
Introduction

I Frequency response design methods allow us to place the
dominant second-order pair of poles.

I We then hope that the higher-order poles won’t invalidate the
approximation.

I We want to be able to specify the location of all n poles.

I We need n adjustable parameters to place n unknown values.

I A single gain and a compensator pole and zero are typically
not enough.
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Introduction - II

I State space methods solve this by:
1. introducing into the system other adjustable parameters
2. providing techniques to determine values for these parameters

that will correctly place the poles.

I A disadvantage of state space methods is that it doesn’t allow
the placement of closed loop zeros which can a↵ect transient
response.

I Also, a state space design may be quite sensitive to changes in
parameters.
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Control Design

I An nth order feedback control system has a nth order
closed-loop characteristic equation given by

det(sI�A
0) = sn + an�1s

n�1 + · · · a1s+ ao = 0

where A
0 is the closed loop system matrix.

I The characteristic equation contains n coe�cients that
determine the system’s n poles (eigenvalues).

I Our goal is to introduce n new adjustable parameters and
relate them to these coe�cients.
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Topology for Pole Placement

I Consider a plant represented as

ẋ = Ax+Bu (1)

y = Cx (2)

I Typically, the output y is fed back.
I Instead, we feed back each state variable with its own gain, ki.

Figure 12.2.
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Topology for Pole Placement - II

I We represent the gains by feedback vector �K.
I This gives a closed-loop system as represented as follows:

ẋ = Ax+Bu = Ax+B (�Kx+ r) = (A�BK)x+B r
(3)

y = Cx (4)

Figure 12.2.
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Signal Flow Graph

I Signal flow graphs are an alternative to block diagrams.

I They consist of nodes which represent signals, and branches
that represent systems (the blocks of block diagrams).

I Value of a node is the sum of the signals entering it.

I To subtract an incoming signal, label the branch as negative.

I For example:

V (S) = R1(s)G1(s)�R2(s)G2(s) +R3(s)G3(s)

Figure 5.17.
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Signal Flow Graph e.g.

I Convert the block diagram below to a signal flow graph.

I The steps are:
1. First, draw all the signal nodes of the system.

2. Add the branches to connect the nodes.

3. Simplify the diagram by eliminating nodes with a single entry
and exit point.

Figure 5.11.
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Signal Flow Graph e.g. - II

Figure 5.19.
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Phase Variable (Controller Cannonical) Form

I System with transfer function

G(s) =
Y (s)

U(s)
=

bo
sn + an�1sn�1 + · · · a1s+ a0

I gives di↵erential equation

dny

dtn
+ an�1

dn�1y

dtn�1
+ · · ·+ a1

dy

dt
+ a0y = b0u

I Our state variables and first-order di↵erential equations are as
follows:

x1 = y, x2 =
dy

dt
, x3 =

d2y

dt2
, · · · , xn =

dn�1y

dtn�1

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4, · · · , ẋn�1 = xn

ẋn = �aox1 � a1x2 · · ·� an�1xn + b0u
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Phase Variable (Controller Cannonical) Form - II

I Putting the state equations in matrix form gives:

I Using that our ouput y(t) equals x1, gives:

dny

dtn
+ an�1

dn�1y

dtn�1
+ · · ·+ a1

dy

dt
+ a0y = b0u
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Phase Variable Form - Zeros

I As we saw before, if numerator is not a constant, the
numerator defines the output equation.

I The output below is thus:

Y (s) = (s2 + 7s+ 2)X1(s) = s2X1(s) + 7sX1(s) + 2X1(s)

= X3(s) + 7X2(s) + 2X1(s)

I In the time domain we thus have:

y = 2x1 + 7x2 + x3

I We thus have ouput matrix C = [2 7 1].

Figure 3.12.
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State Feedback Example

I Below is an example of plant in phase-variable form with state
feedback added.

Figure 12.3.
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Pole Placement with Phase-Variable Form

I To apply the pole placment approach with plants in
phase-variable form, we follow the following steps.
1. Represent the plant in phase-variable form.

