is

b1 − a1

n

(2k + 1)π

n

(2k + 1)π

n

b1 − a1

n

(2k + 1)π

n

(2k + 1)π

n

σ +
b1−a1

n

ω

cos
(2k+1)π

n

sin
(2k+1)π

n

(2k + 1)π

n

b1 − a1

n



(M.17)

(M.18)

(M.19)

(M.20a)

(M.20b)

(M.21)

M = tan

Thus, the angle of the line in radians with respect to the positive extension of the real axis is

θ =

and the σ intercept is

σ0 =−[ ]

From the theory of equations,2

b1 =−∑ finite poles

a1 =−∑ finite zeros

Also, from Eq. (M.1),

n = number of finite poles− number of finite zeros

= #finite poles − #finite zeros

By examining Eq. (M.16), we conclude that the root locus approaches a straight line as the locus
approaches infinity. Further, this straight line intersects the σ axis at

(2k + 1)π

n

(2k + 1)π

n

b1 − a1

n



(M.22)

(M.23)

(M.24)

(M.25)

(M.26)

σ0 =

which is obtained by substituting Eqs. (M.20)

Let us summarize the results: The root locus approaches straight lines as asymptotes as the locus
approaches infinity. Further, the equation of the asymptotes is given by the real‐axis intercept and the
angle with respect to the real axis as follows:

σ0 =

θ =

where k = 0, ± 1, ± 2, ± 3,…Notice that the running index, k, in Eq. (M.24) yields a multiplicity of lines
that account for the many branches of a root locus that approach infinity.

M.2 Derivation of Transition Method for Breakaway and Break‐in Points
The transition method for finding real‐breakaway and break‐in points without differentiating can be
derived by showing that the natural log of 1/[G(σ)H(σ)] has a zero derivative at the same value of σ as
1/[G(σ)H(σ)] (Franklin, 1991).

We now show that if we work with the natural log we can eliminate the step of differentiation.

First find the derivative of the natural log of 1 / [G(σ)H(σ)] and set it equal to zero. Thus,

ln[ ]= G(σ)H(σ) [ ]= 0

Since G(σ)H(σ) is not zero at the breakaway or break‐in points, letting

ln[ ]= 0

will thus yield the same value of σ as letting

∑ finite poles −∑ finite zeros

#finite poles − #finite zeros

∑ finite poles −∑ finite zeros

#finite poles − #finite zeros

(2k + 1)π

#finite poles − #finite zeros

d

dσ

1

G(σ)H(σ)

d

dσ

1

G(σ)H(σ)

d

dσ

1

G(σ)H(σ)



(M.27)

(M.28)

(M.29)

[ ]= 0

Hence,

ln[ ] = ln[ ]

  = ln(σ + p1) + ln(σ + p2) … ln(σ + pn)−ln(σ + z1) − ln(σ + z2) … − ln(σ + z

  = + … + − − …− = 0

or

n

∑
i=1

=
m

∑
i=1

where zi and pi are the negatives of the zero and pole values of G(s)H(s), respectively. Equation (M.29)
can be solved for σ, the real axis values that minimize or maximize K, yielding the breakaway and break‐
in points without differentiating.
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Notes
1 This is a good approximation since s is approaching infinity for the region applicable to the derivation.

2 Given an nth‐order polynomial of the form sn + an–1sn–1 + …, the coefficient, an–1, is the negative sum
of the roots of the polynomial.

d

dσ

1

G(σ)H(σ)

d

dσ

1
G(σ)H(σ)

d

dσ

(σ+p1)(σ+p2)…(σ+pn)

(σ+z1)(σ+z2)…(σ+zm)

d

dσ

1
σ+p1

1
σ+p2

1
σ+pn

1
σ+z1

1
σ+z2

1
σ+zm

1

σ + pi

1
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Glossary
Acceleration constant

lim
s→0

s2G (s)

Actuating signal
The signal that drives the controller. If this signal is the difference
between the input and output, it is called the error.

Analog‐to‐digital converter
A device that converts analog signals to digital signals.

Armature
The rotating member of a dc motor through which a current flows.

Back emf
The voltage across the armature of a motor.

Bandwidth
The frequency at which the magnitude frequency response is 
−3  dB below the magnitude at zero frequency.

Basis
Linearly independent vectors that define a space.

Bilinear transformation
A mapping of the complex plane where one point, s, is mapped into
another point, z, through z = (as + b) / (cs + d).

Block diagram
A representation of the interconnection of subsystems that form a
system. In a linear system, the block diagram consists of blocks
representing subsystems, arrows representing signals, summing
junctions, and pickoff points.

Bode diagram (plot)
A sinusoidal frequency response plot where the magnitude
response is plotted separately from the phase response. The
magnitude plot is dB versus log ω, and the phase plot is phase
versus log ω. In control systems, the Bode plot is usually made for
the open‐loop transfer function. Bode plots can also be drawn as
straight‐line approximations.



Branches
Lines that represent subsystems in a signal‐flow graph.

Break frequency
A frequency where the Bode magnitude plot changes slope.

Breakaway point
A point on the real axis of the s‐plane where the root locus leaves
the real axis and enters the complex plane.

Break‐in point
A point on the real axis of the s‐plane where the root locus enters
the real axis from the complex plane.

Characteristic equation
The equation formed by setting the characteristic polynomial to
zero.

Characteristic polynomial
The denominator of a transfer function. Equivalently, the unforced
differential equation, where the differential operators are replaced
by s or λ.

Classical approach to control systems
See frequency domain techniques.

Closed‐loop system
A system that monitors its output and corrects for disturbances. It
is characterized by feedback paths from the output.

Closed‐loop transfer function
For a generic feedback system with G (s) in the forward path and 
H (s) in the feedback path, the closed‐loop transfer function, T (s),
is G (s) / [1 ± G (s)H (s)], where the + is for negative feedback,
and the – is for positive feedback.

Compensation
The addition of a transfer function in the forward path or feedback
path for the purpose of improving the transient or steady‐state
performance of a control system.

Compensator
A subsystem inserted into the forward or feedback path for the
purpose of improving the transient response or steady‐state error.

Constant M circles



The locus of constant, closed‐loop magnitude frequency response
for unity feedback systems. It allows the closed‐loop magnitude
frequency response to be determined from the open‐loop
magnitude frequency response.

Constant N circles
The locus of constant, closed‐loop phase frequency response for
unity feedback systems. It allows the closed‐loop phase frequency
response to be determined from the open‐loop phase frequency
response.

Controllability
A property of a system by which an input can be found that takes
every state variable from a desired initial state to a desired final
state in finite time.

Controlled variable
The output of a plant or process that the system is controlling for
the purpose of desired transient response, stability, and steady‐
state error characteristics.

Controller
The subsystem that generates the input to the plant or process.

Critically damped response
The step response of a second‐order system with a given natural
frequency that is characterized by no overshoot and a rise time that
is faster than any possible overdamped response with the same
natural frequency.

Damped frequency of oscillation
The sinusoidal frequency of oscillation of an underdamped
response.

Damping ratio
The ratio of the exponential decay frequency to the natural
frequency.

Decade
Frequencies that are separated by a factor of 10.

Decibel (dB)
The decibel is defined as 10 logP

G
, where P

G
 is the power gain of a

signal. Equivalently, the decibel is also 20 logV
G

, where V
G

 is the
voltage gain of a signal.



Decoupled system
A state‐space representation in which each state equation is a
function of only one state variable. Hence, each differential
equation can be solved independently of the other equations.

Digital compensator
A sampled transfer function used to improve the response of
computer‐controlled feedback systems. The transfer function can
be emulated by a digital computer in the loop.

Digital‐to‐analog converter
A device that converts digital signals to analog signals.

