Introduction

- ► In this Section, we examine ways to determine if a system is stable.
- ▶ Of all design criteria, stability is most important.
- ► If system is unstable, then transient response and steady-state error are irrelevant.
- We will now examine a few stability definitions for linear, time-invariant systems.

Stability and Natural Response

► The total response of a system is

$$c(t) = c_{forced}(t) + c_{natural}(t)$$

- **1.** A system is stable if natural response tends to zero as $t \to \infty$.
- 2. A system is unstable if natural response grows unbounded as $t \to \infty$.
- 3. A system is marginally stable if natural response neither decays or grows (eg. stays constant or oscillates with fixed amplitude) as $t \to \infty$.
- ▶ Definition of "stable" implies that as $t \to \infty$, only the forced response remains.

Bounded-input, Bounded-output (BIBO) Stability

- ► The BIBO definition is in terms of the total response, so you don't need to isolate the natural response first.
- 1. A system is stable if *every* bounded input produces a bounded output.
- 2. A system is unstable if any bounded input produces an unbounded output.

Stability and Poles

- ► In order to easily determine if a system is stable, we can examine the poles of the closed-loop system.
- 1. A system is stable if all the poles are strictly on the left hand side of the complex plane.
- 2. A system is unstable if any pole is in the right hand side of the complex plane or the system has poles on the imaginary axis that are of multiplicity > 1.
- **3.** A system is marginally stable if no pole is on the right hand side, and its poles on the imaginary axis are of multiplicity one.

ie.
$$\frac{1}{(s^2+\omega^2)}$$
 marginally stable, but $\frac{1}{(s^2+\omega^2)^2}$ is not.

Stability and Poles - II

- Poles on the imaginary axis of multiplicity greater than one have time responses of the form $At^n\cos(\omega t + \phi)$ which tend to infinity as $t \to \infty$.
- This implies systems with poles on the imaginary axis of multiplicty one will be unstable by the BIBO definition as a sinusoid input at same frequency (ω) will result in a total response with imaginary poles of multiplicty two!

Stability and Poles - III

Figure 6.1.

Stability Summary

Table: Stability Comparison

Real Part	Natural	BIBO
of Poles	Response	
All poles < 0	stable	stable
Any pole >0 or		
imaginary poles of		
multiplicity > 1	unstable	unstable
$Poles \leq 0$	marginally	unstable
and imaginary poles	stable	
of multiplicity one		

Closed-loop Systems

- ▶ If the poles of the original system are not as desired, we can use feedback control to move the poles.
- ▶ In Fig. 6.2(a) below, we can easily see the poles of original system, but we don't know the poles of closed-loop system without factoring.
- Would like an easy way to tell if the closed-loop system is stable without having to factor it.

Figure 6.2.

Necessary Stability Condition

- ► A necessary condition for a polynomial to have all roots in the open left hand plane is to have all coefficients of the polynomial to be present and to have the same sign.
- ▶ However, this is not a *sufficient* condition.
- ▶ A *sufficent* condition that a system is *unstable* is that all coefficients do not have the same sign.
- If some coefficients are missing, system MAY be unstable, or at best, marginally stable.
- ▶ If all coefficients are same sign and present, system could be stable or unstable.

Figure 6.3.

Routh-Hurwitz Criterion

- This method will give us stability info without having to find poles of closed-loop system.
- ► Will tell us:
 - How many poles in left half-plane.
 - How many poles in right half-plane.
 - How many poles on imaginary axis.
- Method called Routh-Hurwitz criterion for stability.
- ► To apply method we need to:
 - 1. Construct a table of data called a Routh table.
 - 2. Interpret the table to determine the above classifications.

Creating a Basic Routh Table

- ► The Routh-Hurwitz criterion focusses on the coefficients of the denominator of the transfer function.
- 1. Label the rows of the table with powers of s, starting from the highest power down to s^0 .
- 2. List coefficients across top row, starting with coefficient of the highest power of s, and then every other coefficient.
- **3.** List remaining coefficients in second row, starting with coefficient of second highest power.