2. Feed back each state variable via gain ki.

3. Find characteristic eqn for above system.

4. Select desired closed-loop poles and corresponding
characteristic equation.

5. Equate coe�cients of characteristic equations from last two
steps, and solve for the ki.
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Pole Placement with Phase-Variable Form - II

I Phase-variable representation of plant is given by

I Can show above system has characteristic equation:

sn + an�1s
n�1 + · · · a1s+ a0

I We then feed back each state variable to input u giving:

u = �Kx, where K = [k1 k2 · · · kn]
I For our closed-loop system, this gives system matrix:
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Pole Placement with Phase-Variable Form - III

I Closed-loop system thus has characteristic equation:

det(sI� (A�BK)) = sn + (an�1 + kn)s
n�1+ (5)

(an�2 + kn�1)s
n�2 + · · ·+ (a1 + k2)s+

(a0 + k1) = 0

I Assume that the desired closed-loop poles correspond to the
characteristic equation:

sn + dn�1s
n�1 + dn�2s

n�2 + · · ·+ d1s+ d0 = 0 (6)

I equating coe�cients we get:

di = ai + ki+1 for i = 0, 1, 2, . . . n� 1

I We thus have:
ki+1 = di � ai
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Pole Placement with Phase-Variable Form - e.g.

I Given plant below, design the phase-variable feedback gains to
yield 9.5% overshoot and a settling time of 0.74 seconds.

G(s) =
20(s+ 5)

s(s+ 1)(s+ 4)
=

20s+ 100

s3 + 5s2 + 4s

Figure 12.4.2006-2012 R.J. Leduc 17



Pole Placement with Phase-Variable Form - e.g. - II

I Start by determining location of dominant second-order poles
to achieve desired transient response.

I Using methods from previous chapters, we find that needed
poles are s1,2 = �5.4± j7.2.

I As system is third order, we need to choose a location for
third pole. We could:
1. choose pole to be more than 5 times to the left of dominant

second-order poles.
2. choose pole to cancel zero
3. optimize pole location to satisfy additional criteria.

I We should place pole at s = �5 to cancel the zero, but we
will instead place pole at s = �5.1 to demonstrate why zero
needs to be cancelled and the need for a final simulation.

I Desired characteristic equation is thus

(s+ 5.4 + j7.2)(s+ 5.4� j7.2)(s+ 5.1) = s3 + 15.9s2 (7)

+ 136.08s+ 413.1
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Pole Placement with Phase-Variable - e.g. - III

I From diagram and phase-varaiable form of system, we can
derive the closed loop system as:

I Our closed-loop system matrix is thus:

I Closed loop system’s chracteristic equation is thus:

det(sI� (A�BK)) = s3 + (5 + k3)s
2 + (4 + k2)s+ k1 = 0

(8)
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Pole Placement with Phase-Variable - e.g. - IV

I Comparing coe�cients of Equations 7 and 8 gives:

5 + k3 = 15.9; 4 + k2 = 136.08 k1 = 413.1

I We thus have:

k1 = 413.1; k2 = 132.08; k3 = 10.9

I As the zeros of open-loop system are the same as the
closed-loop system, our final system is thus:

I This gives a closed loop transfer function of:

20(s+ 5)

s3 + 15.9s2 + 136.08s+ 413.1
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Pole Placement with Phase-Variable - e.g. - V

I Simulation system gives 11.5% overshoot and 0.8 second
settling time.

I Redesigning system with third pole at s = �5 gives correct
result.

Figure 12.5.
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Controllability

I It is not always possible to be able to place every pole in a
system.

I In Figure (b) below, we
can not use input u to
control state x1 as input u
has no e↵ect on this state.

I We say a system is
(completely) controllable
if we can find an input to
a system that will take
each state variable from a
chosen initial state to a
chosen final state.
Otherwise system is
uncontrollable.

Figure: 12.6
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Controllability - II

I For many systems, it is not obvious from inspection whether a
system is controllable or not.

I For a system with state equation

ẋ = Ax+Bu,

consider the so called controllability matrix, CM, below:

CM = [B AB A
2
B · · · A

n�1
B]

I It can be shown that if CM is of rank n, then the system is
controllable (see Ogata, K. Modern Control Engineering, 2d
ed. Prentice Hall, Englewood Cli↵s, NJ, 1990).

I The rank of a matrix is the maximum number of independent
rows or columns.

