
Introduction

I There are two main approaches for modelling and design of

feedback control systems.

I So far, we have considered only the frequency-domain

technique.

I This approach unfortunately can only be applied to

single-input, single-output, linear, time-invariant systems or

ones that can be approximated by one.

I The more modern, flexible approach is called the state space

representation (also called time-domain technique).

I This method can also be applied to nonlinear systems,

time-varying systems, as well as multiple-input, multiple

output systems.

c�2006-2017 R.J. Leduc, M. Lawford 2



State Space Representation

I For t � to and initial conditions x(to), the state space

representation of a system is:

ẋ = Ax+Bu state equations (1)

y = Cx+Du output equations (2)

State equations: for an nth
order system, this is a set of n

simultaneous, first-order di↵erential equations with n
variables, that can be solved to determine the

system’s n state variables.

For a linear, time-invariant, second order system with a single input

v(t), the state equations could have the form:

dx1
dt

= a11x1 + a12x2 + b1v(t)

dx2
dt

= a21x1 + a22x2 + b2v(t)
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State Space Representation - II

ẋ = Ax+Bu state equations

y = Cx+Du output equations

System variables: variables that respond to a system input, or

the system’s initial conditions.

Linearly independent: if no variables of a set can be written as a

linear combination of the other variables, then the set

of variables are said to be linearly independant.

State variables: smallest set of linearly independent system

variables such that the initial values of these variables

(at time to) plus any known forcing functions

completely determines the future values of all system

variables.

State vector: x = [x1, x2, . . . , xn]T where x1, x2, . . . , xn are the

system’s n state variables.
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State Space Representation - III

ẋ = Ax+Bu state equations

y = Cx+Du output equations

First derivatives: ẋ = d
dtx = [dx1

dt ,
dx2
dt , . . . ,

dxn
dt ]

T

Output vector: y = [y1, y2, . . . , yp]T

Input or control vector: u = [u1, u2, . . . , um]T

System matrix: A

Input matrix: B

Output matrix: C

Feedforward matrix: D
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State Space Representation eg.

I Derive the state space representation for the system below:

I Using Kircho↵’s voltage law, we can write the loop equation:

L
di

dt
+Ri+

1

C

Z
idt = v(t) (3)

I If we use i(t) = dq
dt , we can see that the system is a second

order system:

L
d2q

dt2
+R

dq

dt
+

1

C
q = v(t) (4)

I If we take our state variables to be

i(t) and q(t), we can convert

equation 4 into two first order

di↵erential equations.

Figure 3.2
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State Space Representation eg. II

I We can take the first equation to be:

dq

dt
= i (5)

I We can get the second eqn by substituting
R
idt = q into

equation 3 and solving for
di
dt gives:

di

dt
= � 1

LC
q � R

L
i+

1

L
v(t) (6)

I As our output, we can take the voltage across the inductor,

vL(t).

I Using equation 6 and the relation

vL(t) = Ldi
dt , we get:

vL(t) = � 1

C
q �Ri+ v(t) (7)

Figure 3.2
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State Space Representation eg. III

I We thus have our state equations:

dq

dt
= i

di

dt
= � 1

LC
q � R

L
i+

1

L
v(t)

which can be represented as ẋ = Ax+Bu, where

ẋ =


dq/dt
di/dt

�
; A =


0 1

�1/LC �R/L

�

x =


q
i

�
; B =


0

1/L

�
;u = v(t)

I and our output equation vL(t) = � 1
C q �Ri+ v(t) which can

be represented as y = Cx+Du, where

y = vL(t); C = [�1/C �R]; D = 1;
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Applying State Space Representation

I First step is to select the state vector.

I In choosing the state vector, one must make sure

1. The state variables are linearly independent.

2. A minimum number of state variables must be chosen that is

su�cient to completely describe the system.

The minimum number is the order of the di↵erential equation

that describes the system.

This is equivalent to the order of the denominator of the

transfer function after cancelling any common factors in both

the numerator and denominator.

The number needed is usually equal to the number of

independent storage elements.
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Representing an Electrical Network eg.

I Find a state space representation for the network below with

output iR(t), the current through the resistor.

1. Label branch currents in network (iL, iR, iC).
2. Write derivative equations for all energy storing elements.

Select state variables to be the quantities that are

di↵erentiated.

