Introduction

- \blacktriangleright Frequency response design methods allow us to place the dominant second-order pair of poles.
- \triangleright We then hope that the higher-order poles won't invalidate the approximation.
- \blacktriangleright We want to be able to specify the location of all n poles.
- \blacktriangleright We need *n* adjustable parameters to place *n* unknown values.
- \triangleright A single gain and a compensator pole and zero are typically not enough.

Introduction - II

 \triangleright State space methods solve this by:

- 1. introducing into the system other adjustable parameters
- 2. providing techniques to determine values for these parameters that will correctly place the poles.
- \triangleright A disadvantage of state space methods is that it doesn't allow the placement of closed loop zeros which can affect transient response.
- \triangleright Also, a state space design may be quite sensitive to changes in parameters.

Control Design

 \blacktriangleright An n^{th} order feedback control system has a n^{th} order closed-loop characteristic equation given by

$$
\det(s\mathbf{I} - \mathbf{A}') = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0
$$

where A' is the closed loop system matrix.

- \blacktriangleright The characteristic equation contains *n* coefficients that determine the system's *n* poles (eigenvalues).
- \triangleright Our goal is to introduce *n* new adjustable parameters and relate them to these coefficients.

Topology for Pole Placement

 \triangleright Consider a plant represented as

$$
\begin{aligned}\n\dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}u \\
y &= \mathbf{C}\,\mathbf{x}\n\end{aligned}\n\tag{1}
$$

 \blacktriangleright Typically, the output y is fed back.

Instead, we feed back each state variable with its own gain, k_i .

Figure 12.2.

Topology for Pole Placement - II

- \triangleright We represent the gains by feedback vector $-K$.
- \triangleright This gives a closed-loop system as represented as follows:

$$
\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u = \mathbf{A}\mathbf{x} + \mathbf{B}(-\mathbf{K}\mathbf{x} + r) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}r
$$
\n(3)

Figure 12.2.

Signal Flow Graph

- \triangleright Signal flow graphs are an alternative to block diagrams.
- \blacktriangleright They consist of nodes which represent signals, and branches that represent systems (the blocks of block diagrams).
- \triangleright Value of a node is the sum of the signals entering it.
- \triangleright To subtract an incoming signal, label the branch as negative.
- \blacktriangleright For example:

$$
V(S) = R_1(s)G_1(s) - R_2(s)G_2(s) + R_3(s)G_3(s)
$$

Figure 5.17. 2006-2012 R.J. Leduc ⁷

Signal Flow Graph e.g.

- \triangleright Convert the block diagram below to a signal flow graph.
- \blacktriangleright The steps are:
	- 1. First, draw all the signal nodes of the system.
	- 2. Add the branches to connect the nodes.
	- 3. Simplify the diagram by eliminating nodes with a single entry and exit point.

Signal Flow Graph e.g. - II

Phase Variable (Controller Cannonical) Form

 \blacktriangleright System with transfer function

$$
G(s) = \frac{Y(s)}{U(s)} = \frac{b_o}{s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0}
$$

 \blacktriangleright gives differential equation

$$
\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_0 u
$$

 \triangleright Our state variables and first-order differential equations are as follows:

$$
x_1 = y, \ x_2 = \frac{dy}{dt}, \ x_3 = \frac{d^2y}{dt^2}, \cdots, x_n = \frac{d^{n-1}y}{dt^{n-1}}
$$

$$
\dot{x_1} = x_2, \ \dot{x_2} = x_3, \ \dot{x_3} = x_4, \cdots, \dot{x}_{n-1} = x_n
$$

$$
\dot{x_n} = -a_0x_1 - a_1x_2 \cdots - a_{n-1}x_n + b_0u
$$

Phase Variable (Controller Cannonical) Form - II

 \blacktriangleright Putting the state equations in matrix form gives:

 \blacktriangleright Using that our ouput $y(t)$ equals x_1 , gives:

$$
y = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}
$$

$$
\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_0 u
$$

Phase Variable Form - Zeros

- \triangleright As we saw before, if numerator is not a constant, the numerator defines the output equation.
- \blacktriangleright The output below is thus:

$$
Y(s) = (s2 + 7s + 2)X1(s) = s2X1(s) + 7sX1(s) + 2X1(s)
$$

= X₃(s) + 7X₂(s) + 2X₁(s)

 \blacktriangleright In the time domain we thus have:

$$
y = 2x_1 + 7x_2 + x_3
$$

 \triangleright We thus have ouput matrix $C = \begin{bmatrix} 2 & 7 & 1 \end{bmatrix}$.

$$
\begin{array}{|c|c|}\n\hline\nR(s) & \xrightarrow{\quad s^2 + 7s + 2} & C(s) \\
\hline\n\hline\ns^3 + 9s^2 + 26s + 24 & (a) \\
\hline\n\end{array}
$$

$$
R(s)
$$
\n

$R(s)$	1	$X_1(s)$	$S^2 + 7s + 2$	$C(s)$
Internal variables:	$X_2(s)$, $X_3(s)$...		

 (b)

Figure 3.12. 2006-2012 R.J. Leduc ¹²

State Feedback Example

 \blacktriangleright Below is an example of plant in phase-variable form with state feedback added.

