
Lab 3, SFWR ENG 3DX4
Introduction to Computer-Based Control

First week of lab: February 26, 2024
Prelab Due start of Lab Period, week of: March 4, 2024
Demo Due End of Lab Period, week of: March 4, 2023

1 Announcements

In this lab, you will be evaluated on prelab questions and demonstration of working
laboratory exercises. Evaluation of lab exercises will be performed on a checkpoint
system, with the checkpoints indicated in your laboratory instructions. In order to
receive full marks for a lab, you must show a TA your work/output at each checkpoint,
and your work must be correct and complete. In addition, lab work must be completed
in the allotted laboratory time. Prelab questions are to be completed individually,
This lab consists of 5 checkpoints.

1.1 Goals

• Introduction to computer-based control of a simple voltage-controllable elec-
tromechanical system - the DC motor

• Estimate the steady-state Gain A of a motor

• Experiment with different set-points and constants of a PID controller while
controlling the DC motor

• Estimate the time constant τ

Note: This lab consists of 5 activities. There is a corresponding checkpoint for each
activity.

Before you go for your lab session, please read the following NI documents
at your convenience, in addition to the class notes:

• Fundamentals of Motion Control PDF (see Lab 3 files)

2 Equipment Arrangement

Quanser’s SRV02 rotary servo plant consists of a DC motor, a gear box, a poten-
tiometer, and a quadrature encoder. Some models also have a tachometer.
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The potentiometer output is used to determine the gear angular position, which can
be used to implement the proportional (P) part of the PID controller. This is an
analog signal and must be converted into a digital signal before it is passed on to the
computer. The potentiometer is connected through a 6-pin DIN connector to the
S1 terminal on the Universal Power Module (UPM). The UPM supplies voltage to
the potentiometer and picks up the analog signal from its wiper, proportional to the
position of the motor shaft. The S1 output from the UPM is connected to one of the
analog input channels on the myRIO.

The tachometer output is also an analog voltage signal which is proportional
to the angular velocity of the shaft, dθ

dt
, which can be used to implement the

derivative (D) part of the PID controller. The 6-pin DIN connector of the tachometer
is connected to the S3 terminal of the UPM.

The encoder is connected directly to the myRIO ENC0 port using a 5-pin
DIN connection. The output of the quadrature encoder can be used to determine the
gear’s angular position change, which may also be used to determine angular velocity.

One analog output channel of the myRIO (AO0) provides a voltage signal,
but the myRio provides nowhere near enough current to drive the motor. Instead,
we use the UPM to amplify the signal, and provide current to the motor.

If the voltage applied to the Quanser rotary servo is close to or exceeds 10
volts, sufficient internal forces can be generated that may damage the servo’s gear
box. Fast voltage changes or rapid oscillations in voltage may also generate sufficient
force to damage the gear box. Therefore, when we use a PID controller to control
the SRV02, to protect the servo device, we normally saturate the output of the PID
controller to within ±9V (meaning, we do not allow the motor voltage to exceed this
value).

3 Laboratory Procedure

3.1 Improving our Estimation Mechanism

In this exercise we will estimate the angular velocity of the motor shaft and use it to
calculate the steady-state gain:

A =
θ̇

input voltage
=

ω

input voltage
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3.1.1 Background

The open-loop transfer function of a motor can be approximated as:

Mθ(s) =
θ(s)

V (s)
=

A

s(τs+ 1)

where A is the steady-state gain and τ is the time constant (both are positive real
valued constants).

The transfer function in terms of angular velocity ω(t) = dθ
dt
(t) can be approxi-

mated as:

Mω(s) =
Ω(s)

V (s)
= sMθ(s) =

A

τs+ 1

Ω(s) =
A

τs+ 1
V (s)

Note that the transfer function has one pole, at − 1
τ
. Assuming τ > 0, all poles are

in the left hand plane, making this system stable. We may therefore use the Final
Value Theorem (FVT):

lim
t→∞

ω(t) = lim
s→0

sA

τs+ 1
× V0

s
= V0A,

where V0 is the amplitude of the applied voltage.

In the lab, if we estimate the steady-state angular velocity for a given input
voltage V0, we can determine A. We’ll make some modifications to the model we
used in the previous lab, in order to measure the steady-state angular velocity more
accurately. We will use a sliding array of 100 angular velocity readings, and average
the values, as well as calculating and displaying the DC gain, based on this measured
average angular velocity.