Figure 6.3 and Table 6.1.

Creating a Basic Routh Table - II

- To fill in remaining rows as follows: Each entry is a negative determinant of entries from the previous two rows.
- 2. Each determinant is divided by the entry in the first column of the row above.
- 3. Left column of determinant is first column of the previous two rows.
- 4. Right column contains elements of the column above and directly to the right of the current location.
- 5. If no column to right, use zeros.

Table 6.2

Γ	s^4	a_4	a_2	a_0
	s^3	a_3	a_1	0
	s^2	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$
	s^1	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$
	s^0	$\frac{-\begin{vmatrix}b_1 & b_2\\c_1 & 0\end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix}b_1 & 0\\c_1 & 0\end{vmatrix}}{c_1} = 0$	$\frac{-\begin{vmatrix}b_1 & 0\\c_1 & 0\end{vmatrix}}{c_1} = 0$

Interpreting a Basic Routh Table

- Basic Routh table applies to systems with poles in open left or right hand plane, but no imaginary poles.
- ► The Routh-Hurwitz criterion states that the number of poles in the right half plane is equal to the number of sign changes in the first coefficient column of the table.
- A system is stable if there are no sign changes in the first column.

Basic Routh Table eg.

- Apply the Routh-Hurwitz criterion to the system below to determine stability.
- One may multiply any row by a positive constant without changing the values of the signs of the rows below.
- You MUST not multiple a row by a negative constant.

Figure 6.4.

Case I: Zero Only in First Column - ϵ

Consider system with closed-loop transfer function:

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3} \tag{1}$$

- ▶ Replace zero entry in first column by an ϵ (very small number), then complete table.
- Examine table by allowing ϵ to approach zero from the positive and negative side.

s ⁵	1	3	5
s^4	2	6	3
s^3	Χ ε	$\frac{7}{2}$	0
s^2	$\frac{6\epsilon - 7}{\epsilon}$	3	0
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	0	0
s^0	3	0	0

Label	First Column	e = +	e = -
s ⁵	1	+	+
s^4	2	+	+
s^3	& ε	+	-
s^2	$\frac{6\epsilon - 7}{\epsilon}$	-	+
s ¹	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	+	+
s^0	3	+	+

Case I: Zero Only in First Column - Reciprocal

- ▶ A polynomial whose roots are the reciprocal of the original polynomial, has poles with same distributions (ie. # in left side, right side, imaginary).
- This new polynomial might not have a zero in the first column.
- Can find this polynomial simply by reversing order of coefficients.

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3} \to D(s) = \frac{10}{1 + 2s^1 + 3s^2 + 6s^3 + 5s^4 + 3s^5}$$
$$D(s) = \frac{10}{3s^5 + 5s^4 + 6s^3 + 3s^2 + 2s^1 + 1}$$

s ⁵	3	6	2
s ⁴	5	3	1
s^3	4.2	1.4	
s^2	1.33	1	
s^1	-1.75		
s ⁰	1		

Case II: Row of Zeros

► Consider closed-loop transfer function

$$T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$
 (2)

- ▶ When evaluating row s^3 , we find all entries to be zero.
- To proceed, form polynomial using coefficients of row above the zero row.
- ► Start with power of row above the zero row, and then skip every other power of s.
- ► This gives us:

$$P(s) = s^4 + 6s^2 + 8 (3)$$

Next, differentiate with respect to *s*

$$\frac{dP(s)}{ds} = 4s^3 + 12s^1 + 0$$
(4)

s ⁵	1	6	8
s^4	7/1	42 6	56 8
s^3	XX 1	& 12 3	X X 0
s^2	3	8	0
s^1	$\frac{1}{3}$	0	0
s^0	8	0	0

Case II: Row of Zeros - II

► Replace row of zeros with coefficients of polynomial from equation 4, and continue.

s ⁵	1	6	8
s^4	7/1	42 6	56 8
s^3	8° 14′ 1	AV 12 3	X X 0
s^2	3	8	0
s^1	$\frac{1}{3}$	0	0
s^0	8	0	0

Table 6.7

Why Row of Zeros?