Pole Placement with Phase-Variable Form

- \triangleright To apply the pole placment approach with plants in phase-variable form, we follow the following steps.
	- 1. Represent the plant in phase-variable form.
	- 2. Feed back each state variable via gain *ki*.
	- **3.** Find characteristic eqn for above system.
	- 4. Select desired closed-loop poles and corresponding characteristic equation.
	- **5.** Equate coefficients of characteristic equations from last two steps, and solve for the *ki*.

Pole Placement with Phase-Variable Form - II

 \blacktriangleright Phase-variable representation of plant is given by

$$
\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}; \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix};
$$

$$
\mathbf{C} = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}
$$

 \triangleright Can show above system has characteristic equation:

$$
s^n + a_{n-1}s^{n-1} + \cdots a_1s + a_0
$$

 \triangleright We then feed back each state variable to input u giving:

$$
u = -\mathbf{K}\mathbf{x}, \text{ where } \mathbf{K} = [k_1 \ k_2 \ \cdots k_n]
$$

 \blacktriangleright For our closed-loop system, this gives system matrix:

$$
\mathbf{A} - \mathbf{B}\mathbf{K} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -(a_0 + k_1) & -(a_1 + k_2) & -(a_2 + k_3) & \cdots & -(a_{n-1} + k_n) \end{bmatrix}
$$

2006-2012 R.J. Leduc 15

Pole Placement with Phase-Variable Form - III

 \triangleright Closed-loop system thus has characteristic equation:

$$
\det(s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})) = s^n + (a_{n-1} + k_n)s^{n-1} +
$$

\n
$$
(a_{n-2} + k_{n-1})s^{n-2} + \dots + (a_1 + k_2)s +
$$

\n
$$
(a_0 + k_1) = 0
$$
\n(5)

 \triangleright Assume that the desired closed-loop poles correspond to the characteristic equation:

$$
s^{n} + d_{n-1}s^{n-1} + d_{n-2}s^{n-2} + \cdots + d_{1}s + d_{0} = 0
$$
 (6)

 \blacktriangleright equating coefficients we get:

$$
d_i = a_i + k_{i+1}
$$
 for $i = 0, 1, 2, \dots n-1$

 \blacktriangleright We thus have:

$$
k_{i+1} = d_i - a_i
$$

Pole Placement with Phase-Variable Form - e.g.

 \triangleright Given plant below, design the phase-variable feedback gains to yield 9.5% overshoot and a settling time of 0.74 seconds.

Pole Placement with Phase-Variable Form - e.g. - II

- \triangleright Start by determining location of dominant second-order poles to achieve desired transient response.
- \triangleright Using methods from previous chapters, we find that needed poles are $s_{1,2} = -5.4 \pm j7.2$.
- \triangleright As system is third order, we need to choose a location for third pole. We could:
	- 1. choose pole to be more than 5 times to the left of dominant second-order poles.
	- 2. choose pole to cancel zero
	- 3. optimize pole location to satisfy additional criteria.
- \blacktriangleright We should place pole at $s = -5$ to cancel the zero, but we will instead place pole at $s = -5.1$ to demonstrate why zero needs to be cancelled and the need for a final simulation.
- \triangleright Desired characteristic equation is thus

$$
(s+5.4+j7.2)(s+5.4-j7.2)(s+5.1) = s3 + 15.9s2 (7) + 136.08s + 413.1 18
$$

Pole Placement with Phase-Variable - e.g. - III

 \triangleright From diagram and phase-varaiable form of system, we can derive the closed loop system as:

$$
\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_1 & -(4+k_2) & -(5+k_3) \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r
$$

$$
y = \begin{bmatrix} 100 & 20 & 0 \end{bmatrix} \mathbf{x}
$$

 \triangleright Our closed-loop system matrix is thus:

$$
\mathbf{A} - \mathbf{B}\mathbf{K} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_1 & -(4 + k_2) & -(5 + k_3) \end{bmatrix}
$$

 \triangleright Closed loop system's chracteristic equation is thus: $det(s**I** - (**A** – **BK**)) = s³ + (5 + k₃)s² + (4 + k₂)s + k₁ = 0$ (8)

Pole Placement with Phase-Variable - e.g. - IV

 \triangleright Comparing coefficients of Equations [7](#page-16-0) and [8](#page-17-0) gives:

$$
5 + k_3 = 15.9;
$$
 $4 + k_2 = 136.08$ $k_1 = 413.1$

 \blacktriangleright We thus have:

$$
k_1 = 413.1;
$$
 $k_2 = 132.08;$ $k_3 = 10.9$

 \triangleright As the zeros of open-loop system are the same as the closed-loop system, our final system is thus:

$$
\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -413.1 & -136.08 & -15.9 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r
$$

$$
y = \begin{bmatrix} 100 & 20 & 0 \end{bmatrix} \mathbf{x}
$$

 \blacktriangleright This gives a closed loop transfer function of:

$$
\frac{20(s+5)}{s^3 + 15.9s^2 + 136.08s + 413.1}
$$

Pole Placement with Phase-Variable - e.g. - V

- \triangleright Simulation system gives 11.5% overshoot and 0.8 second settling time.
- Redesigning system with third pole at $s = -5$ gives correct result.

Figure 12.5.