3. Rewrite the derivative equations in terms of the state

variables.

4. Solve for the output in terms of input and state variables.

5. Express in state space form.

Figure 3.5

c�2006-2017 R.J. Leduc, M. Lawford 10



Representing a Translational Mechanical System eg.

I Find a state space representation for the system below, if the

output is x2(t).

I For mechanical systems, it is easier to use equations of

motions to derive state variables.

I For state variables, use the position and velocity of each

linearly independent point of motion.

I Use relations
d2x

dt2
=

dv

dt
, and v =

dx

dt
.

Figure 3.7
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Converting a Transfer Function to State Space

I So far, we have derived state space representations directly

from the physical system.

I We now examine how to derive a state space representation if

we are given a transfer function representation of a system.

I We will use the phase variable approach.

I Assume you are given a di↵erential equation of the form

below, where y is the system’s output, and u is the system’s

input.

dny

dtn
+ an�1

dn�1y

dtn�1
+ · · ·+ a1

dy

dt
+ a0y = b0u (8)

I We choose y and its n� 1 derivatives as our n state variables.
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Converting a Transfer Function to State Space - II

I Thus for our state variables x1, . . . , xn, we get:

x1 = y, x2 =
dy

dt
, x3 =

d2y

dt2
, · · · , xn =

dn�1y

dtn�1
(9)

I Taking the derivatives of both sides of these equations gives:

ẋ1 =
dy

dt
, ẋ2 =

d2y

dt2
, ẋ3 =

d3y

dt3
, · · · , ẋn =

dny

dtn
(10)

I Substituting into equation 10 from equation 9, as well as

solving for ẋn =
dny

dtn
in equation 8 gives:

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4, · · · , ẋn�1 = xn, (11)

ẋn = �aox1 � a1x2 · · ·� an�1xn + b0u
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Converting a Transfer Function to State Space - III

I Putting the state equations in matrix form gives:

I Using that our ouput y(t) equals x1, gives:

dny

dtn
+ an�1

dn�1y

dtn�1
+ · · ·+ a1

dy

dt
+ a0y = b0u
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Transfer Function to State Space eg.

I Convert the transfer function below into a state space

representation.

I As numerator is not a constant, we need to first split the

transfer function into two cascading boxes, such that the first

has a constant numerator.

I We can now apply the phase variable approach to the first

box, with X1(s) as its output.
I To determine the system’s output equation, solve for C(s) in

terms of the state variables by evaluating output of second

block.

Figure 3.12.
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Transfer Function to State Space eg. - I

I Figure shows the state space representation as a block

diagram by using integrator blocks.

Figure 3.12.

ẋ3 = �24x1 � 26x2 � 9x3 + r, y = 2x1 + 7x2 + x3
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Transfer Function to State Space: Controller Form

Given

G(s) =
bn�1sn�1 + bn�2sn�2 + . . .+ b1s+ b0

sn + an�1sn�1 + an�2sn�2 + . . .+ a1s+ a0

We get Controller Canonical Statespace form:

ẋ(t) =

2

666666664

0 1 0 . . . 0 0

0 0 1
. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 0 . . . 1 0
0 0 0 . . . 0 1

�a0 �a1 �a2 . . . �an�2 �an�1

3

777777775

x(t) +

2

66666664

0
0
.
.
.

0
0
1

3

77777775

u(t)

y(t) =
⇥
b0 b1 . . . bn�2 bn�1

⇤
x(t).
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Transfer Function to Controller Form in n = 4 Case

Consider the following transfer function:

G(s) =
b3s3 + b2s2 + b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0

The state-space Controller Canonical Form for the transfer

function is:

ẋ(t) =

2

664

0 1 0 0
0 0 1 0
0 0 0 1

�a0 �a1 �a2 �a3

3

775 x(t) +

2

664

0
0
0
1

3

775u(t)

y(t) =
⇥
b0 b1 b2 b3

⇤
x(t).