1. Download “openloop.slx” from the Lab 3 folder on Avenue and save it in a
folder on your Z drive.

2. Open and study “openloop.slx”. This model is similar to the bump test model
we have used in Lab 2, but has the following differences:

• In “openloop.slx”, the step input signal is replaced by a constant input.

• The Saturation block is to limit the voltage applied to the SRV02 to ±9V
to protect the servo plant.

• The velocity unit used in this model is Degrees/s instead of Rad/s, there-
fore the gain to convert the encoder readings is 360/4096.

3. As in Lab 2, you can use this model to estimate the steady-state angular velocity
values by looking at the output graphs. This time, we’re going to implement a
running average to get more accurate velocity readings. The running average
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continuously calculates the average over a certain number of observations. It
is a simple way to reduce system noise and to get a more stable reading. Use
Figure 1 as a reference to modify your “openloop.slx” model, to calculate the
running average of SRV02 load gear’s angular velocity over 100 observations:

Simulink/Discrete/Tapped Delay
Simulink/Math Operation/Vector Concatenate
Simulink/Math Operation/Sum of Elements
Simulink/Signal Attributes/Width

Figure 1: A sample section to calculate rolling average

4. Send the running average velocity, as well as the actual input voltage applied
to the servo motor, to the same scope displaying the velocity directly derived
from the encoder readings. Also send the running average to a digital Display
block.

5. Next, add whatever blocks are necessary in order to calculate the DC gain from
the running average. This value should also be displayed in a digital Display
block.

6. Name the signals that are connected to the scope, and set the scope to display
legend.

7. Show your model to your TA to complete CHECKPOINT 1 .

3.2 Estimating the steady-state gain A

• Power on your lab system. Make sure the connections are correct.

• Run your model with an input voltage of 1V. Examine the scope display. If the
running average of the velocity is not stable, consider increasing the number of
observations to average until you are satisfied with the result. Then run the
model for a sufficiently long period of time to get the final velocity and DC gain.

• Using the chart below, run some trials, and record the values measured by your
model.
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Input Voltage (V) Average Gear Speed (Deg
s
) DC Gain (Deg

V ·s )

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

average

• Calculate the mean value of the steady-state gain. Show it to your TA to
complete CHECKPOINT 2 , along with answers to the following questions.

– Do you notice a pattern in the DC gain values you calculated? If so, what
is that pattern?

– Why do you think this is happening?

– What does this say about our model of the DC motor?

3.3 A PID Controller for Angular Position

The purpose of this part of the lab is to observe how an integral compensator (KI)
can improve steady-state error. To do this we first need to construct a model with a
PID controller to control the SRV02 gear’s angular position.

1. Start with a blank model. Place the following blocks on the model canvas: HIL
Initialize, HIL Write Analog, HIL Read Analog Timebase, Scope,
Saturation. We will use the same AO0 channel to drive the servo motor. We
will also read the potentiometer’s analog signal, which we normally connect to
myRIO’s MSP C port AI0, which is channel #8 for configuring Quarc blocks.
Configure the model for it to run on myRIO, and configure the Quarc write and
read blocks.

An alternative is to use your “openloop.slx” model as a starting point and make
the appropriate modifications.

2. The potentiometer will give a reading between -5V and +5V, corresponding to
positions between -180 and +180 degrees (or π radians). In this lab, we wish
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to control the motor in terms of degrees, not radians. Calculate the conversion
factor to convert the potentiometer readings in volts to degrees. (This is the
same as saying, how many degrees do we get per volt?)

3. Apply the factor you calculated in the previous step to convert the signals read
from the potentiometer to degrees, and connect the converted result to the
scope. The converted result is the position (in degrees) of the servo plant gear,
which is our process variable and the feedback signal.

4. Our system is going to need some input! Rather than using a constant block,
this time let’s be a bit fancier and use a slider!

• Add a constant block with a value of 1 and a Slider Gain block
(Simulink>>Math Operations).

• You can access the slider by bringing up the properties window of the
slider gain block. Set the minimum value to -170, and the maximum to 170.

According to the SRV02 user manual, if the position reading exceeds ±180
degrees, a wrap-around error will be introduced, and unstable system be-
haviour may occur. In practice, some potentiometers cannot read values
when the gear’s angle is outside ±170 degrees. This is why we set the limits
for the slider block to ±170, because the output of the slider block will be
our set-point signal (degrees). Note also that the gain is a multiplicative
factor, so we need to feed a constant value of 1 into the input in order for
it to output the slider value directly.

5. Use an Add or Sum block to calculate the difference between the set-point and
the feedback signal. This is the error between the requested set-point and the
actual position of the servo gear. The PID controller will operate on this error.