Controllability

- It is not always possible to be able to place every pole in a system.
- In Figure (b) below, we can not use input *u* to control state *x*¹ as input *u* has no effect on this state.
- \blacktriangleright We say a system is (completely) controllable if we can find an input to a system that will take each state variable from a chosen initial state to a chosen final state. Otherwise system is uncontrollable. Figure: 12.6

Controllability - II

- \triangleright For many systems, it is not obvious from inspection whether a system is controllable or not.
- \blacktriangleright For a system with state equation

$$
\mathbf{\dot{x}} = \mathbf{A}\,\mathbf{x} + \mathbf{B}\,\mathbf{u},
$$

consider the so called controllability matrix, C_M , below:

 $\mathbf{C}_M = [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \mathbf{A}^2 \mathbf{B} \ \cdots \ \mathbf{A}^{n-1} \mathbf{B}]$

- It can be shown that if C_M is of rank *n*, then the system is controllable (see Ogata, K. *Modern Control Engineering,* 2d ed. Prentice Hall, Englewood Cliffs, NJ, 1990).
- \blacktriangleright The rank of a matrix is the maximum number of independent rows or columns.
- If determinant of a $n \times n$ matrix does not equal zero, then the matrix has rank *n*.

Controllability Example

Figure 12.7.

Controllability Example

 \blacktriangleright Given state equation for system below

Figure 12.7.

 \blacktriangleright

Controllability e.g.

 \blacktriangleright The controllability matrix is

$$
\mathbf{C}_{\mathbf{M}} = [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \mathbf{A}^{2} \mathbf{B}] = \begin{bmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & -2 & 4 \end{bmatrix}
$$

As det $(C_M) = -1$ (i.e. non zero), matrix C_M has rank 3 so system is controllable.

Alternate Approaches to Controller Design

- \triangleright Pole placement is very straightforward when system in phase-variable form.
- \blacktriangleright For other forms, we can still evaluate the closed-loop and desire characteristic equation and compare coefficients, but the results typically lead to difficult calculations.
- \triangleright An easier method is to transform the system into phase-variable form, place the poles, and then transform the result back into the original form.

Controller Design by Transform

 \triangleright Assume plant below is NOT in phase-variable form

$$
\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{u} \tag{9}
$$

$$
\mathbf{y} = \mathbf{C}\mathbf{z}
$$

 \triangleright Corresponding controllability matrix is thus

$$
\mathbf{C}_{\mathbf{M}_{\mathbf{z}}} = [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \mathbf{A}^2 \mathbf{B} \ \cdots \ \mathbf{A}^{n-1} \mathbf{B}] \tag{10}
$$

 \triangleright We then assume that can convert the system into phase-variable form using the transformation

$$
z = P x \tag{11}
$$

 \triangleright Substituting this into Equation 9, we get

$$
\dot{\mathbf{x}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \mathbf{x} + \mathbf{P}^{-1} \mathbf{B} u \tag{12}
$$
\n
$$
y = \mathbf{C} \mathbf{P} \mathbf{x}
$$

Controller Design by Transform - II

 \triangleright Corresponding controllability matrix is thus

$$
C_{M_x} = [P^{-1}B (P^{-1}AP)(P^{-1}B) (P^{-1}AP)^2 (P^{-1}B) \cdots
$$

\n
$$
(P^{-1}AP)^{n-1} (P^{-1}B)]
$$

\n
$$
= [P^{-1}B (P^{-1}AP)(P^{-1}B) (P^{-1}AP)(P^{-1}AP)(P^{-1}B)
$$

\n
$$
\cdots (P^{-1}AP)(P^{-1}AP)\cdots (P^{-1}AP)(P^{-1}B)]
$$

\n
$$
= P^{-1}[B AB A^2B \cdots A^{n-1}B] = P^{-1}C_{M_z}
$$

 \triangleright Solving for **P** gives

$$
\mathbf{P} = \mathbf{C_{M_z}} \mathbf{C_{M_x}}^{-1} \tag{13}
$$

Controller Design by Transform - III

 \triangleright Once we have phase-variable form of system, we can design controller by setting $u = -\mathbf{K_x} \mathbf{x} + r$ giving

$$
\dot{\mathbf{x}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \mathbf{x} - \mathbf{P}^{-1} \mathbf{B} \mathbf{K}_{x} \mathbf{x} + \mathbf{P}^{-1} \mathbf{B} r
$$
\n
$$
= (\mathbf{P}^{-1} \mathbf{A} \mathbf{P} - \mathbf{P}^{-1} \mathbf{B} \mathbf{K}_{x}) \mathbf{x} + \mathbf{P}^{-1} \mathbf{B} r
$$
\n
$$
y = \mathbf{C} \mathbf{P} \mathbf{x}
$$
\n(14)

- \blacktriangleright We thus use system matrix $(\mathbf{P}^{-1}\mathbf{A}\mathbf{P} \mathbf{P}^{-1}\mathbf{B}\mathbf{K}_{\mathbf{x}})$ to construct our closed-loop characteristic equation, and solve for the elements of K_{x} .
- \blacktriangleright We now use $\mathbf{x} = \mathbf{P}^{-1}\mathbf{z}$ to transform the above system back into the original system form giving us:

$$
\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} - \mathbf{B}\mathbf{K}_{\mathbf{x}}\mathbf{P}^{-1}\mathbf{z} + \mathbf{B}r
$$

= $(\mathbf{A} - \mathbf{B}\mathbf{K}_{\mathbf{x}}\mathbf{P}^{-1})\mathbf{z} + \mathbf{B}r$ (15)

As standard form closed-loop system matrix is $(A - BK)$, we see that $\mathbf{K}_z = \mathbf{K}_x \, \mathbf{P}^{-1}$.