I If determinant of a n⇥ n matrix does not equal zero, then the
matrix has rank n.
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Controllability Example

Figure 12.7.
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Controllability Example

I Given state equation for system below

Figure 12.7.

I

ẋ =

2

4
�1 1 0
0 �1 0
0 0 �2

3

5 x+

2

4
0
1
1

3

5 u
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Controllability e.g.

I The controllability matrix is

CM = [B AB A
2
B] =

2

4
0 1 �2
1 �1 1
1 �2 4

3

5

I As det(CM) = �1 (i.e. non zero), matrix CM has rank 3 so
system is controllable.
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Alternate Approaches to Controller Design

I Pole placement is very straightforward when system in
phase-variable form.

I For other forms, we can still evaluate the closed-loop and
desire characteristic equation and compare coe�cients, but
the results typically lead to di�cult calculations.

I An easier method is to transform the system into
phase-variable form, place the poles, and then transform the
result back into the original form.
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Controller Design by Transform

I Assume plant below is NOT in phase-variable form

ż = Az+Bu (9)

y = Cz

I Corresponding controllability matrix is thus

CMz = [B AB A
2
B · · · A

n�1
B] (10)

I We then assume that can convert the system into
phase-variable form using the transformation

z = Px (11)

I Substituting this into Equation 9, we get

ẋ = P
�1

APx+P
�1

Bu (12)

y = CPx
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Controller Design by Transform - II

I Corresponding controllability matrix is thus

CMx = [P�1
B (P�1

AP) (P�1
B) (P�1

AP)2 (P�1
B) · · ·

(P�1
AP)n�1 (P�1

B)]

= [P�1
B (P�1

AP) (P�1
B) (P�1

AP)(P�1
AP) (P�1

B)

· · · (P�1
AP)(P�1

AP) . . . (P�1
AP)(P�1

B)]

= P
�1[B AB A

2
B · · · A

n�1
B] = P

�1
CMz

I Solving for P gives

P = CMz CMx
�1 (13)
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Controller Design by Transform - III

I Once we have phase-variable form of system, we can design
controller by setting u = �Kx x+ r giving

ẋ = P
�1

APx�P
�1

BKx x+P
�1

B r (14)

= (P�1
AP �P

�1
BKx)x+P

�1
B r

y = CPx

I We thus use system matrix (P�1
AP �P

�1
BKx) to

construct our closed-loop characteristic equation, and solve
for the elements of Kx.

I We now use x = P
�1

z to transform the above system back
into the original system form giving us:

ż = Az�BKxP
�1

z+B r (15)

= (A�BKxP
�1)z+B r

I As standard form closed-loop system matrix is (A�BK), we
see that Kz = KxP

�1.
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Controller Design by Transform - e.g.

I Design state-variable feedback controller that has 20.8%
overshoot and settling time of 4 seconds for plant

G(s) =
(s+ 4)

(s+ 1)(s+ 2)(s+ 5)
=

(s+ 4)

s3 + 8s2 + 17s+ 10

that is represented in cascade form (see Section 5.7 of text for
more information about cascade form) below:

Figure 12.9.
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Controller Design by Transform - e.g. II

I From the diagram, we can derive the system below

ż = Az z+Bz u =

2

4
�5 1 0
0 �2 1
0 0 �1

3

5 z+

2

4
0
0
1

3

5u (16)

y = Cz z = [�1 1 0]z

I The corresponding controllability matrix is

CMz = [Bz AzBz Az
2
Bz] =

2

4
0 0 1
0 1 �3
1 �1 1

3

5 (17)

I as det(CMz) = �1, the system is controllable.
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Controller Design by Transform - e.g. III

I Using characteristic equation (det(sI�Az)) or denominator
of G(s), we can write out phase-variable form for system
equations

ẋ = Ax x+Bx u =

2

4
0 1 0
0 0 1

�10 �17 �8

3

5x+

2

4
0
0
1

3

5u (18)

I The corresponding controllability matrix is

CMx = [Bx AxBx Ax
2
Bx] =

2

4
0 0 1
0 1 �8
1 �8 47

3

5 (19)

I We thus have

P = CMz CMx
�1 =

2

4
1 0 0
5 1 0

10 7 1

3

5 (20)
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Controller Design by Transform - e.g. IV

I We can now design our state-feedback gains (Kx) for
phase-variable systems like before.

