Introduction

- \blacktriangleright In this Section, we examine ways to determine if a system is stable.
- \triangleright Of all design criteria, stability is most important.
- \blacktriangleright If system is unstable, then transient response and steady-state error are irrelevant.
- \triangleright We will now examine a few stability definitions for linear, time-invariant systems.

Stability and Natural Response

 \blacktriangleright The total response of a system is

$$
c(t) = c_{forced}(t) + c_{natural}(t)
$$

- 1. A system is stable if natural response tends to zero as $t \to \infty$.
- 2. A system is unstable if natural response grows unbounded as $t \rightarrow \infty$.
- 3. A system is marginally stable if natural response neither decays or grows (eg. stays constant or oscillates with fixed amplitude) as $t \to \infty$.
- **Definition of "stable" implies that as** $t \to \infty$ **, only the forced** response remains.

Bounded-input, Bounded-output (BIBO) Stability

- \triangleright The BIBO definition is in terms of the total response, so you don't need to isolate the natural response first.
- 1. A system is stable if *every* bounded input produces a bounded output.
- 2. A system is unstable if *any* bounded input produces an unbounded output.

Stability and Poles

- In order to easily determine if a system is stable, we can examine the poles of the closed-loop system.
- 1. A system is stable if all the poles are strictly on the left hand side of the complex plane.
- 2. A system is unstable if any pole is in the right hand side of the complex plane or the system has poles on the imaginary axis that are of multiplicity *>* 1.
- 3. A system is marginally stable if no pole is on the right hand side, and its poles on the imaginary axis are of multiplicity one.

i.e.
$$
\frac{1}{(s^2 + \omega^2)}
$$
 marginally stable, but $\frac{1}{(s^2 + \omega^2)^2}$ is not.

Stability and Poles - II

- \triangleright Poles on the imaginary axis of multiplicity greater than one have time responses of the form $At^n \cos(\omega t + \phi)$ which tend to infinity as $t \to \infty$.
- \triangleright This implies systems with poles on the imaginary axis of multiplicty one will be unstable by the BIBO definition as a sinusoid input at same frequency (ω) will result in a total response with imaginary poles of multiplicty two!

Stability and Poles - III

 (a)

 (b)

Figure 6.1. 2006-2012 R.J. Leduc 7

Stability Summary

Table: Stability Comparison

Closed-loop Systems

- If the poles of the original system are not as desired, we can use feedback control to move the poles.
- In Fig. $6.2(a)$ below, we can easily see the poles of original system, but we don't know the poles of closed-loop system without factoring.
- \triangleright Would like an easy way to tell if the closed-loop system is stable without having to factor it.

Figure 6.2.

Necessary Stability Condition

- A *necessary* condition for a polynomial to have all roots in the open left hand plane is to have all coefficients of the polynomial to be present and to have the same sign.
- ▶ However, this is not a *sufficient* condition.
- ▶ A *sufficent* condition that a system is *unstable* is that all coefficients do not have the same sign.
- \blacktriangleright If some coefficents are missing, system MAY be unstable, or at best, marginally stable.
- If all coefficients are same sign and present, system could be stable or unstable.

$$
R(s) \longrightarrow \frac{N(s)}{a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \qquad C(s) \longrightarrow
$$

Routh-Hurwitz Criterion

- \triangleright This method will give us stability info without having to find poles of closed-loop system.
- \triangleright Will tell us:
	- \blacktriangleright How many poles in left half-plane.
	- \blacktriangleright How many poles in right half-plane.
	- \blacktriangleright How many poles on imaginary axis.
- \triangleright Method called Routh-Hurwitz criterion for stability.
- \blacktriangleright To apply method we need to:
	- 1. Construct a table of data called a *Routh table*.
	- 2. Interpret the table to determine the above classifications.

Creating a Basic Routh Table

- \blacktriangleright The Routh-Hurwitz criterion focusses on the coefficients of the denominator of the transfer function.
- 1. Label the rows of the table with powers of *s*, starting from the highest power down to s^0 .
- 2. List coefficients across top row, starting with coefficent of the highest power of s , and then every other coefficient.
- 3. List remaining coefficents in second row, starting with coefficient of second highest power.

Figure 6.3 and Table 6.1.

Creating a Basic Routh Table - II

- I To fill in remaining rows as follows:
1. Each entry is a negative determinant of entries from the previous two rows.
- 2. Each determinant is divided by the entry in the first column of the row above.
- 3. Left column of determinant is first column of the previous two rows.

 \mathbf{a}

 $\begin{array}{ccc} \end{array}$

- 4. Right column contains elements of the column above and directly to the right of the current location.
- 5. If no column to right, use zeros.

 \sim

ä.

Table 6.2

Interpreting a Basic Routh Table

- \triangleright Basic Routh table applies to systems with poles in open left or right hand plane, but no imaginary poles.
- \triangleright The Routh-Hurwitz criterion states that the number of poles in the right half plane is equal to the number of sign changes in the first coefficient column of the table.
- \triangleright A system is stable if there are no sign changes in the first column.

Basic Routh Table eg.

- \blacktriangleright Apply the Routh-Hurwitz criterion to the system below to determine stability.
- \triangleright One may multiply any row by a positive constant without changing the values of the signs of the rows below.
- \triangleright You MUST not multiple a row by a negative constant.