Controller Design by Transform - e.g.

 \triangleright Design state-variable feedback controller that has 20.8% overshoot and settling time of 4 seconds for plant

$$
G(s) = \frac{(s+4)}{(s+1)(s+2)(s+5)} = \frac{(s+4)}{s^3 + 8s^2 + 17s + 10}
$$

that is represented in cascade form (see Section 5.7 of text for more information about cascade form) below:

Figure 12.9.

Controller Design by Transform - e.g. II

 \blacktriangleright From the diagram, we can derive the system below

$$
\dot{\mathbf{z}} = \mathbf{A}_{\mathbf{z}} \mathbf{z} + \mathbf{B}_{\mathbf{z}} u = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \quad (16)
$$

$$
y = \mathbf{C}_{\mathbf{z}} \mathbf{z} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \mathbf{z}
$$

 \blacktriangleright The corresponding controllability matrix is

$$
\mathbf{C}_{\mathbf{M}_{\mathbf{z}}} = [\mathbf{B}_{\mathbf{z}} \ \mathbf{A}_{\mathbf{z}} \mathbf{B}_{\mathbf{z}} \ \mathbf{A}_{\mathbf{z}}^2 \mathbf{B}_{\mathbf{z}}] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix}
$$
 (17)

ightharpoontal as det $(C_{\mathbf{M}_z}) = -1$, the system is controllable.

Controller Design by Transform - e.g. III

 \triangleright Using characteristic equation $(\det(sI - A_z))$ or denominator of *G*(*s*), we can write out phase-variable form for system equations

$$
\dot{\mathbf{x}} = \mathbf{A}_{\mathbf{x}} \mathbf{x} + \mathbf{B}_{\mathbf{x}} u = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -10 & -17 & -8 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \tag{18}
$$

 \blacktriangleright The corresponding controllability matrix is

$$
\mathbf{C}_{\mathbf{M}_{\mathbf{x}}} = [\mathbf{B}_{\mathbf{x}} \ \mathbf{A}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}} \ \mathbf{A}_{\mathbf{x}}^2 \mathbf{B}_{\mathbf{x}}] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -8 \\ 1 & -8 & 47 \end{bmatrix}
$$
 (19)

 \blacktriangleright We thus have

$$
\mathbf{P} = \mathbf{C_{M_z}} \mathbf{C_{M_x}}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 10 & 7 & 1 \end{bmatrix}
$$
 (20)

Controller Design by Transform - e.g. IV

- \blacktriangleright We can now design our state-feedback gains (K_x) for phase-variable systems like before.
- \blacktriangleright To achieve system with desired specifications, we need our second-order system to be $s^2 + 2s + 5$.
- \triangleright We place our third pole at $s = -4$ to cancel the zero.
- \blacktriangleright This gives desired characteristic equation $D(s) = (s + 4)(s^2 + 2s + 5) = s^3 + 6s^2 + 13s + 20 = 0$ (21)
- \blacktriangleright The closed-loop system matrix is thus

$$
\mathbf{A_X} - \mathbf{B_X} \mathbf{K_X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -(10 + k_{1_x}) & -(17 + k_{2_x}) & -(8 + k_{3_x}) \end{bmatrix}
$$
(22)

Controller Design by Transform - e.g. V

 \triangleright Corresponding characteristic equation is thus

$$
\det(s\mathbf{I} - (\mathbf{A_x} - \mathbf{B_x}\mathbf{K_x})) = s^3 + (8 + k_{3_x})s^2 + (17 + k_{2_x})s
$$
 (23)
+ (10 + k_{1_x})

 \triangleright Comparing coefficients, we see that

$$
\mathbf{K}_{\mathbf{x}} = [k_{1_x} \ \ k_{2_x} \ \ k_{3_x}] = [10 \ -4 \ -2] \tag{24}
$$

 \blacktriangleright Transforming the controller back to original system gives

$$
\mathbf{K}_{\mathbf{z}} = \mathbf{K}_{\mathbf{x}} \mathbf{P}^{-1} = [-20 \ 10 \ -2] \tag{25}
$$

 \triangleright Combining with original system gives final closed-loop system

$$
\dot{\mathbf{z}} = (\mathbf{A}_{\mathbf{z}} - \mathbf{B}_{\mathbf{z}} \mathbf{K}_{\mathbf{z}}) \mathbf{z} + \mathbf{B}_{\mathbf{z}} r = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -2 & 1 \\ 20 & -10 & 1 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r
$$

$$
y = \mathbf{C}_{\mathbf{z}} \mathbf{z} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \mathbf{z}
$$

2006-2012 R.J. Leduc 35

Observers

- \blacktriangleright The state feedback controllers we have been using only work if we have access to all of the system states.
- \blacktriangleright However, due to cost, accuracy, or availability, we may not always have the means to measure all state variables.
- \triangleright When this is the case, we can estimate the states and feed the estimated states to the controller instead.
- \triangleright We will use an observer (also called an estimator) to calculate the inaccessible plant state variables.