I To achieve system with desired specifications, we need our
second-order system to be s2 + 2s+ 5.

I We place our third pole at s = �4 to cancel the zero.

I This gives desired characteristic equation

D(s) = (s+ 4)(s2 + 2s+ 5) = s3 + 6s2 + 13s+ 20 = 0 (21)

I The closed-loop system matrix is thus

AX �BxKx =

2

4
0 1 0
0 0 1

�(10 + k1x) �(17 + k2x) �(8 + k3x)

3

5

(22)
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Controller Design by Transform - e.g. V

I Corresponding characteristic equation is thus

det(sI� (Ax �BxKx)) = s3 + (8 + k3x)s
2 + (17 + k2x)s (23)

+ (10 + k1x)

I Comparing coe�cients, we see that

Kx = [k1x k2x k3x ] = [10 � 4 � 2] (24)

I Transforming the controller back to original system gives

Kz = KxP
�1 = [�20 10 � 2] (25)

I Combining with original system gives final closed-loop system

ż = (Az �BzKz)z+Bzr =

2

4
�5 1 0
0 �2 1

20 �10 1

3

5 z+

2

4
0
0
1

3

5 r

y = Cz z = [�1 1 0]z
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Observers

I The state feedback controllers we have been using only work
if we have access to all of the system states.

I However, due to cost, accuracy, or availability, we may not
always have the means to measure all state variables.

I When this is the case, we can estimate the states and feed the
estimated states to the controller instead.

I We will use an observer (also called an estimator) to calculate
the inaccessible plant state variables.
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Observers - II

I We will base our observer on our plant model with output
feedback to converge on the current state of system given
that actual initial conditions of plant are unkown.

Figure 12.11.
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Observer Design

I Assume a plant

ẋ = Ax+Bu (26)

y = Cx

I and observer

˙̂x = Ax̂+Bu (27)

ŷ = Cx̂

I If we subtract equation 27 from equation 26, we get

ẋ� ˙̂x = A(x� x̂) (28)

y � ŷ = C (x� x̂)

I We have a system that will drive the di↵erence to zero, but at
the same rate as the original systems’ transient response.

I This means the convergence rate of observer will be too slow
to be used as input to the controller.
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Observer Design - II

I To increase speed of convergence, we can feed back y � ŷ to
˙̂x, as shown in Figure (c) below.

I This feedback will allow us to design a transient response for
the observer that is much faster than that of the original
system.

Figure 12.11.
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Observer Canonical Form

I For designing state feedback controllers, systems in
phase-variable form made things easier.

I For designing observers, we want systems in observer
canonical form.

I Consider system below:

G(s) =
C(s)

R(s)
=

s2 + 7s+ 2

s3 + 9s2 + 26s+ 24
(29)

I Now, divide all terms by highest power of s, s3, giving:

C(s)

R(s)
=

1
s +

7
s2 + 2

s3

1 + 9
s +

26
s2 + 24

s3
(30)
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Observer Canonical Form II

I Cross multiplying gives:

1

s
+

7

s2
+

2

s3

�
R(s) =


1 +

9

s
+

26

s2
+

24

s3

�
C(s) (31)

I Collecting terms gives:

C(s) =
1

s
[R(s)� 9C(s)] +

1

s2
[7R(s)� 26C(s)] (32)

+
1

s3
[2R(s)� 24C(s)]

I We can rewrite this as:

C(s) =
1

s
[ [R(s)� 9C(s)] +

1

s
([7R(s)� 26C(s)] (33)

+
1

s
[2R(s)� 24C(s)])]
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Observer Canonical Form III

C(s) =
1

s
[ [R(s)� 9C(s)] +

1

s
([7R(s)� 26C(s)]

+
1

s
[2R(s)� 24C(s)])]

Figure 5.28.
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Observer Canonical Form IV

I From signal-flow graph, we can derive state-space equations:

ẋ =

2

4
�9 1 0

�26 0 1
�24 0 0

3

5x+

2

4
1
7
2

3

5 r (34)

y = [1 0 0]x

I Similar form as phase-variable.
1. Output matrix, C, always as shown.