Disturbance
An unwanted signal that corrupts the input or output of a plant or
process.

Dominant poles
The poles that predominantly generate the transient response.

Eigenvalues
Any value, λi, that satisfies AXi = λixi for xi ≠ 0. Hence, any
value, λi, that makes xi an eigenvector under the transformation
A.

Eigenvector
Any vector that is collinear with a new basis vector after a
similarity transformation to a diagonal system.

Electric circuit analog
An electrical network whose variables and parameters are
analogous to another physical system. The electric circuit analog
can be used to solve for variables of the other physical system.

Electrical admittance
The inverse of electrical impedance. The ratio of the Laplace
transform of the current to the Laplace transform of the voltage.

Electrical impedance
The ratio of the Laplace transform of the voltage to the Laplace
transform of the current.

Equilibrium
The steady‐state solution characterized by a constant position or
oscillation.

Error



The difference between the input and the output of a system.
Euler's approximation

A method of integration where the area to be integrated is
approximated as a sequence of rectangles.

Feedback
A path through which a signal flows back to a previous signal in the
forward path in order to be added or subtracted.

Feedback compensator
A subsystem placed in a feedback path for the purpose of
improving the performance of a closed‐loop system.

Forced response
For linear systems, that part of the total response function due to
the input. It is typically of the same form as the input and its
derivatives.

Forward‐path gain
The product of gains found by traversing a path that follows the
direction of signal flow from the input node to the output node of a
signal‐flow graph.

Frequency domain techniques
A method of analyzing and designing linear control systems by
using transfer functions and the Laplace transform as well as
frequency response techniques.

Frequency response techniques
A method of analyzing and designing control systems by using the
sinusoidal frequency response characteristics of a system.

Gain
The ratio of output to input; usually used to describe the
amplification in the steady state of the magnitude of sinusoidal
inputs, including dc.

Gain margin
The amount of additional open‐loop gain, expressed in decibels
(dB), required at 180° of phase shift to make the closed‐loop
system unstable.

Gain‐margin frequency
The frequency at which the phase frequency response plot equals
180°. It is the frequency at which the gain margin is measured.



Homogeneous solution
See natural response.

Ideal derivative compensator
See proportional‐plus‐derivative controller.

Ideal integral compensator
See proportional‐plus‐integral controller.

Instability
The characteristic of a system defined by a natural response that
grows without bounds as time approaches infinity.

Kirchhoff's law
The sum of voltages around a closed loop equals zero. Also, the
sum of currents at a node equals zero.

Lag compensator
A transfer function, characterized by a pole on the negative real
axis close to the origin and a zero close and to the left of the pole,
that is used for the purpose of improving the steady‐state error of a
closed‐loop system.

Lag–lead compensator
A transfer function, characterized by a pole‐zero configuration that
is the combination of a lag and a lead compensator, that is used for
the purpose of improving both the transient response and the
steady‐state error of a closed‐loop system.

Laplace transformation
A transformation that transforms linear differential equations into
algebraic expressions. The transformation is especially useful for
modeling, analyzing, and designing control systems as well as
solving linear differential equations.

Lead compensator
A transfer function, characterized by a zero on the negative real
axis and a pole to the left of the zero, that is used for the purpose of
improving the transient response of a closed‐loop system.

Linear combination
A linear combination of n variables, xi, for i = 1 to n, given by the
following sum, S:



S = KnXn + Kn−1Xn−1 + … + K1X1

where each Ki is a constant.
Linear independence

The variables xi, for i = 1 to n, are said to be linearly independent
if their linear combination, S, equals zero only if every Ki = 0 and
no xi = 0. Alternatively, if the xi's are linearly independent, then 
Knxn + Kn−1xn−1 + … + K1x1 = 0 cannot be solved for any xk.
Thus, no xk can be expressed as a linear combination of the other 
xi's.

Linear system
A system possessing the properties of superposition and
homogeneity.

Linearization
The process of approximating a nonlinear differential equation
with a linear differential equation valid for small excursions about
equilibrium.

Loop gain
For a signal‐flow graph, the product of branch gains found by
traversing a path that starts at a node and ends at the same node
without passing through any other node more than once, and
following the direction of the signal flow.

Major‐loop compensation
A method of feedback compensation that adds a compensating zero
to the open‐loop transfer function for the purpose of improving the
transient response of the closed‐loop system.

Marginal stability
The characteristic of a system defined by a natural response that
neither decays nor grows, but remains constant or oscillates as
time approaches infinity as long as the input is not of the same
form as the system's natural response.

Mason's rule
A formula from which the transfer function of a system consisting
of the interconnection of multiple subsystems can be found.



Mechanical rotational impedance
The ratio of the Laplace transform of the torque to the Laplace
transform of the angular displacement.

Mechanical translational impedance
The ratio of the Laplace transform of the force to the Laplace
transform of the linear displacement.

Minor‐loop compensation
A method of feedback compensation that changes the poles of a
forward‐path transfer function for the purpose of improving the
transient response of the closed‐loop system.

Modern approach to control systems
See state‐space representation.

Natural frequency
The frequency of oscillation of a system if all the damping is
removed.

Natural response
That part of the total response function due to the system and the
way the system acquires or dissipates energy.

Negative feedback
The case where a feedback signal is subtracted from a previous
signal in the forward path.

Newton's law
The sum of forces equals zero. Alternatively, after bringing the ma
force to the other side of the equality, the sum of forces equals the
product of mass and acceleration.

Nichols chart
The locus of constant closed‐loop magnitude and closed‐loop phase
frequency responses for unity feedback systems plotted on the
open‐loop dB versus phase‐angle plane. It allows the closed‐loop
frequency response to be determined from the open‐loop frequency
response.

Nodes
Points in a signal‐flow diagram that represent signals.

No‐load speed
The speed produced by a motor with constant input voltage when
the torque at the armature is reduced to zero.



Nonminimum‐phase system
A system whose transfer function has zeros in the right half‐plane.
The step response is characterized by an initial reversal in
direction.

Nontouching‐loop gain
The product of loop gains from nontouching loops taken two,
three, four, and so on at a time.

Nontouching loops
Loops that do not have any nodes in common.

Notch filter
A filter whose magnitude frequency response dips at a particular
sinusoidal frequency. On the s‐plane, it is characterized by a pair of
complex zeros near the imaginary axis.

Nyquist criterion
If a contour, A, that encircles the entire right half‐plane is mapped
through G (s)H (s), then the number of closed‐loop poles, Z, in
the right half‐plane equals the number of open‐loop poles, P, that
are in the right half‐plane minus the number of counterclockwise
revolutions, N, around −1, of the mapping; that is, Z = P − N .
The mapping is called the Nyquist diagram of G (s)H (s).

Nyquist diagram (plot)
A polar frequency response plot made for the open‐loop transfer
function.

Nyquist sampling rate
The minimum frequency at which an analog signal should be
sampled for correct reconstruction. This frequency is twice the
bandwidth of the analog signal.

Observability
A property of a system by which an initial state vector, x (t0), can
be found from u(t) and y(t) measured over a finite interval of time
from t0. Simply stated, observability is the property by which the
state variables can be estimated from a knowledge of the input,
u(t), and output, y(t).

Observer
A system configuration from which inaccessible states can be
estimated.



Octave
Frequencies that are separated by a factor of two.

Ohm's law
For dc circuits, the ratio of voltage to current is a constant called
resistance.

Open‐loop system
A system that does not monitor its output nor correct for
disturbances.

Open‐loop transfer function
For a generic feedback system with G(s) in the forward path and
H(s) in the feedback path, the open‐loop transfer function is the
product of the forward‐path transfer function and the feedback
transfer function, or G (s)H (s).