Observers - II

 \triangleright We will base our observer on our plant model with output feedback to converge on the current state of system given that actual initial conditions of plant are unkown.

Figure 12.11.

Observer Design

 \blacktriangleright Assume a plant

$$
\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{26}
$$

$$
\mathbf{y} = \mathbf{C}\mathbf{x}
$$

 \blacktriangleright and observer

$$
\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u
$$
 (27)

$$
\hat{y} = \mathbf{C}\hat{\mathbf{x}}
$$

$$
\dot{\mathbf{x}} - \dot{\hat{\mathbf{x}}} = \mathbf{A}(\mathbf{x} - \hat{\mathbf{x}})
$$

\n
$$
y - \hat{y} = \mathbf{C}(\mathbf{x} - \hat{\mathbf{x}})
$$
\n(28)

- ▶ We have a system that will drive the difference to zero, but at the same rate as the original systems' transient response.
- \triangleright This means the convergence rate of observer will be too slow to be used as input to the controller.

Observer Design - II

- ▶ To increase speed of convergence, we can feed back $y \hat{y}$ to $\dot{\hat{x}}$, as shown in Figure (c) below.
- \triangleright This feedback will allow us to design a transient response for the observer that is much faster than that of the original system.

Observer Canonical Form

- \blacktriangleright For designing state feedback controllers, systems in phase-variable form made things easier.
- \blacktriangleright For designing observers, we want systems in observer canonical form.
- \blacktriangleright Consider system below:

$$
G(s) = \frac{C(s)}{R(s)} = \frac{s^2 + 7s + 2}{s^3 + 9s^2 + 26s + 24}
$$
 (29)

 \triangleright Now, divide all terms by highest power of *s*, s^3 , giving:

$$
\frac{C(s)}{R(s)} = \frac{\frac{1}{s} + \frac{7}{s^2} + \frac{2}{s^3}}{1 + \frac{9}{s} + \frac{26}{s^2} + \frac{24}{s^3}}
$$
(30)

Observer Canonical Form II

 \blacktriangleright Cross multiplying gives:

$$
\left[\frac{1}{s} + \frac{7}{s^2} + \frac{2}{s^3}\right]R(s) = \left[1 + \frac{9}{s} + \frac{26}{s^2} + \frac{24}{s^3}\right]C(s) \tag{31}
$$

 \blacktriangleright Collecting terms gives:

$$
C(s) = \frac{1}{s}[R(s) - 9C(s)] + \frac{1}{s^2}[7R(s) - 26C(s)]
$$
 (32)

$$
+ \frac{1}{s^3}[2R(s) - 24C(s)]
$$

 \blacktriangleright We can rewrite this as:

$$
C(s) = \frac{1}{s} \left[[R(s) - 9C(s)] + \frac{1}{s} ([7R(s) - 26C(s)] + \frac{1}{s} [2R(s) - 24C(s)] \right]
$$
 (33)

Observer Canonical Form III

Figure 5.28.

Observer Canonical Form IV

 \triangleright From signal-flow graph, we can derive state-space equations:

$$
\dot{\mathbf{x}} = \begin{bmatrix} -9 & 1 & 0 \\ -26 & 0 & 1 \\ -24 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 7 \\ 2 \end{bmatrix} r
$$
(34)

$$
y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}
$$

 \blacktriangleright Similar form as phase-variable.

- 1. Output matrix, C, always as shown.
- 2. Negate the coefficients of denominator make up left column of A matrix.
- 3. Coefficients of numerator make up matrix B .

$$
G(s) = \frac{s^2 + 7s + 2}{s^3 + 9s^2 + 26s + 24}
$$

Observer Feedback e.g.

▶ Diagram shows plant in observer canonical form with output error feedback.

Observer Design - Canonical Form

From figure $12.11(c)$, we can derive state-space equations:

$$
\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u + \mathbf{L}(y - \hat{y})
$$
 (35)
\n
$$
\hat{y} = \mathbf{C}\hat{\mathbf{x}}
$$

 \triangleright Subtracting these from the equations for the plant gives:

$$
(\dot{\mathbf{x}} - \dot{\hat{\mathbf{x}}}) = \mathbf{A} (\mathbf{x} - \hat{\mathbf{x}}) - \mathbf{L}(y - \hat{y})
$$
 (36)

$$
(y - \hat{y}) = \mathbf{C}(\mathbf{x} - \hat{\mathbf{x}})
$$
 (37)

 \triangleright Substituting Equation [37](#page-43-0) into [36](#page-43-1) gives:

$$
(\dot{\mathbf{x}} - \dot{\hat{\mathbf{x}}}) = (\mathbf{A} - \mathbf{LC})(\mathbf{x} - \hat{\mathbf{x}})
$$
 (38)

$$
(y - \hat{y}) = \mathbf{C}(\mathbf{x} - \hat{\mathbf{x}})
$$
 (39)

If we take $e_x = (\mathbf{x} - \hat{\mathbf{x}})$ as our state variable, we see the error will go to zero as long as the eigenvalues are all in left half plane.