6. This time we’re not going to build the PID controller from scratch. Go to the
Simulink library: Simulink>>Discrete, find the Discrete PID Controller
and place one into your model. Set KP to 1.2, and KD and KI to zero.

7. The input to the PID block has units of degrees. Unless an extra coefficient is
implied, the output of the PID block should also be in degrees. Before using the
PID controller’s output to drive the servo motor to adjust the process variable,
we need to convert this result to volts. Use the factor you derived from Step 2
and a Divide or Product block to implement the adjustment.

8. As a safety feature to protect the servo plant, use a Saturation block to limit
the converted PID output before feeding it to the HIL Write Analog block.
Set the upper and lower bounds of this saturation to ±9. This is to limit the
PID controller’s output to ±9 V.

9. Connect the output of the Saturation block to the HIL Write Analog block.
This is the actual applied voltage to the servo motor.
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10. Connect the set-point to the same scope displaying the measured gear position.
Also, connect the actual applied voltage to the motor to the scope. Name the
signals fed to the scope and set the scope to display legend.

11. Save your model as “PIDdemo.slx”, or other appropriate name. Run your
model. Play with the Slider Gain to watch how the motor reacts.

12. Show your model to your TA to complete CHECKPOINT 3

3.4 The Importance of KI

1. In this part, we will run a number of trials comparing the steady-state error
when KI is zero or when KI is positive.

2. You have two options for measuring this steady-state error. Take a look at the
situation and use the option you think will be faster!

• The procedure used in Lab 2, where values are read from the graph, with
the assistance of the Cursor Measurements tool.

• An adaptation of the procedure used earlier in this lab, where a running
average of the output is calculated, and the difference between this average
and the set-point signal is automatically calculated.

3. Run your trials for KI = 0, as given in the chart below. In this set of trials, the
servo needs to be “zeroed” between each trial. This means you need to set the
set-point to 0 and run the model so as to set the gear position close to 0 degrees.
You also need to make sure that you are running the model for a sufficiently
long period of time so that the system has adequate time to reach steady state.

4. Now, set KI to some value greater than zero and re-run the trials. This value is
left to your discretion. You may wish to run a few trials at different KI values
until you get a response you like. It is possible through your choice of KI to
push the response into the wrap-around region, for larger set-points. If this
occurs, try lowering your KI value.

5. Once your trials have been run, calculate the average steady-state errors of the
two sets of trials.
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Set-point ess with Kp = 1.2 ∧KI = 0 ess with Kp = 1.2 ∧KI =

-150
-120
-90
-60
-30
30
60
90
120
150

average

6. Show your work to your TA to complete CHECKPOINT 4 . Be ready to answer
the following questions:

(a) Did adding KI improve the steady-state error? By how much?

(b) What negative effects did adding KI introduce?

(c) If you wanted to reduce the overshoot, what parameter would you use, and
in which direction would you tweak it?

3.5 Estimating the time constant τ

This exercise examines two methods for estimating the time constant τ .

3.5.1 Background

The closed-loop transfer function for our motor is as follows:

Gθd =
θ(s)

R(s)
=

KpA

τs2 + s+KpA

In the previous section and in this section, we wish to control the motor’s angular
position (in degrees). The units for the motor’s steady-state gain are Degrees

V
. If we

consider the conversion factors needed to correctly interpret the feedback signal, our
transfer function becomes:

Gθd =
θ(s)

R(s)
=

KpA

36τs2 + 36s+KpA
(1)

Critical Damping is that amount of damping just sufficient to prevent overshoot
or oscillations. When a system is critically damped, it has two poles located at
s = −σ. We can use this observation to calculate τ based upon the solutions to the
quadratic equation being equal and real.

Consider a general quadratic equation:

as2 + bs+ c = 0
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This has solutions:

s =
−b±

√
b2 − 4ac

2a
In the case when both roots are the same, it must be of the form

s =
−b± 0

2a

Therefore,
b2 − 4ac = 0

• Suppose you know that when the system is critically damped, Kp=K∗
and the system’s steady-state gain is A. Use the above result, and
the quadratic expression in (1), to find an equation for τ . You’ll need
this during the lab procedure.

• Your value for A was derived experimentally earlier in this lab.

• Your value of K∗ is the value of KP that results in a critically damped
system.