Operational amplifier
An amplifier—characterized by a very high input impedance, a very
low output impedance, and a high gain—that can be used to
implement the transfer function of a compensator.

Output equation
For linear systems, the equation that expresses the output variables
of a system as linear combinations of the state variables.

Overdamped response
A step response of a second‐order system that is characterized by
no overshoot.

Partial‐fraction expansion
A mathematical equation where a fraction with n factors in its
denominator is represented as the sum of simpler fractions.

Particular solution
See forced response.

Passive network
A physical network that only stores or dissipates energy. No energy
is produced by the network.

Peak time, Tp

The time required for the underdamped step response to reach the
first, or maximum, peak.

Percent overshoot, %OS



The amount that the underdamped step response overshoots the
steady‐state, or final, value at the peak time, expressed as a
percentage of the steady‐state value.

Phase margin
The amount of additional open‐loop phase shift required at unity
gain to make the closed‐loop system unstable.

Phase‐margin frequency
The frequency at which the magnitude frequency response plot
equals zero dB. It is the frequency at which the phase margin is
measured.

Phase variables
State variables such that each subsequent state variable is the
derivative of the previous state variable.

Phasor
A rotating vector that represents a sinusoid of the form 
A cos (ωt + φ).

Pickoff point
A block diagram symbol that shows the distribution of one signal to
multiple subsystems.

Plant or process
The subsystem whose output is being controlled by the system.

Poles
(1) The values of the Laplace transform variable, s, that cause the
transfer function to become infinite and (2) any roots of factors of
the characteristic equation in the denominator that are common to
the numerator of the transfer function.

Position constant
lim
s→0

G (s)

Positive feedback
The case where a feedback signal is added to a previous signal in
the forward path.

Proportional‐plus‐derivative (PD) controller
A controller that feeds forward to the plant a proportion of the
actuating signal plus its derivative for the purpose of improving the
transient response of a closed‐loop system.



Proportional‐plus‐integral (PI) controller
A controller that feeds forward to the plant a proportion of the
actuating signal plus its integral for the purpose of improving the
steady‐state error of a closed‐loop system.

Proportional‐plus‐integral‐plus‐derivative (PID) controller
A controller that feeds forward to the plant a proportion of the
actuating signal plus its integral plus its derivative for the purpose
of improving the transient response and steady‐state error of a
closed‐loop system.

Quantization error
For linear systems, the error associated with the digitizing of
signals as a result of the finite difference between quantization
levels.

Raible's tabular method
A tabular method for determining the stability of digital systems
that parallels the Routh–Hurwitz method for analog signals.

Rate gyro
A device that responds to an angular position input with an output
voltage proportional to angular velocity.

Residue
The constants in the numerators of the terms in a partial‐fraction
expansion.

Rise time, Tr

The time required for the step response to go from 0.1 of the final
value to 0.9 of the final value.

Root locus
The locus of closed‐loop poles as a system parameter is varied.
Typically, the parameter is gain. The locus is obtained from the
open‐loop poles and zeros.

Routh–Hurwitz criterion
A method for determining how many roots of a polynomial in s are
in the right half of the s‐plane, the left half of the s‐plane, and on
the imaginary axis. Except in some special cases, the Routh–
Hurwitz criterion does not yield the coordinates of the roots.

Sensitivity
The fractional change in a system characteristic for a fractional
change in a system parameter.



Settling time, Ts

The amount of time required for the step response to reach and
stay within ±2% of the steady‐state value. Strictly speaking, this is
the definition of the 2% settling time. Other percentages, for
example 5%, also can be used. This book uses the 2% settling time.

Signal‐flow graph
A representation of the interconnection of subsystems that form a
system. It consists of nodes representing signals and lines
representing subsystems.

Similarity transformation
A transformation from one state‐space representation to another
state‐space representation. Although the state variables are
different, each representation is a valid description of the same
system and the relationship between the input and the output.

Stability
That characteristic of a system defined by a natural response that
decays to zero as time approaches infinity.

Stall torque
The torque produced at the armature when a motor's speed is
reduced to zero under a condition of constant input voltage.

State equations
A set of n simultaneous, first‐order differential equations with n
variables, where the n variables to be solved are the state variables.

State space
The n‐dimensional space whose axes are the state variables.

State‐space representation
A mathematical model for a system that consists of simultaneous,
first‐order differential equations and an output equation.

State‐transition matrix
The matrix that performs a transformation on x(0), taking x from
the initial state, x(0), to the state x(t) at any time, t ≥ 0.

State variables
The smallest set of linearly independent system variables such that
the values of the members of the set at time t0 along with known
forcing functions completely determine the value of all system
variables for all t ≥ t0.



State vector
A vector whose elements are the state variables.

Static error constants
The collection of position constant, velocity constant, and
acceleration constant.

Steady‐state error
The difference between the input and the output of a system after
the natural response has decayed to zero.

Steady‐state response
See forced response.

Subsystem
A system that is a portion of a larger system.

Summing junction
A block diagram symbol that shows the algebraic summation of
two or more signals.

System type
The number of pure integrations in the forward path of a unity-
feedback system.

System variables
Any variable that responds to an input or initial conditions in a
system.

Tachometer
A voltage generator that yields a voltage output proportional to
rotational input speed.

Time constant
The time for e−at to decay to 37% of its original value at t = 0.

Time‐domain representation
See state‐space representation.

Torque–speed curve
The plot that relates a motor's torque to its speed at a constant
input voltage.

Transducer
A device that converts a signal from one form to another, for
example, from a mechanical displacement to an electrical voltage.

Transfer function



The ratio of the Laplace transform of the output of a system to the
Laplace transform of the input.

Transient response
That part of the response curve due to the system and the way the
system acquires or dissipates energy. In stable systems, it is the
part of the response plot prior to the steady‐state response.

Tustin transformation
A bilinear transformation that converts transfer functions from
continuous to sampled and vice versa. The important characteristic
of the Tustin transformation is that both transfer functions yield
the same output response at the sampling instants.

Type
See system type.

Undamped response
The step response of a second‐order system that is characterized by
a pure oscillation.

Underdamped response
The step response of a second‐order system that is characterized by
overshoot.

Velocity constant
lim
s→0

sG (s)

z‐transformation
A transformation related to the Laplace transformation that is used
for the representation, analysis, and design of sampled signals and
systems.

Zero‐input response
That part of the response that depends upon only the initial state
vector and not the input.

Zero‐order sample‐and‐hold (z.o.h.)
A device that yields a staircase approximation to the analog signal.

Zeros
(1) Those values of the Laplace transform variable, s, that cause the
transfer function to become zero and (2) any roots of factors of the
numerator that are common to the characteristic equation in the
denominator of the transfer function.

Zero‐state response



That part of the response that depends upon only the input and not
the initial state vector.



Answers to Selected Problems



Chapter 1
15. c. x(t) = 0.25 − e− 3t (0.25 cos 3.3166t + 0.2262 sin 3.3166t)

16. b. x(t) =−e− t + 9 te− t + 5e− 2t + t − 2



Chapter 2

7. =

8. c. + 10 − 7 + 30x = − 8f(t)

14. a. =

15. b. =

29. =

Y (s)

X(s)
s3+4s2+6s+8

s3+3s2+5s+1

d3x

dt
3

d2x

dt
2

dx

dt

df

dt

Vo(s)

Vi(s)
s

2(s+1)

Vo(s)

Vi(s)
s2+2s+2

s4+2s3+3s2+3s+2

θ2 ( s )

T ( s )
0.0133

s2+1.6s+0.8



Chapter 3
1. 