- ► We get a row of zeros when original polynomial has a purely even or odd polynomial as a factor.
- ightharpoonup A purely even polynomial is one where all powers of s are even.
- An even polynomial only has roots that are symmetrical about origin.
- As $j\omega$ roots are symmetric across origin, they can only occur when we have a row of zeros.
- ▶ In Routh table, the row above the row of zeros contains the even/odd polynomial that is a factor of the original polynomial.

Figure 6.5

- A: Real and symmetrical about the origin
- B: Imaginary and symmetrical about the origin
- C: Quadrantal and symmetrical about the origin -----

Why Row of Zeros? - II

- Also, Everything from row containing even polynomial onwards is a test of *only* the even polynomial.
- Returning to our example with $T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$, we see that it had even polynomial $P(s) = s^4 + 6s^2 + 8$ as a factor.
- Rows s^4 to s^0 thus give information only about P(s).
- ▶ As there are no sign changes, we thus have 4 imaginary poles.
- As P(s) is not perfect fourth order square polynomial, the imaginary poles are of multiplicity 1.
- There are no sign changes from rows s^5 to s^4 , so our last pole is in left hand side.
- System is thus marginally stable.

Table 6.7

s ⁵	1	6	8
s^4	7/1	42 6	56 8
s^3	8 X 1	& 12 3	X X 0
s^2	3	8	0
s^1	$\frac{1}{3}$	0	0
s^0	8	0	0

Stability Design via Routh-Hurwitz

- Changes in the gain of systems like the one below, can result in changes of the closed-loop pole locations.
- In the next example, we can use the Routh-Hurwitz criterion to show that gain changes can move stable poles from the right-hand plane, to the imaginary axis, to the left-hand plane.

Stability Design via Routh-Hurwitz eg.

Find range of K (gain) that will make the system stable, marginally stable, and unstable.

Figure 6.10.

Stability in State Space

► For a state space system, we are given the state and output equations below

$$\dot{\underline{x}} = \underline{A}\,\underline{x} + \underline{B}\,\underline{u}$$
 state equations $y = \underline{C}\,\underline{x} + \underline{D}\,\underline{u}$ output equations

▶ If we have a single input, single output system, we can use the equation below to find the corresponding transfer function. :

$$G(s) = \frac{Y(s)}{U(s)} = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + \underline{D}$$
 (5)

If its has multiple inputs or outputs the we get $\underline{G}(S)$, a TF matrix.

From linear algebra we know:

$$[s\underline{I} - \underline{A}]^{-1} = \frac{\mathsf{adj}([s\underline{I} - \underline{A}])}{\mathsf{det}([s\underline{I} - \underline{A}])} \tag{6}$$

Stability in State Space - II

Substituting equation 6 into equation 5, we get

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\underline{C} \operatorname{adj}([s\underline{I} - \underline{A}])\underline{B}}{\det([s\underline{I} - \underline{A}])} + \underline{D} = \frac{N(s)}{D(s)}$$
(7)

$$= \frac{\underline{C}\operatorname{adj}([s\underline{I} - \underline{A}])\underline{B} + \det([s\underline{I} - \underline{A}])D}{\det([s\underline{I} - \underline{A}])}$$
(8)

We thus have:

$$\det([s\underline{I} - \underline{A}]) = D(s) \tag{9}$$

- ▶ We define the roots of the equation $det([s\underline{I} \underline{A}]) = 0$ to be the eigenvalues of matrix \underline{A} .
- ▶ To determine if a state space system is stable, we determine the eigenvalues of matrix <u>A</u>, and then determine their location in the *s*-plane, using the same rules for stability as for the poles of a transfer function.