2. Negate the coe�cients of denominator make up left column of
A matrix.

3. Coe�cients of numerator make up matrix B.

G(s) =
s2 + 7s+ 2

s3 + 9s2 + 26s+ 24
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Observer Feedback e.g.

I Diagram shows plant in observer canonical form with output
error feedback.

Figure 12.12.
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Observer Design - Canonical Form

I From figure 12.11(c), we can derive state-space equations:

˙̂x = Ax̂+Bu+ L(y � ŷ) (35)

ŷ = Cx̂

I Subtracting these from the equations for the plant gives:

(ẋ� ˙̂x) = A (x� x̂)� L(y � ŷ) (36)

(y � ŷ) = C (x� x̂) (37)

I Substituting Equation 37 into 36 gives:

(ẋ� ˙̂x) = (A� LC)(x� x̂) (38)

(y � ŷ) = C (x� x̂) (39)

I If we take ex = (x� x̂) as our state variable, we see the error
will go to zero as long as the eigenvalues are all in left half
plane.
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Observer Design - Canonical Form II

I Goal is to place the roots of characteristic equation below to
get desired response.

det[�(I� (A� LC)] = 0 (40)

I First, we note that for a plant in observer canonical form,
A� LC, is of the form:

A� LC =

2

666664

�an�1 1 0 0 · · · 0
�an�2 0 1 0 · · · 0

...
...

...
...

...
...

�a1 0 0 0 · · · 1
�a0 0 0 0 · · · 0

3

777775
�

2

666664

l1
l2
...

ln�1

ln

3

777775
[1 0 · · · 0]

(41)
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Observer Design - Canonical Form III

I Simplifying gives

A� LC =

2

666664

�(an�1 + l1) 1 0 0 · · · 0
�(an�2 + l2) 0 1 0 · · · 0

...
...

...
...

...
...

�(a1 + ln�1) 0 0 0 · · · 1
�(a0 + ln) 0 0 0 · · · 0

3

777775
(42)

I Our characteristic equation for A� LC is thus

sn + (an�1 + l1)s
n�1 + (an�2 + l2)s

n�2 + · · ·+ (43)

(a1 + ln�1)s+ (a0 + ln) = 0

We then select our poles to give desired respond giving
desired characteristic equation

sn + dn�1s
n�1 + dn�2s

n�2 + · · ·+ d1s+ d0 = 0 (44)

I equating coe�cients and solving for li, we get:

li = dn�i � an�i for i = 1, 2, . . . n
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Observer Design - Canonical Form e.g.

I Design an observer for plant below. The observer should
respond 10 times faster than closed-loop system with
dominant poles at s = �1± j2 (designed in earlier example).

G(s) =
(s+ 4)

(s+ 1)(s+ 2)(s+ 5)
=

(s+ 4)

s3 + 8s2 + 17s+ 10

I Writing estimated plant in observer canonical form gives

˙̂x = Ax̂+Bu

2

4
�8 1 0
�17 0 1
�10 0 0

3

5x+

2

4
0
1
4

3

5u (45)

ŷ = Cx̂ = [1 0 0] x̂

I Characteristic equation for A� LC is thus

s3 + (8 + l1)s
2 + (17 + l2)s+ (10 + l3) (46)
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Observer Design - Canonical Form e.g. - II

I As we want observer 10 times faster than system with
dominant closed-loop poles at s = �1± j2, we need
dominant poles at s = �10± j20.

I Choose third pole to be 10 times to the left of dominant pole
to limit it’s a↵ect, gives pole at s = �100.

I Desired characteristic equation is thus:

D(s) = s3 + 120s2 + 2500s+ 50, 000 (47)

I Comparing coe�cients for Equation above and Equation 46,
gives l1 = 112, l2 = 2483, l3 = 49, 990.
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Observer Response

I Response of observer with input r(t) = 100t, initial conditions
of plant zero, and initial condition of x1 = 0.5.

I Top figure is with output error feedback, bottom without.

Figure 12.14.
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Observervability

I To design an observer, we need to be able to deduce the
current state of each state variable from the sytem output.

I If a state variable has no e↵ect on the output, we can not
determine the value of that variable from observing the
output.

Definition

If initial state x(to) of system can be determined from y(t) and
u(t) observed over a finite time interval starting at to, we say the
system is (completely) observable. Otherwise, we say the system is
unobservable.
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Observervability II

I Consider system with state-space equations given below.