⎡
⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥
⎦

=

⎡
⎢ ⎢ ⎢
⎣

− −

− −

− − −

⎤
⎥ ⎥ ⎥
⎦

⎡
⎢ ⎢ ⎢
⎣

i2

i4

vo

⎤
⎥ ⎥ ⎥
⎦

+

⎡
⎢ ⎢ ⎢
⎣

⎤
⎥ ⎥ ⎥
⎦

 voy = vo = [ 0 0 1 ]
⎡
⎢
⎣

i2

i4

vo

⎤
⎥
⎦

Note: L1 is left‐most inductor in Figure P3.1 in the text.

10. a. 
⋅x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−10 −7 −1 −8

⎤
⎥ ⎥ ⎥ ⎥
⎦

 x +

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

0

0

1

⎤
⎥ ⎥ ⎥ ⎥
⎦

 r(t)

c(t) = [ 9 3 0 0 ] x

13. a. =

di2

dt

di4

dt

dvo

dt

4
3

1
3

2
3

1
9

5
18

5
18

2
3

5
3

1
3

2
5
5
18

1
3

Y (s)

R(s)
23

s3+2s2+3s+1



Chapter 4
13. a. ζ = 0.375; ωn = 4 rad/s; Ts = 2.67 s; Tp = 0.847 s; %OS = 28.06

16. a. s =−6.8 ± j13.246

25. s =−1.5 ± j3.428

26.

a. s3 − 4s2 − 4 = 0

b. s =−0.1121 ± j0.967, 4.2242

56. D = 0.143 N‐m‐s/rad



Chapter 5

3. =

5. 
=

G1G3G6 + G4G6G7 + G2G5G6G7 + G3G5G6G7

20. =

21. c. 
⋅x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

−2 1 0 0

0 −2 0 0

0 0 −5 0

0 0 0 −6

⎤
⎥ ⎥ ⎥ ⎥
⎦

 x +

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

1

1

1

⎤
⎥ ⎥ ⎥ ⎥
⎦

 r

y = [ − − ]  x

37. 
⋅x =

⎡
⎢ ⎢ ⎢ ⎢
⎣

0 1 0 0

−4 0 1 0

0 0 0 1

7 −1 0 0

⎤
⎥ ⎥ ⎥ ⎥
⎦

 x +

⎡
⎢ ⎢ ⎢ ⎢
⎣

0

0

0

1

⎤
⎥ ⎥ ⎥ ⎥
⎦

 r

y = c = [ −7 1 0 0 ] x

C(s)

R(s)

G1G5

1+G1G2+G1G3G4G5+G1G3G5G6G7+G1G5G8

C(s)

R(s)

G4G6+G2G5G6+G3G5G6

1+G6+G1G2+G1G3+G1G2G6+

C(s)

R(s)

s3+1

2s4+s2+2s

1
6

1
72

1
9

1
8



Chapter 6
1. 2 rhp, 3 lhp, 0 jω

3. 3 rhp, 2 lhp, 0 jω

5. 0 rhp, 2 lhp, 2 jω

7. Unstable

16. K > ; K <−1

28.
a. 0 < K < 6.4;

b. √2 rad/ sec

31. − < K < 0

3
4

2
3



Chapter 7
4. estep(∞) = 0; eramp(∞) = 93.33; eparabola(∞) = ∞

7. ⋅e(∞) = 3/50

9.
a. %OS = 14.01;

b. Ts = 0.107 sec;

c. estep(∞) = 0;

d. eramp(∞) = 0.075;

e. eparabola(∞) = ∞

12.

a. Kp = ,  Kv = 0,  Ka = 0;

b. e(∞) = 13.3333,  ∞,  ∞,  respectively;

c. Type 0

17. K = 12,000

21. β = 1, K = 1.16, α = 7.76, or β =−1, K = 5.16, α = 1.74

25. a. K = 831, 744, a = 831.744

27. K1 = 156.8, Kf = 7.44

29. a. Step: e(∞) = 0.1622; ramp: e(∞) = ∞

1
2



Chapter 8
12. Breakaway point = −2; asymptotes: σa =−13/3; jω-axis crossing 
= ±j6.3

14.

b. Asymptotes: σa =− ;

c. K = 75;

d. K = 1.9256

15. K = 9997; α = 7

17.

a. σa =− ;

b. s =−1.38, −3.62;

c. 0 < K < 126;

d. K = 10.3

19.
b. K = 9.4;

c. Ts = 4.62 s, Tp = 1.86 s;

d. s =−4.27;

e. 0 < K < 60

22. α = 17

29.
a. 0 < K < 4;

b. K = 1090;

c. K = 690

32.
a. K = 170.1;

b. K = 16.95

8
3

5
2



Chapter 9

1. Gc(s) = ; K ≃ 13.8 for both cases; Kp
O

= 1.38; Kp
N

= ∞;

%OS
O

= %OS
N

= 9.48; Ts
O

= Ts
N

= 4.36 s

6.
a. s =−3.33 ± j5.519;

b. Angle =−73.309°;

c. s =−4.985

d. K = 187;

e. s =−1.66, −11.7

7.
a. s =−2.4 ± j4.16;

b. s =−6.06;

c. K = 29.12;

d. s =−1.263;

f. Ka = 4.8

11. a. Gc(s) = , K = 5452; dominant poles =−4.13 ± j10.78

18.
a. Kuc = 10; Kc = 9.95;

b. Kpuc = 1.25; Kpc = 6.22;

c. %OSuc = %OSc = 4.32;

d. Uncompensated: exact second-order system, approximation OK;
compensated: closed‐loop pole at −0.3, closed‐loop zero at −0.5, simulate

e. Approach to final value longer than settling time of uncompensated
system

f. G
LLC

(s) =  yields approximately a 5 times

improvement in speed.

19. Gc(s) = , K = 1.683

22. Poles =−0.758 ±j1.48, −2.54; zeros—none

s+0.7
s

s+7
s+37.42

404.1(s+0.5)(s+4)

(s+2)(s+4)(s+0.1)(s+28.36)

(s+7.71)(s+0.1)
s



Chapter 10
8. System 1: 0 < K < 490.2; System 2: 0 < K < 1.4; System 3: 
1 < K < ∞ (Answers are from exact frequency response)

9. a. System 1: G
M

=−6.38 dB; Φ
M

=−20.3° (Answers are from exact
frequency response)

12. c. ωBW = 2.29 rad/s

19. System 2: Ts = 2.23 sec, Tp = 0.476 s, %OS = 42.62 (Answers are
from exact frequency response)

31. G
M

= 6.59 dB, Φ
M

= 46.9° (Answers are from exact frequency
response)



Chapter 11
1. a. K = 2113 (Answer is from exact frequency response)

2. a. K = 2365 (Answer is from exact frequency response)

3. b. K = 1905 (Answer is from exact frequency response)

8. Gc(s) = ,K = 2000 (Answer is from exact frequency

response)

15. Gc(s) = , K = 27.01

(Answer is from exact frequency response)

4.611(s+1.8)

(s+8.3)

(s+0.092)(s+2.392)
s



Chapter 12

1. d. For function i: T (s) =

3. b. For function i: G(s) = − + , T (s) =

where 
a = (−133k1 + 193.67k2 + 9.33k3 + 30)

b = (−1330k1 + 3873.4k2 + 28k3 + 200)

c = 1866k3

and C = [ 1 1 1 ]; B = [ −133 193.67 9.33 ]T  was used

8.
a. Uncontrollable;

b. Controllable;

c. Controllable

10. K = [ 92.35 36.78 −7 ] for a characteristic polynomial of 
(s + 6)(s2 + 8s + 45.78) = s3 + 14s2 + 93.78s + 274.7

15. L = [ −671.19 1472.4 ]T  for a characteristic polynomial of 
s2 + 144s + 14, 400

s+3
s2+(k2+8)s+(k1+16)