This state-space realization is called controllable canonical form

because the resulting model is guaranteed to be controllable (i.e.,

because the control enters a chain of integrators, it has the ability

to move every state).
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Transfer Function to State Space: Observer Form

Given

G(s) =
bn�1sn�1 + bn�2sn�2 + . . .+ b1s+ b0

sn + an�1sn�1 + an�2sn�2 + . . .+ a1s+ a0

We get Observer Canonical Statespace Form:

ẋ(t) =

2

666666664

�an�1 1 0 . . . 0 0

�an�2 0 1
. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

�a2 0 0 . . . 1 0
�a1 0 0 . . . 0 1
�a0 0 0 . . . 0 0

3

777777775

x(t) +

2

66666664

bn�1

bn�2
.
.
.

b2
b1
b0

3

77777775

u(t)

y(t) =
⇥
1 0 . . . 0 0 0

⇤
x(t)
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Observer Cannonical Form n = 4 Case

Consider the following transfer function:

G(s) =
b3s3 + b2s2 + b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0

The state-space Observer Canonical Form for the transfer function

is:

ẋ(t) =

2

664

�a3 1 0 0
�a2 0 1 0
�a1 0 0 1
�a0 0 0 0

3

775 x(t) +

2

664

b3
b2
b1
b0

3

775u(t)

y(t) =
⇥
1 0 0 0

⇤
x(t)

This state-space realization is called observable canonical form

because the resulting model is guaranteed to be observable (i.e.,

because the output exits from a chain of integrators, every state

has an e↵ect on the output).
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Converting from State Space to a Transfer Function

I We now examine how to derive a transfer function if we are

given a state space representation of a system.

I We assume we are given the state and output equations below

ẋ = Ax+Bu state equations

y = Cx+Du output equations

I We first note that

L{x(t)} = L

8
><

>:

2

64
x1(t)
.
.
.

xn(t)

3

75

9
>=

>;
=

2

64
L{x1(t)}

.

.

.

L{xn(t)}

3

75

I Taking the Laplace transform of both sides, assuming zero

initial conditions gives:

sX(s) = AX(s) +BU(s) (12)

Y(s) = CX(s) +DU(s) (13)
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Converting from State Space ... - II

I Collecting X(s) terms in equation 12 gives:

(sI�A)X(s) = BU(s) (14)

where I is the identity matrix.

I Solving for X(s) gives:

X(s) = (sI�A)�1BU(s) (15)

I substituting into our output equation, gives:

Y(s) = C(sI�A)�1BU(s) +DU(s) (16)

= [C(sI�A)�1B+D]U(s) (17)

I If we have a single input, single output system, we get the

transfer function:

G(s) =
Y (s)

U(s)
= C(sI�A)�1B+D (18)
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Converting from State Space eg.

I Given the system below, find the transfer function
Y (s)
U(s) .

ẋ =

2

4
0 1 0
0 0 1

�24 �26 �9

3

5 x+

2

4
0
0
1

3

5 u

y = [2 7 1]x
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Matrix Review - Cofactors

I Given the matrix below, we say the minor of entry aij ,
denoted by Mij , is the determinant of the matrix that remains

after row i and column j are deleted.

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

I For example, M11 =

����
a22 a23
a32 a33

���� and M32 =

����
a11 a13
a21 a23

����.

I We define the cofactor of entry aij , denoted Cij , to be the

number (�1)i+jMij .
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Matrix Review - Cofactor Expansion

A =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

Definition

The determinant of an n⇥ n matrix A can be computed by

multiplying the entries in any row (or column) by their cofactors

and adding the resulting products. We thus have for 1  i  n and

1  j  n,
cofactor expansion along the jth column

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

cofactor expansion along the ith row

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin
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Matrix Review - Adjoints

A =

2

6664

a11 a12 · · · a1n
a21 a22 · · · a2n
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann

3

7775

Definition

If A is any n⇥ n matrix and Cij is the cofactor for aij , then the

matrix of cofactors from A is

2

6664

C11 C12 · · · C1n

C21 C22 · · · C2n
.
.
.

.

.

.
.
.
.

Cn1 Cn2 · · · Cnn

3

7775

The adjoint of A, denoted adj(A), is the transpose of the above

matrix.
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Matrix Review - Inverses

Definition

The inverse (if it exists) of a n⇥ n matrix A, denoted A�1
, is the

matrix that makes the following equation true: AA�1 = I

Theorem

If A is an invertible matrix, then

A�1 =
adj(A)

det(A)
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Linearization and Case Studies

I Please read Section 3.7 (Linearization) on your own.
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