Observer Design - Canonical Form II

 \triangleright Goal is to place the roots of characteristic equation below to get desired response.

$$
\det[\lambda(\mathbf{I} - (\mathbf{A} - \mathbf{L}\mathbf{C})] = 0 \tag{40}
$$

 \blacktriangleright First, we note that for a plant in observer canonical form, $A - LC$, is of the form:

$$
\mathbf{A} - \mathbf{LC} = \begin{bmatrix} -a_{n-1} & 1 & 0 & 0 & \cdots & 0 \\ -a_{n-2} & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_1 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} - \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_{n-1} \\ l_n \end{bmatrix} [1 \ 0 \ \cdots 0]
$$
\n(41)

Observer Design - Canonical Form III

 \blacktriangleright Simplifying gives

$$
\mathbf{A} - \mathbf{LC} = \begin{bmatrix} -(a_{n-1} + l_1) & 1 & 0 & 0 & \cdots & 0 \\ -(a_{n-2} + l_2) & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -(a_1 + l_{n-1}) & 0 & 0 & 0 & \cdots & 1 \\ -(a_0 + l_n) & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}
$$
(42)

 \triangleright Our characteristic equation for $A - LC$ is thus

$$
s^{n} + (a_{n-1} + l_1)s^{n-1} + (a_{n-2} + l_2)s^{n-2} + \cdots + \textbf{(43)}
$$

$$
(a_1 + l_{n-1})s + (a_0 + l_n) = 0
$$

We then select our poles to give desired respond giving desired characteristic equation

$$
s^{n} + d_{n-1}s^{n-1} + d_{n-2}s^{n-2} + \cdots + d_{1}s + d_{0} = 0
$$
 (44)

 \triangleright equating coefficients and solving for l_i , we get:

2006-2012 R.J. Leduc
$$
l_i = d_{n-i} - a_{n-i} \text{ for } i = 1, 2, \dots n
$$

Observer Design - Canonical Form e.g.

▶ Design an observer for plant below. The observer should respond 10 times faster than closed-loop system with dominant poles at $s = -1 \pm i/2$ (designed in earlier example).

$$
G(s) = \frac{(s+4)}{(s+1)(s+2)(s+5)} = \frac{(s+4)}{s^3 + 8s^2 + 17s + 10}
$$

 \triangleright Writing estimated plant in observer canonical form gives

$$
\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}u \begin{bmatrix} -8 & 1 & 0 \\ -17 & 0 & 1 \\ -10 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} u \qquad (45)
$$

$$
\hat{y} = \mathbf{C}\hat{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \hat{\mathbf{x}}
$$

 \triangleright Characteristic equation for $A - LC$ is thus

$$
s^3 + (8 + l_1)s^2 + (17 + l_2)s + (10 + l_3)
$$
 (46)

Observer Design - Canonical Form e.g. - II

- \triangleright As we want observer 10 times faster than system with dominant closed-loop poles at $s = -1 \pm i2$, we need dominant poles at $s = -10 \pm i20$.
- \triangleright Choose third pole to be 10 times to the left of dominant pole to limit it's affect, gives pole at $s = -100$.
- \triangleright Desired characteristic equation is thus:

$$
D(s) = s3 + 120s2 + 2500s + 50,000
$$
 (47)

 \triangleright Comparing coefficients for Equation above and Equation 46, gives $l_1 = 112$, $l_2 = 2483$, $l_3 = 49,990$.

Observer Response

- Response of observer with input $r(t) = 100t$, initial conditions of plant zero, and initial condition of $x_1 = 0.5$.
- \triangleright Top figure is with output error feedback, bottom without.

Observervability

- \blacktriangleright To design an observer, we need to be able to deduce the current state of each state variable from the sytem output.
- If a state variable has no effect on the output, we can not determine the value of that variable from observing the output.

Definition

If initial state $x(t_o)$ of system can be determined from $y(t)$ and $u(t)$ observed over a finite time interval starting at t_o , we say the system is (completely) observable. Otherwise, we say the system is unobservable.

Observervability II

 \triangleright Consider system with state-space equations given below.

```
\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}uy = C x
```
 \blacktriangleright The observability matrix, \mathbf{O}_M , for the system is

$$
\mathbf{O}_M = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C} \mathbf{A} \\ \vdots \\ \mathbf{C} \mathbf{A}^{n-1} \end{array} \right] \tag{48}
$$

System is obervable if \mathbf{O}_M is of rank *n*.

Alternate Approaches to Observer Design

- \triangleright Observer design is very straightforward when system in observer canonical form.
- \blacktriangleright For other forms, we can still evaluate the observer and desire characteristic equation and compare coefficients, but the results typically lead to difficult calculations.
- \blacktriangleright An easier method is to transform the system into observer canonical form, place the poles, and then transform the result back into the original form.