9.33
s

133
s+20

193.667
s+30

270(s2+5s+80)

s3+as2+bs+c



Chapter 13

3. a. f(kT) = 229.5(0.4)k − 504(0.6)k + 275.5(0.8)k

5. c. G(z) = 0.395

7. b. G(z) = 0.0517

8. a. T (z) =

11. 0 < K < 15.76

12. a. Kp = , e∗(∞) = ; Kν = 0, e∗(∞) = ∞; Ka = 0, e∗(∞) = ∞

14. K = 18.42 for 15% of overshoot; 0 < K < 134.76 for stability

(z+0.2231)

(z−0.2231)(z2+0.1857z+0.04979)

z2+2.2699z+0.2995
(z−1)(z−0.2231)(z−0.4065)

G1(z)G2(z)

1+G1(z)G2H(z)

1
2

2
3



Index
A

Abscissa of convergence, 27n

Absorption, 123–125

Acceleration constant, 280, 480

Ac/dc conversion and power distribution system, 428

Ackerman’s formula, 541n

Active‐circuit realization, of compensation, 404–406

Active suspension system, 246, 309

Actuating signal, 8

Actuator block diagram, 246, 247

A/D, See Analog‐to‐digital converter

Admittance, 45

AGC, See Automatic generation control

Agee, J. T., 93, 101, 128, 134

Aggarwal, J. K., 93

Agricultural delivery booms, 530

AIDS, See HIV/AIDS

Aircraft:

hypersonic flight testing, 428

STOL fighter aircraft, 272

Akesson, M., 94

α‐subsystem, of grid‐connected converter, 428–429, 504, 631

Alternative Drivetrains, 23, 29n



Alvarez, T., 529n, 576, 580n

Alvin, 230

Amplifiers:

operational, 49–53, 161, 162

power, 85, 121

preamplifiers, 85

transfer functions and, 85

Amplifier saturation, 79

load angular velocity response and, 165

Amplitudes, 134

Analogs:

explanation of, 75

parallel, 77–78

series, 75–77

Analog‐to‐digital control conversion

antenna azimuth for, 578

steps to, 581

Analog‐to‐digital (A/D) converter, 579, 580

Analysis, See also Control systems analysis

definition of, 9

feedback amplifier, 5

mesh, 40–45

nodal, 42, 45–47

qualitative design and, 131

sensitivity, 18

sinusoidal frequency, 5

via input substitution, 295–297



Analytical expressions for frequency response, 424–425

Anderson, C. G., 356, 367, 367n

Anderson, S., 23, 29

Angles of departure and arrival:

from complex pole, 325–326

in root locus sketching, 324–326

Angular displacement:

load, 165, 166

in lossless gears, 67–68

torque‐, 61

Angular velocity, 73

load angular velocity response and, 165

torque‐, 61

Ansermino, J. M., 356

Antenna azimuth, 11–14, 17

analog‐to‐digital control conversion for, 578

block diagram for, 17

position control system, 175–176, 246, 570–571



Antenna control system, 11–14

cascade compensation and, 523–525

closed‐loop response design for, 231–234

controller/observer design and, 567–572

digital cascade compensator design and, 621–623

gain design and, 523

lag‐lead compensation and, 409–413

open‐loop response and, 175–178

root locus for, 341–343

stability design/transient performance and, 491–492

stability design via gain for, 264–265

state‐space representation and, 121–123

steady‐state errors and, 297–298

transfer functions for, 84–86

transient design via gain and, 341–343, 619–621

Aquifers, 124–125

Aquifer system model, 124

Aranda, J., 24, 26

Armature, 70–71

Armature circuit, 15, 70–71

Armature resistance, 72

Armature voltage, 71, 73

Arrival angle, See Angles of departure and arrival

Arterial blood pressure, 369

Artificial heart, open‐loop transfer function, 200

Artificial pacemakers, 631

Ashkenas, I., 192



Assembly‐line robots, steady‐state errors and, 284

Åström, K., 356, 363, 496, 502, 613, 627

Asymptotes:

approximations of, 428–451

root locus sketching with, 317–318

A Treatise on the Stability of a Given State of Motion (Routh), 5

Automatic field current regulator, 368–369

Automatic generation control (AGC), 427

Automatic Voltage Regulator, 249, 274

B
Back electromotive force, 71

Backlash:

on load angular displacement response, 166, 167

as nonlinearilty, 79

in systems of gears, 65

Bahill, A. T., 23

Baker, M. W., 356

Ballard, R. D., 230, 240, 268

Bandwidth, 467

Baratta, R. V., 193

Barbé L., 240, 248n

Barkana, I., 527, 530

Bauer, P., 129, 135n, 240, 269, 304, 356, 420, 497, 527, 575, 628

Bayle B., 240, 248n

Bechhoefer, J., 23

Behavior at infinity, root locus sketching and, 316–319



Bell Telephone Laboratories, 5

Bennett, S., 4n, 23

Benningfield, L. M., 94

Berenguel, M., 23, 93, 128, 192, 240, 268, 303, 356, 419, 496,
527, 575, 627

Bersak, D. R., 269

Bessemer, Henry, 5

Bhambhani, V., 496, 504

Bhandari, M., 575, 582

Bhattacharyya, S. P., 496, 527

BIBO, See Bounded‐input bounded‐output

Bicycle:

self‐balancing, 504

steer and roll angle of, 502

steering and tilt angle of, 363

Bilinear transformations, in digital control systems, 600–601

Binu, L. S., 420

Biological system, 86–87

Bittanti, S., 419, 428

Block diagram(s), 16–17

converting signal‐flow graphs to, 208–209

functional, 12, 13, 15

of multiple subsystems, 195–204

of open‐/closed‐loop systems, 7

of phase variables, 112

of summing junctions, 200

of transfer functions, 37



Block diagram reduction, 17

digital control systems and, 593–596

by moving blocks, 202–203

of sampled‐data systems, 594–595

via familiar forms, 201–202

Blood pressure, arterial, 200, 369

Bode, H. W., 5, 23, 496



Bode plots:

of (s+α), 429

approximations for, 427–428

break frequency, 429

determining stability via, 462–464

evaluating gain/phase margins via, 464–466

for gain adjustment, 500–501

gain margin/phase margin from, 465

for G(s)=(s+α), 428–431

for G(s)=1/s, 433

for G(s)=1/(s 2+2ζωns+ωn 2), 439–443

for G(s)=s, 432–433

for G(s)=1/(s+α), 432

for G(s)=s 2+2ζωns+ωn 2, 436–437

high‐frequency, 429

for lead compensation, 512

low‐frequency, 429

range of gain for stability via, 463–464

for ratio of first‐order factors, 433–436, 443–446

for ratio of second‐order factors, 437–439, 443–446

static error constants from, 481–482

transfer function from, 487–490

Bokor, J., 129, 135n, 240, 269, 304, 356, 420, 497, 527, 575, 628

Bona, B. E., 129, 193, 241, 269, 576

Boost converter, 250

Bosch, R., 23, 29, 94, 102



Bottom‐up design, 21

Bounded input, 243

Bounded‐input bounded‐output (BIBO), 243–244

Boyd, M., 627

Branches:

root locus sketching and, 315

of signal‐flow graphs, 207–210

Breakaway points:

explanation of, 319–321, 328

using differential calculus to find, 321–322

without differentiation, 322–323

Break frequency, 429

Break frequency asymptotes, 429

Break‐in points:

explanation of, 319–321, 328

using differential calculus to find, 321–322

without differentiation, 322–323

Breazeal, C., 24

Bretholtz, Ø., 24

Budak, A., 419

Butler, H., 240, 250n

Bylinkski, G., 303

C
Cai, Y., 304



Camacho, E. F., 23, 30, 93, 103, 128, 136, 192, 204, 240, 268,
276, 303, 313, 356, 371, 419, 429, 496, 505, 527, 532, 575, 582,
627