ẋ = Ax+Bu

y = Cx

I The observability matrix, OM , for the system is

OM =

2

6664

C

CA

...
CA

n�1

3

7775
(48)

I System is obervable if OM is of rank n.
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Alternate Approaches to Observer Design

I Observer design is very straightforward when system in
observer canonical form.

I For other forms, we can still evaluate the observer and desire
characteristic equation and compare coe�cients, but the
results typically lead to di�cult calculations.

I An easier method is to transform the system into observer
canonical form, place the poles, and then transform the result
back into the original form.
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Observer Design by Transformation

I Assume plant below is not in Observer canonical form

ż = Az+Bu (49)

y = Cz

I System’s observability matrix is

OMz =

2

6664

C

CA

...
CA

n�1

3

7775
(50)

I Assuming we can use the transform z = Px to transform
system into observer canonical form, we get equations

ẋ = P
�1

APx+P
�1

Bu (51)

y = CPx
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Observer Design by Transformation - II

I This gives observability matrix:

OMx =

2

6664

C

CA

...
CA

n�1

3

7775
P = OMzP (52)

I Solving for P gives

P = O
�1
Mz

OMx (53)

I After using the observer canonical form to solve for feedback
matrix Lx, we can derive the feedback matrix for original
system using the relation below:

Lz = PLx (54)

2006-2012 R.J. Leduc 55



Observer Design by Transformation e.g.

I Design an observer for plant

G(s) =
1

(s+ 1)(s+ 2)(s+ 5)
=

1

s3 + 8s2 + 17s+ 10

represented in cascade form below. The desired closed-loop
performance for the observer is represented by the desired
characteristic equation of: D(s) = s3 + 120s2 + 2500s
+50, 000.

ż = Az+Bu =

2

4
�5 1 0
0 �2 1
0 0 �1

3

5 z+

2

4
0
0
1

3

5u (55)

y = Cz = [1 0 0]z
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Observer Design by Transformation e.g. - II

I The System’s observability matrix is

OMz =

2

4
C

CA

CA
2

3

5 =

2

4
1 0 0

�5 1 0
25 �7 1

3

5 (56)

I As det(OMz) = 1 6= 0, the matrix has rank 3, thus the system
is observable.

I Using the denominator of G(s), we can construct the observer
canonical form for the system.

ẋ = Ax x+Bx u (57)

y = Cx x

with

Ax =

2

4
�8 1 0
�17 0 1
�10 0 0

3

5 and Cx = [1 0 0]
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Observer Design by Transformation e.g. - III

I The observability matrix is

OMx =

2

4
Cx

CxAx

CxA
2
x

3

5 =

2

4
1 0 0

�8 1 0
47 �8 1

3

5 (58)

I Next step is to design an observer for the observer canonical
form.

I Characteristic equation for Ax � LxCx is thus

s3 + (8 + l1)s
2 + (17 + l2)s+ (10 + l3) (59)

I Equating coe�cients with the desired charactersitic equation,
D(s) = s3 + 120s2 + 2500s +50, 000, we get

Lx =

2

4
112
2483

49, 990

3

5 (60)
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Observer Design by Transformation e.g. - IV

I We now need to find P to transform Lx into Lz.

P = O
�1
Mz

OMx =

2

4
1 0 0

�3 1 0
1 �1 1

3

5 (61)

and thus

Lz = PLx =

2

4
112
2147

47, 619

3

5 (62)
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Observer Design by Transformation e.g. - IV

I Diagram below shows original plant in cascade form,
connected to the observer with output error feedback.

Figure 12.18.

2006-2012 R.J. Leduc 60



Steady-State Error Design via Integral Control

I We now discuss how to design state space systems for
steady-state error.

I To do this, we will take the controller we designed earlier, add
a feedback path for the output to create error signal, and then
add an integrator.

I We have added a new state variable, XN , to the output of the
new integrator, thus giving ẋN = r �Cx.

Figure 12.21.
2006-2012 R.J. Leduc 61



Steady-State Error Design via Integral Control - II

I We can now write our state-space equations using augmented
vectors and matrices.