Observer Design by Transformation

 \triangleright Assume plant below is not in Observer canonical form

$$
\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{u} \tag{49}
$$

$$
\mathbf{y} = \mathbf{C}\mathbf{z}
$$

 \triangleright System's observability matrix is

$$
\mathbf{O}_{M_z} = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C} \mathbf{A} \\ \vdots \\ \mathbf{C} \mathbf{A}^{n-1} \end{array} \right] \tag{50}
$$

In Assuming we can use the transform $z = P x$ **to transform** system into observer canonical form, we get equations

$$
\dot{\mathbf{x}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \mathbf{x} + \mathbf{P}^{-1} \mathbf{B} u
$$
 (51)

$$
y = \mathbf{C} \mathbf{P} \mathbf{x}
$$

Observer Design by Transformation - II

 \blacktriangleright This gives observability matrix:

$$
\mathbf{O}_{M_x} = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C} \mathbf{A} \\ \vdots \\ \mathbf{C} \mathbf{A}^{n-1} \end{array} \right] \mathbf{P} = \mathbf{O}_{M_z} \mathbf{P} \tag{52}
$$

 \triangleright Solving for **P** gives

$$
\mathbf{P} = \mathbf{O}_{M_z}^{-1} \mathbf{O}_{M_x} \tag{53}
$$

 \triangleright After using the observer canonical form to solve for feedback matrix L_x , we can derive the feedback matrix for original system using the relation below:

$$
\mathbf{L}_z = \mathbf{P} \, \mathbf{L}_x \tag{54}
$$

Observer Design by Transformation e.g.

 \blacktriangleright Design an observer for plant

$$
G(s) = \frac{1}{(s+1)(s+2)(s+5)} = \frac{1}{s^3 + 8s^2 + 17s + 10}
$$

represented in cascade form below. The desired closed-loop performance for the observer is represented by the desired characteristic equation of: $D(s) = s^3 + 120s^2 + 2500s$ +50*,* 000.

$$
\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\,u = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \qquad (55)
$$

$$
y = \mathbf{C}\,\mathbf{z} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{z}
$$

Observer Design by Transformation e.g. - II

 \blacktriangleright The System's observability matrix is

$$
\mathbf{O}_{M_z} = \left[\begin{array}{c} \mathbf{C} \\ \mathbf{C} \mathbf{A} \\ \mathbf{C} \mathbf{A}^2 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 25 & -7 & 1 \end{array} \right] \tag{56}
$$

As det $(\mathbf{O}_{M_z})=1\neq 0$, the matrix has rank 3, thus the system is observable.

If Using the denominator of $G(s)$, we can construct the observer canonical form for the system.

$$
\dot{\mathbf{x}} = \mathbf{A}_x \mathbf{x} + \mathbf{B}_x u
$$

\n
$$
y = \mathbf{C}_x \mathbf{x}
$$
\n(57)

with

$$
\mathbf{A}_x = \begin{bmatrix} -8 & 1 & 0 \\ -17 & 0 & 1 \\ -10 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C}_x = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}
$$

2006-2012 R.J. Leduc 57

Observer Design by Transformation e.g. - III

 \blacktriangleright The observability matrix is

$$
\mathbf{O}_{M_x} = \left[\begin{array}{c} \mathbf{C}_x \\ \mathbf{C}_x \mathbf{A}_x \\ \mathbf{C}_x \mathbf{A}_x^2 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -8 & 1 & 0 \\ 47 & -8 & 1 \end{array} \right] \tag{58}
$$

- \triangleright Next step is to design an observer for the observer canonical form.
- **In** Characteristic equation for $A_x L_xC_x$ is thus $s^3 + (8 + l_1)s^2 + (17 + l_2)s + (10 + l_3)$ (59)
- \blacktriangleright Equating coefficients with the desired charactersitic equation, $D(s) = s^3 + 120s^2 + 2500s + 50,000$, we get

$$
\mathbf{L}_x = \left[\begin{array}{c} 112 \\ 2483 \\ 49,990 \end{array} \right] \tag{60}
$$

Observer Design by Transformation e.g. - IV

 \triangleright We now need to find P to transform \mathbf{L}_x into \mathbf{L}_z .

$$
\mathbf{P} = \mathbf{O}_{M_z}^{-1} \mathbf{O}_{M_x} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}
$$
 (61)

and thus

$$
\mathbf{L}_z = \mathbf{P} \mathbf{L}_x = \begin{bmatrix} 112 \\ 2147 \\ 47,619 \end{bmatrix}
$$
 (62)

Observer Design by Transformation e.g. - IV

 \triangleright Diagram below shows original plant in cascade form, connected to the observer with output error feedback.

Figure 12.18.

Steady-State Error Design via Integral Control

- \triangleright We now discuss how to design state space systems for steady-state error.
- \triangleright To do this, we will take the controller we designed earlier, add a feedback path for the output to create error signal, and then add an integrator.
- \blacktriangleright We have added a new state variable, X_N , to the output of the new integrator, thus giving $\dot{x}_N = r - Cx$.

Steady-State Error Design via Integral Control - II

 \triangleright We can now write our state-space equations using augmented vectors and matrices.

$$
\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{x}_N \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_N \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} u + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r
$$
 (63)

$$
y = \begin{bmatrix} \mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_N \end{bmatrix}
$$

From diagram, we have $u = -\mathbf{K} \mathbf{x} + K_e x_N$ **. Substituting this** into Equation [70](#page-60-0) and simplifying gives

$$
\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{x}_N \end{bmatrix} = \begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{K}) & \mathbf{B}K_e \\ -\mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_N \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r \quad (64)
$$

$$
y = [\mathbf{C} \ 0] \begin{bmatrix} \mathbf{x} \\ x_N \end{bmatrix}
$$

 \triangleright We would now use the characteristic equation of the system matrix for the above system to design \mathbf{K} and K_e to achieve the desired transient response.