Another approach to calculate τ is to consider that the Root Mean Square (RMS)
value of a signal f(t) that is periodic with period T is given by the equation:√

1

T

∫ T

0

(f(t))2dt

RMS values are often easier to measure and more accurate than trying to deter-
mine peak amplitudes. It can be shown that the RMS value of u(t) = B sinωt is B√

2
.

Suppose u(t) = B sinωt is the input to a strictly stable transfer function G(s) = Y (s)
U(s)

.

In steady-state, the RMS value of y(t) is |G(jω)| B√
2
.

Thus
RMS value of y(t)

RMS value of u(t)
= |G(jω)|

This method of estimating τ is to experimentally determine the bandwidth of the
closed-loop system Gθcl(s) corresponding to the -3dB frequency ωbw for a critically
damped system. Then we have:

|G(jωbw)| =
1√
2

For a critically damped system Kp = K∗, at ωbw:∣∣∣∣ K∗A

36(jωbw)2τ + 36jωbw +K∗A

∣∣∣∣ = 1√
2

(2)

If we know the values of K∗ and A, the above equation can be used to calculate τ .

Given a complex number a + bj, its magnitude is
√
a2 + b2. To convert 1

c+dj
into

the form a+ bj, multiply top and bottom by the complex conjugate of c+ dj.
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3.5.2 Procedure

1. Find the equation for τ . You may need to review the background.

2. Take your model from the previous part and remove the steady-state error
measuring components (if you decided to add them). Set KI back to zero
on your PID controller. While you’re there, create a variable in the model
workspace for KP . This will help us tune our gain while the model is running.

3. Replace the set-point slider apparatus with aPulse Generator block (Simulink
>>Sources). Set its “Period” to something large, like 10s, its “Amplitude” to
60, and set its “Pulse Width” to 50.

4. Set the proportional gain to 15.

5. Run the model. The square wave generator allows you to send a repeating
sequence of step inputs, so that we can see the system’s step response many
times in succession.

6. As the model is running, adjust the value of the proportional gain until the
overshoot has *just* disappeared. This is your critical damping gainK∗. Record
this value.

7. Use the equation you found in Section 3.5.1 to calculate the system’s time
constant τ .

8. Now we’re going to measure the same thing using the RMS method described
above. The short version is that we need to send a sinusoidal signal instead of
a square wave, measure the reduction in amplitude at various frequencies, and
thereby discover the -3dB frequency.

9. Replace the square wave generator with a sine wave generator. Set the ampli-
tude to 60, and create a variable in the model workspace for the frequency. The
initial value of this variable should be 1 Rad/s. (Attention: the Frequency

parameter for the Sine Wave block is in Rad/s, NOT in Hz)

10. Run the model. You should already see how the amplitude of the motor output
doesn’t quite reach the set-point waveform, and that it lags slightly.

11. Run a number of trials of your choosing at various frequencies, enough so that
you can make a Bode plot that demonstrates the cut-off frequency in a suffi-
ciently convincing manner. Keep in mind that the cut-off frequency will occur
when the amplitude has reached 1√

2
.

• Once again, you can perform this operation by either reading values off
the graph directly, or by setting up some components within the model to
automatically read out the amplitude of the motor’s position signal.

12. Remember! Bode plots take gain in decibels, not the motor’s raw position
readings! You will need to convert your values accordingly.
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13. Your cut-off frequency will be the desired ωbw. Use the equation you derived to
calculate τ .

14. Show the TA your values for K∗, ωbw, and τ to complete the FIFTH AND
FINAL CHECKPOINT!

4 Closing Notes

Remember the scientific method! In order to demonstrate a phenomenon, it needs
to be repeatable and observable, and the more independent methods of verification
we can produce, the more confident we can be in our observed phenomenon.

However, some systems derived from pure scientific theory may not be practical in
reality for various reasons. For example, if a system is marginally stable, a minor
experimental error can ruin the expected results. This may be the case with the last
part of this lab when trying to find the time constant τ using the cut-off frequency
method with a closed-loop system.

In the last couple of labs, we have come at the problem of empirical model estimation
from a number of angles. How do your results from this lab compare with your
results from Lab 2? Are your estimates close, or way off?

If you have time this week, compare your lab results to those of your classmates (after
you’ve run your experiments of course), to see how they match up. Although each
set of lab apparatus may behave slightly differently, your lab results should be within
the range of others. But remember! Experimentation should be entered into with the
spirit of maximum openmindedness. You should never adjust your results so that you
get what is expected. You should verify that your experiment is being run according
to procedure, and that the theory is tested correctly by the experiment. Modifying
your results because you didn’t get what someone else got represents a corruption of
the scientific enterprise!
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