Campbell, T. J., 356, 367n

Cancellation, pole‐zero, 163–164

Cannon, R. H., Jr., 23, 39, 78, 93

Canonical form:

controller, 219–220, 224

Jordan, 219

observer, 220–224, 550–552

transformations to, 219–224

Capacitors, 107

Cárdenas, M. O., 575

Cardona, J. E., 575, 581

Carlson, L. E., 93, 128

Cascade compensation:

antenna control and, 523–525

in digital control systems, 613

steady‐state error design via, 499

steady‐state errors via, 362–371

transient response design via, 499

transient response improvement via, 371–383

via s‐plane, 612–616

Cascade compensators, 394, 614–615, 621–623

Cascaded interconnections, 27

Cascaded subsystems, 196–198, 223

Cascaded systems, load in, 197



Cascade form:

of multiple subsystems, 196–198

of state space, 215–217, 224

Catheter, deflection response, 198–199

Cereijo, M. R., 128

Chan, W. L., 269

Chaos, D., 24, 26

Characterizing response, from damping ratio, 145

Chassaing, R., 617n, 627

Chebyshev, P. L., 5

Chemical process control system, 273

Chen, J. M., 240, 248n

Chen, N., 304, 310n

Chen, S.‐Y., 240, 250n

Chen, Y. D., 193

Chen, Yq., 496

Chignola, R., 93, 100

Chiu, D. K., 128, 132n

Circuits:

armature, 15, 70–71

complex, 43–47

integrated, 250

inverting operational amplifier, 50–51

nonminimum‐phase electric, 161

simple, 40–43

transformed, 41

Classical technique, 96, See also Frequency‐domain modeling



Cleveland, J. P., 192

Clifford, William Kingdon, 5

Closed‐loop feedback, in ventilators, 365

Closed‐loop frequency responses:

closed‐loop transient responses and, 466–469

relation between open‐loop and, 469–474

Closed‐loop polar plot, 474n

Closed‐loop poles, 244–246, 306, 310, 328, 334, 364

Closed‐loop response design, for antenna control, 231–234

Closed‐loop system, 8, 131

block diagram of, 7

error, 272–273

for ideal integral compensator, 364

Closed‐loop transfer function, sensitivity of, 292

Closed‐loop transient responses:

closed‐loop frequency responses and, 466–469

open‐loop frequency responses and, 474–478

Closed‐loop vehicle response, for train stopping, 364

Cochin, I., 93, 128

Coefficient(s):

matching, 540–541, 556, 560–562

reverse, 250

of viscous friction, 54, 61

Companion matrices, 220



Compensated system:

of ideal derivative compensation, 375–376

root locus for, 365

Compensating zero, via rate feedback, 398–400

Compensation, See also specific types

active‐circuit realization of, 404–406

physical realization of, 404–408

for systems, 8

techniques, 361

Compensators, 8, 361–362, See also specific types

passive realization of, 407

root locus with, 363

root locus without, 363

Completely controllable, 538n

Completely observable, 554n

Complex circuits:

via mesh analysis, 43–45

via nodal analysis, 45–47

Complex numbers, vector representation of, 307–309

Complex pole, angle of departure/arrival from, 325–326

Component design, transient response through, 153–154

Component responses, of three‐pole system, 155–156

Computer‐aided design, 19–20

Computer‐controlled systems, 8

Computer hard disk drive, 9, 366, 530

Computers, See Digital computers

Computer simulation, of step responses, 344



Conductance, 46n

Conservation, flow for, 125

Constant‐acceleration inputs, 272

Constant command, 17

Constant M circles, 469–472

Constant N circles, 469–472

Constant‐velocity inputs, 271

Continuous casting, in steel production, 248

Continuous stirred tank reactor, 579, 580

Contours, 447–450

Controllability, 537–540

by inspection, 537–538

via controllability matrix, 538–540

Controllability matrix, 538–540

Controllable systems, 537

Controlled variable, 7, 26

Controller canonical form, of state space, 219–220, 224

Controller design, 530–537

alternative approaches to, 540–546

antenna control and, 567–572

by matching coefficients, 540–541

for phase‐variable form, 534–536

by transformation, 541–545



Controllers, See also Proportional‐plus‐integral‐plus‐derivative
(PID) controllers

master, 274

open‐loop swivel, 311

in open‐loop systems, 7

proportional‐plus‐derivative, 362, 372

proportional‐plus‐integral, 362, 366

slave, 274

Control system problem, for root locus, 306–307



Control systems, See also Feedback control systems

advantages, 2–4

analysis of, 9–14, 17–18

components, 2

computer‐aided design of, 19–20

configurations of, 6–8

definition of, 2

derivative, 362

design objectives for, 9–14

design process, 14–18

digital computers in, 6

engineering, 20–21

history of, 4–6
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poles and, 131, 133
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Negative‐feedback systems, 337, 338
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Network theory, 104
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Nichols charts, 473–474

lag‐lead compensation design using, 520–522
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Nodal analysis:

complex circuits via, 45–47

simple circuits via, 42



Nodal equations:

form of, 48

method to write, 45–47

Node(s):

multiple, 46–47

of signal‐flow graphs, 207, 208

single, 42

No integration systems, steady‐state error for, 278

No‐load speed, 73

Noninverting operational amplifier, 51–53, 246

circuit, 52

schematic, 51

Nonlinear electrical network, 82–83

Nonlinearities, 78–79
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time response and, 165–167

Nonlinear systems, 78–79

representation of, 119–120

translational mechanical, 120

Nonminimum‐phase electric circuit, 161

Nonminimum‐phase system:

step responses of, 161, 163

transfer function of, 161–163

Nontouching loop gain, 210–211

Nontouching loops, 210–211
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steady‐state actuating signal for, 290–291

steady‐state errors for, 288–290
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Notch filter, 393–395
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Nyquist criterion, 446–451

derivation of, 447–450
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stability via, 456–460
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via observability matrix, 554–555

Observability matrix, 553–556

observability via, 554–555

unobservability via, 555–556

Observable systems, 553
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Observer canonical form:

observer design for, 550–552

of state space, 220–224
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antenna control and, 567–572
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OMS, See Orbital maneuvering system
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closed‐loop transient responses and, 474–478

relation between closed‐loop and, 469–474

response speed from, 476–478

Open‐loop function, Nyquist diagram for, 454–456

Open‐loop pitch response, UFSS and, 178–180

Open‐loop poles, 316–317, 363

Open‐loop response, antenna control and, 175–178

Open‐loop swivel controller, 311
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Open‐loop transfer function, 200
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steady‐state error and, 271, 272, 277–278
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Parallel subsystems, 198
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Passive‐circuit realization, 406–408

PD controllers, See Proportional‐plus‐derivative controllers
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evaluation of, 148

lines of constant, 151

from pole location, 151–153

from transfer function, 150
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inverted pendulum cart system, 134, 202–203, 273, 425,
581–582

simple, 119

Percent overshoot, 147

evaluation of, 148–149

lines of constant, 151

from pole location, 151–153

for time delay systems, 485–486

from transfer function, 150

v. damping ratio, 149
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Pharmaceutical drug absorption, 123–125
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Phase frequency response, 424