 \bigcap 2006-2012 R.J. Leduc 62

Steady-State Error Design via Integral Control - III

- \triangleright We now have another closed-loop pole we have to place that can have an effect on transient response..
- \triangleright We also have to take into consideration the effect of closed-loop zeros.
- \triangleright We can assume that closed-loop zeros will be in same place as the open-loop ones, but we must later verify this.
- \triangleright Using this assumption, we will try to place higher order poles to cancel the zeros.

Design via Integral Control e.g.

 \blacktriangleright Consider plant below:

$$
\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \tag{65}
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}
$$

1. Without integral control, design acontroller that gives 10% overshoot, and 0.5 second settling time. What is the steady-state error for a unit step?

2. Repeat using integral control.

- \triangleright Using the required settling time and $\%$ overshoot, we calculate we need dominant closed-loop poles at
	- $s = -8 \pm 10$ *j* and characteristic equation

$$
s^2 + 16s + 183.1\tag{66}
$$

Design via Integral Control e.g. - II

 \triangleright As plant is in phase-variable form, the characteristic equation for $A - BK$ is thus:

$$
s^2 + (5 + k_2)s + (3 + k_1)
$$
 (67)

Equating coefficients and solving for gains gives $k_1 = 180.1$ and $k_2 = 11$.

 \triangleright Our closed-loop plant is thus:

$$
\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}r = \begin{bmatrix} 0 & 1 \\ -183.1 & -16 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r
$$
\n(68)

$$
y = \mathbf{C}\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}
$$

 \triangleright Using equation below, we find $e_{ss} = 0.995$.

$$
e_{ss} = \lim_{s \to 0} s R(s) [1 - \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}] \tag{69}
$$

Design via Integral Control e.g. - III

▶ Part 2: Using equation from Slide [62,](#page-60-1) our integral-controlled plant is thus:

$$
\begin{bmatrix}\n\dot{\mathbf{x}} \\
\dot{x}_N\n\end{bmatrix} = \begin{bmatrix}\n(A - \mathbf{B}\mathbf{K}) & \mathbf{B}K_e \\
-C & 0\n\end{bmatrix} \begin{bmatrix}\n\mathbf{x} \\
x_N\n\end{bmatrix} + \begin{bmatrix}\n0 \\
1\n\end{bmatrix}r\n\tag{70}
$$
\n
$$
\begin{bmatrix}\n\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_N\n\end{bmatrix} = \begin{bmatrix}\n(\begin{bmatrix}\n0 & 1 \\
-3 & -5\n\end{bmatrix} - \begin{bmatrix}\n0 \\
1\n\end{bmatrix} [k_1 \ k_2]) & \mathbf{B}K_e \\
0\n\end{bmatrix} \begin{bmatrix}\nx_1 \\
x_2 \\
x_N\n\end{bmatrix}
$$
\n
$$
+ \begin{bmatrix}\n0 \\
0 \\
1\n\end{bmatrix} r
$$
\n
$$
= \begin{bmatrix}\n0 & 1 & 0 \\
-(3 + k_1) & -(5 + k_2) & K_e \\
-1 & 0 & 0\n\end{bmatrix} \begin{bmatrix}\nx_1 \\
x_2 \\
x_N\n\end{bmatrix} + \begin{bmatrix}\n0 \\
0 \\
1\n\end{bmatrix} r
$$
\n
$$
y = [\mathbf{C} \ 0] \begin{bmatrix}\n\mathbf{x} \\
x_N\n\end{bmatrix} = [1 \ 0 \ 0] \begin{bmatrix}\nx_1 \\
x_2 \\
x_N\n\end{bmatrix}
$$
\n66

Design via Integral Control e.g. - IV

- \triangleright We still want our dominant poles at $s = -8 \pm 10j$ to satisfy our performance requirements.
- \triangleright As the open loop system has no zeros, we will assume the closed loop has none also (check later).
- \triangleright We choose our third pole at $s = -100$ to minimize its effect.
- \triangleright Combining the three poles gives desired characteristic equation below:

$$
D(s) = s3 + 116s2 + 1783.1s + 18,310
$$
 (71)

$$
s^3 + (5 + k_2)s^2 + (3 + k_1)s + K_e \tag{72}
$$

$$
\blacktriangleright
$$
 Comparing coefficients gives $k_1 = 1780.1$, $k_2 = 111$, $K_e = 18,310$.

Design via Integral Control e.g. - V

 \blacktriangleright This gives us a closed-loop state space representation of:

$$
\begin{bmatrix}\n\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_N\n\end{bmatrix} = \begin{bmatrix}\n0 & 1 & 0 \\
-1783.1 & -116 & 18,310 \\
-1 & 0 & 0\n\end{bmatrix} \begin{bmatrix}\nx_1 \\
x_2 \\
x_N\n\end{bmatrix} + \begin{bmatrix}\n0 \\
0 \\
1\n\end{bmatrix} r
$$
\n
$$
y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \\
x_N \end{bmatrix}
$$

 \blacktriangleright To check is our assumption about the system's zeros was correct, we calculate the systems transfer function and find that it does not contain a zero.

$$
T(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}
$$

=
$$
\frac{18,310}{s^3 + 116s^2 + 1783.1s + 18,310}
$$
 (73)

 \triangleright Using equation below, we find $e_{ss} = 0$.

2006-2012 R.J. Leduc
$$
e_{ss} = \lim_{s \to 0} s R(s) [1 - \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}] \tag{74}
$$