Figure 6.4.

Case I: Zero Only in First Column - ϵ

 \triangleright Consider system with closed-loop transfer function:

$$
T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}
$$
 (1)

- Replace zero entry in first column by an ϵ (very small number), then complete table.
- Examine table by allowing ϵ to approach zero from the positive and negative side.

Case I: Zero Only in First Column - Reciprocal

- \triangleright A polynomial whose roots are the reciprocal of the original polynomial, has poles with same distributions (ie. $\#$ in left side, right side, imaginary).
- \triangleright This new polynomial might not have a zero in the first column.
- \triangleright Can find this polynomial simply by reversing order of coefficients.

$$
T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3} \rightarrow D(s) = \frac{10}{1 + 2s^1 + 3s^2 + 6s^3 + 5s^4 + 3s^5}
$$

$$
D(s) = \frac{10}{3s^5 + 5s^4 + 6s^3 + 3s^2 + 2s^1 + 1}
$$

Case II: Row of Zeros

 \triangleright Consider closed-loop transfer function

$$
T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}
$$
 (2)

- \triangleright When evaluating row s^3 , we find all entries to be zero.
- \blacktriangleright To proceed, form polynomial using coefficients of row above the zero row.
- \triangleright Start with power of row above the zero row, and then skip every other power of *s*.
- \blacktriangleright This gives us:

$$
P(s) = s^4 + 6s^2 + 8 \tag{3}
$$

 \blacktriangleright Next, differentiate with respect to *s*

$$
\frac{dP(s)}{ds} = 4s^3 + 12s^1 + 0
$$

(4)

Table 6.7

Case II: Row of Zeros - II

 \blacktriangleright Replace row of zeros with coefficients of polynomial from equation [4,](#page-16-0) and continue.

Table 6.7

Why Row of Zeros?

- \triangleright We get a row of zeros when original polynomial has a purely even or odd polynomial as a factor.
- ▶ A purely even polynomial is one where all powers of *s* are even.
- \triangleright An even polynomial only has roots that are symmetrical about origin.
- \triangleright As *jw* roots are symmetric across origin, they can only occur when we have a row of zeros.
- \blacktriangleright In Routh table, the row above the row of zeros contains the even/odd polynomial that is a factor of the original polynomial.

Figure 6.5

Why Row of Zeros? - II

- \triangleright Also, Everything from row containing even polynomial onwards is a test of *only* the even polynomial.
- Returning to our example with $T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$ we see that it had even polynomial $P(s) = s^4 + 6s^2 + 8$ as a factor.
- Rows s^4 to s^0 thus give information only about $P(s)$.
- \triangleright As there are no sign changes, we thus have 4 imaginary poles.
- \triangleright As $P(s)$ is not perfect fourth order square polynomial, the imaginary poles are of multiplicity 1.
- **If** There are no sign changes from rows s^5 to s^4 , so our last pole is in left hand side.
- \blacktriangleright System is thus marginally stable.

Table 6.7

Stability Design via Routh-Hurwitz

- \triangleright Changes in the gain of systems like the one below, can result in changes of the closed-loop pole locations.
- In the next example, we can use the Routh-Hurwitz criterion to show that gain changes can move stable poles from the right-hand plane, to the imaginary axis, to the left-hand plane.

Stability Design via Routh-Hurwitz eg.

 \blacktriangleright Find range of K (gain) that will make the system stable, marginally stable, and unstable.

Figure 6.10.

Stability in State Space

 \triangleright For a state space system, we are given the state and output equations below

$\underline{\dot{x}} = \underline{A}\,\underline{x} + \underline{B}\,\underline{u}$	state equations
$y = C x + D u$	output equations

If we have a single input, single output system, we can use the equation below to find the corresponding transfer function. :

$$
G(s) = \frac{Y(s)}{U(s)} = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + \underline{D}
$$
 (5)

If its has multiple inputs or outputs the we get $G(S)$, a TF matrix.

 \blacktriangleright From linear algebra we know:

$$
[s\underline{I} - \underline{A}]^{-1} = \frac{\text{adj}([s\underline{I} - \underline{A}])}{\text{det}([s\underline{I} - \underline{A}])}
$$
(6)

Stability in State Space - II

 \triangleright Substituting equation [6](#page-22-0) into equation [5,](#page-22-1) we get

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{C \operatorname{adj}([s\underline{I} - \underline{A}]) \underline{B}}{\operatorname{det}([s\underline{I} - \underline{A}])} + \underline{D} = \frac{N(s)}{D(s)} \tag{7}
$$

$$
= \frac{C \operatorname{adj}([s\underline{I} - \underline{A}]) \underline{B} + \operatorname{det}([s\underline{I} - \underline{A}]) \underline{D}}{\operatorname{det}([s\underline{I} - \underline{A}])} \tag{8}
$$

 \blacktriangleright We thus have:

$$
\det([s\underline{I} - \underline{A}]) = D(s) \tag{9}
$$

- \triangleright We define the roots of the equation det $([sI A]) = 0$ to be the eigenvalues of matrix *A*.
- \blacktriangleright To determine if a state space system is stable, we determine the eigenvalues of matrix *A*, and then determine their location in the *s*-plane, using the same rules for stability as for the poles of a transfer function.