ẋ

ẋN

�
=


A 0

�C 0

� 
x

xN

�
+


B

0

�
u+


0

1

�
r (63)

y = [C 0]


x

xN

�

I From diagram, we have u = �Kx+KexN . Substituting this
into Equation 70 and simplifying gives


ẋ

ẋN

�
=


(A�BK) BKe

�C 0

� 
x

xN

�
+


0

1

�
r (64)

y = [C 0]


x

xN

�

I We would now use the characteristic equation of the system
matrix for the above system to design K and Ke to achieve
the desired transient response.
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Steady-State Error Design via Integral Control - III

I We now have another closed-loop pole we have to place that
can have an e↵ect on transient response..

I We also have to take into consideration the e↵ect of
closed-loop zeros.

I We can assume that closed-loop zeros will be in same place as
the open-loop ones, but we must later verify this.

I Using this assumption, we will try to place higher order poles
to cancel the zeros.
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Design via Integral Control e.g.

I Consider plant below:

ẋ =


0 1

�3 �5

�
x+


0
1

�
u (65)

y = [1 0]x

1. Without integral control, design acontroller that gives 10%
overshoot, and 0.5 second settling time. What is the
steady-state error for a unit step?

2. Repeat using integral control.

I Using the required settling time and % overshoot, we
calculate we need dominant closed-loop poles at
s = �8± 10j and characteristic equation

s2 + 16s+ 183.1 (66)
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Design via Integral Control e.g. - II

I As plant is in phase-variable form, the characteristic equation
for A�BK is thus:

s2 + (5 + k2)s+ (3 + k1) (67)

I Equating coe�cients and solving for gains gives k1 = 180.1
and k2 = 11.

I Our closed-loop plant is thus:

ẋ = (A�BK)x+B r =


0 1

�183.1 �16

�
x+


0
1

�
r

(68)

y = Cx = [1 0]x

I Using equation below, we find ess = 0.995.

ess = lim
s!0

sR(s)[1�C(sI�A)�1
B] (69)
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Design via Integral Control e.g. - III

I Part 2: Using equation from Slide 62, our integral-controlled
plant is thus:


ẋ

ẋN

�
=


(A�BK) BKe

�C 0

� 
x

xN

�
+


0

1

�
r (70)

2

4
ẋ1
ẋ2
ẋN

3

5 =

2

4 (


0 1

�3 �5

�
�


0
1

�
[k1 k2]) BKe

�[1 0] 0

3

5

2

4
x1
x2
xN

3

5

+

2

4
0
0
1

3

5 r

=

2

4
0 1 0

�(3 + k1) �(5 + k2) Ke

�1 0 0

3

5

2

4
x1
x2
xN

3

5+

2

4
0
0
1

3

5 r

y = [C 0]


x

xN

�
= [1 0 0]

2

4
x1
x2
xN

3

5
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Design via Integral Control e.g. - IV

I We still want our dominant poles at s = �8± 10j to satisfy
our performance requirements.

I As the open loop system has no zeros, we will assume the
closed loop has none also (check later).

I We choose our third pole at s = �100 to minimize its e↵ect.

I Combining the three poles gives desired characteristic
equation below:

D(s) = s3 + 116s2 + 1783.1s+ 18, 310 (71)

I Calculating the characteristic equation for the system matrix
directly gives

s3 + (5 + k2)s
2 + (3 + k1)s+Ke (72)

I Comparing coe�cients gives k1 = 1780.1, k2 = 111,
Ke = 18, 310.
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Design via Integral Control e.g. - V

I This gives us a closed-loop state space representation of:
2

4
ẋ1
ẋ2
ẋN

3

5 =

2

4
0 1 0

�1783.1 �116 18, 310
�1 0 0

3

5

2

4
x1
x2
xN

3

5+

2

4
0
0
1

3

5 r

y = [1 0 0]

2

4
x1
x2
xN

3

5

I To check is our assumption about the system’s zeros was
correct, we calculate the systems transfer function and find
that it does not contain a zero.

T (s) = C(sI�A)�1
B (73)

=
18, 310

s3 + 116s2 + 1783.1s+ 18, 310
I Using equation below, we find ess = 0.

ess = lim
s!0

sR(s)[1�C(sI�A)�1
B] (74)
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