Phase margin:

from Bode plots, 465

damping ratio from, 475–476

evaluating, 464

via Nyquist diagram, 460–462

Phase‐variable form, state space in, 215, 223

Phase‐variable representation:

controller design for, 534–536

for plant, 532–534

Phase variables, 113

block diagram of, 112

choice, 110

Phasors, 423
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Phillips, C. L., 192, 269, 527, 627

Philon of Byzantium, 4
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Piccin, O., 240, 248n
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PI controllers, See Proportional‐plus‐integral controllers

PID control, 310–311
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with rate feedback, 345

root locus of, 343
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without rate feedback, 344

Pitch control system, negative step response of, 179

Pitch gain, 265

Planetary gear systems, 202
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phase‐variable representation for, 532–534

pole placement for, 532–537

state‐space representation of, 530–531

with state‐variable feedback, 567–568

Plots, in MATLAB Simulink program, See also specfic types of
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Polar plot, 474n
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eigenvalues and, 168–171

evaluating response with, 134

of first‐order system, 132–134

of transfer function, 132

underdamped response using, 139

Pole distribution, via Routh table with row of zeros, 252–253
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peak time from, 151–153

percent overshoot from, 151–153

for plant, 532–537

for root locus, 310

settling time from, 151–153

topology for, 530–532

Pole plot, for underdamped second‐order system, 151

Pole sensitivity, root locus and, 339–341

Pole‐zero plot, 133

Position constant, 478–479

Position control system, 11, 26

antenna azimuth, 11–14, 175–176

response of, 13

with specified overshoot and settling time, 426–427

tachometer as, 396

Position error constant, 280

Positive feedback, 199n

Positive‐feedback systems, root locus for, 337–339
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output, 84–85
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Pulse transfer function:
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Q
Qian, H., 269, 497

Qualitative analysis and design, 131

Qualitative method, 131

Quantization error, 580
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Radial pickup position control, of DVD player, 428

Radiator power control, 502

Raible’s tabular method, 599

Ramp inputs:

in control system design, 17, 18

sensitivity of steady‐state error with, 293

steady‐state error and, 271–273, 277

unit, 605

Ramp response error, for lag‐lead compensator, 392

Random early detection (RED) algorithm, 503

Range of gain for stability:

for time delay systems, 484–485

via Bode plots, 463–464

via Nyquist criterion, 457–458

Range of sampling interval, for stability, 599–600

Rate feedback, compensating zero via, 398–400

Raven, F. H., 56, 94, 527

Reaction control system (RCS), 6

Real‐axis breakaway, root locus sketching and, 319–323

Real‐axis break‐in points, root locus sketching and, 319–323

Real‐axis pole, transient response and, 133

Real‐axis segments, root locus sketching and, 315



Realization:
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of lag‐lead compensator, 410–411

passive‐circuit, 406–408

Reciprocal, of time constant, 136

RED algorithm, See Random early detection algorithm
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Reference input, 26
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Remote‐controlled robot, 3
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Residues, 163–164
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Response speed, from open‐loop frequency response, 476–478

Retinal light flux, 366
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Riedel, S. A., 94

Riegelman, S., 129
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Rise time, 136, 146
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harmonic drives with, 368

Robots, 3
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FANUC M‐410iB, 264
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leg of, 119–120

remote‐controlled, 3

with television imaging systems, 132
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Root locus, 5

for antenna control, 341–343

for compensated system, 365

compensation configurations for, 361

with compensator, 363

control problem for, 306–307

definition of, 306, 310–312

frequency response design methods and, 499

from general control system, 312

generalized, 335–336

of ideal derivative compensation, 375, 377

lag compensation and, 368

for lag‐lead compensator, 388–391

for minor‐loop feedback compensation, 401

for notch filter, 393–395

for PID controllers, 385

of pitch control loop, 343

plotting/calibrating, 326–327

pole location for, 310

pole plot for, 311

pole sensitivity and, 339–341

for positive‐feedback systems, 337–339

properties of, 312–314

sample, 359

for security camera system, 310

starting/ending points and, 315–316

UFSS and, 343–345
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vector representation of complex numbers and, 307–309

without compensator, 363

Root locus design methods:

for antenna control system, 409–413

cascade compensation, 362–371

with compensators, 361–362

with feedback compensation, 396–404

improving steady‐state error with, 360–371, 383–395

improving transient response with, 359–360, 371–383

lag‐lead compensator design, 388–393

notch filter, 393–395

physical realization of compensation, 404–408

PID controller design, 384–388

in UFSS vehicle, 412–413
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example of, 328–331
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real‐axis breakaway and, 319–323
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symmetry and, 315
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Rotational mechanical load, DC motor driving, 72

Rotational mechanical system transfer functions, 61–65
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degrees of freedom in, 61
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Routh‐Hurwitz criterion, 246–248
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examples of, 254–261

factoring via, 260

special cases of, 248–254

stability via, 259–260

with zero in first column, 255–256

Routh table:

generating, 246–248

interpreting, 248

pole distribution via, 252–253
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transfer functions and, 589–593

z‐transform and, 593

Sampler, modeling, 582–583
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Second‐order responses:

damping ratio and, 144

Second‐order step responses:

approximation, 163–164

components of, 139

Second‐order systems, 137–142

damping ratio of, 142–145

natural frequency of, 142

step responses for damping, 138–139

Second‐order transfer functions via testing, 154–155

Second‐order underdamped responses:

for damping ratio values, 147

specifications, 146–147

Second‐order underdamped systems, step responses of, 151–152

Security camera system, root locus for, 310

Self‐balancing bicycle, 504

Sensitivity:

of closed‐loop transfer function, 292

steady‐state errors and, 291–294

of steady‐state error with ramp input, 293

of steady‐state error with step input, 293

Sensitivity analysis, 18

Sensor, 8

Serial hybrid‐electric vehicle, 29

Series analog, 75–77

Series RLC electrical network, 40



Settling time, 136, 147

lines of constant, 151

from pole location, 151

from transfer function, 150
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Shinners, S. M., 576

Ship:

roll axis, 180

roll‐stabilizing system of, 503
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steering, 5

Shortening muscle velocity, 247

Short period mode, 200

Short takeoff and landing (STOL) fighter aircraft, 272

Signal‐flow graphs:

components of, 207

converting block diagrams to, 208–209

development stages of, 213–214

of multiple subsystems, 207–210

of state equations, 213–215

Similarity transformations:

of multiple subsystems, 224–236

on state equations, 225–226



Similar systems, 224, 230

Simple circuits:

via nodal analysis, 42

via voltage division, 43

Simple pendulum, 119

Simulink program (MATLAB), 19, 159, 164–165, 201, 206, 615

Single loop:

via differential equation, 40

via mesh analysis, 40–42

via transform methods, 42

Single node, 42

Single‐pole oil cylinder valve, 134

Sinha, N. K., 576

Sinusoidal frequency analysis, 5

Sinusoidal inputs, 17, 18

SISO systems, fixed structure controllers for, 504–505, 531

Sivan, R., 241

Skeletal muscle voltage potential, 200

Slave controller, 274

Smith, C. A., 420, 425, 426n, 527, 530

Smith, C. L., 628

Smoother, block diagram, 363

Soleimani‐Mosheni, M., 269, 497
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Space shuttle, 6

main engine controller, 8

multiple subsystems in, 196

Speed control, 4

Sperry Gyroscope Company, 5

s‐plane:

cascade compensation via, 612–616

digital system stability via, 601–603

mapping of, onto z‐plane, 597

Split‐power hybrid‐electric vehicle, 29

Spong, M., 304, 357, 368, 368n

Spring constant, 54, 61

Springs, translational relationships for, 54

Squid jet locomotion, 100



Stability, 10

for antenna control system, 264–265

closed‐loop poles/response in, 244–246

definition of, 243–244

determining, 462–463

digital system, 596–603

evaluation of, 244–246

Maxwell’s criterion of, 5

of missile control system, 597–599

range of sampling interval for, 599–600

Routh‐Hurwitz criterion of, 246–261

in state space, 261–266

transient response design via gain adjustment and, 499

in UFSS vehicle, 265–266

via epsilon method, 249

via mapping only positive jω‐axis, 458–459

via Nyquist diagram, 456–460

via reverse coefficients, 250

via Routh table, 251

Stability design:

antenna control and, 491–492

via gain, 264–266

via root locus, 609–610

Stabilization, control systems for, 5

Stabilizers, 180

Stable systems, steady‐state error and, 272

Stall torque, 73



Stapleton, C. A., 357, 368

State, 98

State equations, 97, 101–103

Laplace transform solution, 167–171

signal‐flow graphs of, 213–215

similarity transformations on, 225–226

time domain solution of, 171–175

State‐feedback design, 546

State space, 102

alternative representations in, 215–224

cascade form of, 215–217, 224

controller canonical form of, 219–220, 224

diagonalizing system in, 228–229

graphic representation of, 101

observer canonical form of, 220–224

parallel form of, 217–219, 223

phase‐variable form of, 215, 223

stability in, 261–266

from transfer function, 110–116

transfer function from, 116–118



State‐space design methods:

for antenna control, 567–572

controllability in, 537–540

controller design, 530–537, 540–546

observability in, 553–556

observer design, 546–553, 556–563

steady‐state error design via integral control, 563–566

v. domain design methods, 529

State‐space representation, 16, 97

advantages of, 96

antenna control and, 121–123

application of, 102–109

computer simulation and, 125

of electrical networks, 96–100

of feedback systems, 222–223

general, 101–103

linearization, 118–125

of plant, 530–531

to transfer function, 117–118

State‐transition matrix, 171–172

Laplace transform of, 171–172

via Laplace transform, 174

State‐variable feedback, plant with, 567–568

State variables, 97, 102

linearly independent, 102

minimum number of, 102–103

State vector, 102



Static error constants, 280–283, 367

from Bode plots, 481–482

steady‐state error via, 281–282

Steady‐state actuating signal, for nonunity feedback systems,
290–291

Steady‐state error design:

via cascade compensation, 499

via integral control, 563–566



Steady‐state errors, 2, 13–14, 18, See also Errors

antenna control and, 297–298

assembly‐line robots and, 284

definition of, 271

digital control systems and, 603–607

digital feedback control system for, 604

for disturbances, 286–288

evaluating, 272–273

finding, 606

from frequency response, 478–482

improving, 360–361, 383–395

for no integration systems, 278

for nonunity feedback systems, 288–290

for one integration systems, 279

parabola input and, 271, 272, 277–278

ramp input and, 271–273, 277

sensitivity of, 291–294

sources of, 273–274

specifications, 283–286

stable systems and, 272

from step disturbances, 287

step input and, 271–273, 276–277

for systems in state space, 294–300

system type and, 282–283

in terms of G(s), 275–279

in terms of T(s), 274–275

test inputs, 271–272



test waveforms for, 271

transient response, 18, 383–395

for unity feedback systems, 274–279

using final value theorem, 294–295

using input substitution, 296–297

via cascade compensation, 362–371

via static error constants, 281–282

video laser disc recorder and, 298–300

Steady‐state response, 9, 10n, 131n

Steam‐driven power generators, 427

Steam‐driven turbine governor system, 630

Steam pressure control, 4

Steel production, continuous casting in, 248

Steering:

for four‐wheel drive vehicle, 310

history of control systems for, 5

missile steering control, 131

vehicle steering control model, 310, 363

Steering angle, bicycle, 363

Stefani, R. T., 24, 193, 198, 240, 269, 304, 419, 496, 527, 575

Step disturbances, steady‐state errors from, 287

Step inputs:

in control system design, 17, 18

sensitivity of steady‐state error with, 293

steady‐state error and, 271–273, 276–277

unit, 135, 604–605



Step responses:

computer simulation of, 344

of gain‐adjusted antenna control system, 342

for minor‐loop feedback compensation, 403

of nonminimum‐phase network, 163

of nonminimum‐phase system, 161

of pitch control loop without rate feedback, 344

of pitch control loop with rate feedback, 344

for second‐order system damping cases, 141

of second‐order underdamped systems, 151–152

of three‐pole systems, 158–159

for transfer functions, 158–159

STOL fighter aircraft, See Short takeoff and landing fighter
aircraft

s‐transform, table of, 586
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Submarine autopilot, 132

Subsystems, See also Multiple subsystems
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junctions, 7, 195, 200

torques of pendulum, 119
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Susceptance, 46n

Suspension, active, 246, 309

Svensson, J., 364n, 419

Svesson, J., 356

Sweet, L. M., 192

Symbolic Math Toolbox, 19

Symmetry, root locus sketching and, 315

System matrix, diagonalizing a, 226

System representation, 26–27

System response, 131

with additional poles, 155–159

from transfer function, 38

with zeros, 159–164

Systems in state space, steady‐state errors for, 294–300

System step response test, laboratory results of, 137

System type, steady‐state errors and, 282–283

System variables, 103

T
Tabular method (Raible), 599

Tachometer:

as position control system, 396

transfer function of, 397

Tadeo, F., 529n, 576, 579, 580n

Tan, X., 128, 132n

Taplamacioglu, M. C., 240, 269



Tarafdar, U., 627

Target environment, robotic manipulator and, 132

Tasch, U., 241, 247, 527, 529

Taylor series, 81, 82, 118

TCP/IP network model, 503

Television imaging system, robot with, 132

Temperature control system, 4, 25

Testing:

first‐order transfer functions via, 136–137

hypersonic flight, 428

second‐order transfer functions via, 154–155

Test inputs, for steady‐state error, 271–272

Test waveforms, 18

for steady‐state error, 271

Textile cross‐lapper machine, 310

Textile machine, 581n

The General Problem of Stability of Motion (Lyapunov), 5

Thermistor, 8

Thermostat, 6

Third‐order observer, 548

Third‐order system gain design, 332–335

Thomas, B., 269, 273, 497, 502

Thomsen, S., 193, 202n, 249, 269, 275, 420, 429, 497, 504, 576,
582

Three‐loop electrical network, 48

Three‐mode controllers, See Proportional‐plus‐integral‐plus‐
derivative (PID) controllers



Three‐phase ac/dc converter, 101, 251

Three‐pole systems:

comparing responses of, 158–159

component responses of, 155–156

step responses of, 158–159

Time constant, 135–136

exponential, 141, 143

reciprocal of, 136

Time delay systems, 482–486

frequency response plots of, 483–484

percent overshoot for, 485–486

range of gain for stability for, 484–485

Time‐domain modeling:

antenna control system, 121–123

applications of state‐space representation, 102–109

converting state space to transfer functions, 116–118

converting transfer functions to state space, 110–116

general state‐space representation, 101–103

with linearization, 118–125

pharmaceutical drug absorption, 123–125

of state equations, 171–175

state‐space representations of electrical networks, 96–100

v. frequency‐domain modeling, 96

Time function:

Laplace transform of, 28

z‐transform of, 585–586



Time response:

with additional poles, 155–159

for antenna control system, 175–178

in first‐order systems, 135–137

general second‐order system, 142–145

Laplace transform solutions of state equations, 167–171

nonlinearities and, 165–167

overview of, 131

overview of second‐order systems, 137–138

poles/zeros and, 131–134

second‐order systems with zeros, 159–164

time domain solution of state equations, 171–175

for UFSS vehicle, 178–180

in underdamped second‐order systems, 146–155

Time‐varying systems, 96
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