
Introduction

I Once we have obtained a mathematical representation of a
system, our next step is to analyze its transient and
steady-state response.

I In this section, we will focus on how to analyze a system’s
transient response.

I We already know how to determine the output response by
solving di↵erential equations, or taking inverse Laplace
transforms.

I These methods are laborous and time consuming.

I We want to develop a technique where we can get the desired
information about a system’s transient and steady-state
response, basically by inspection.

I Our first topic will be how to analyze poles and zeros to
determine a system’s response.
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Poles and Zeros

I Consider:

G(s) =
bn�1sn�1 + bn�2sn�2 + · · ·+ b0

sn + an�1sn�1 + · · ·+ a0
=

N(s)

D(s)

I Poles of G(s) are the roots of D(s).

I Zeros of G(s) are the roots of N(s).

I Generally, at poles G(s) = 1 unless the pole is cancelled by a
matching zero.

I At zeros, G(s) = 0 unless the zero is cancelled by a matching
pole.
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Poles and Zeros of First Order System eg.

I A system’s output response contains two parts:
1. Forced or steady state response: this is caused by the poles of

the input function, R(s).
2. Natural or homogeneous response: this is caused by the poles

of the transfer function, G(s).

I In example below, our transfer function is G(s) =
s+ 2

s+ 5
, and

our input is R(s) = 1
s .

Figure 4.1.
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Poles and Zeros of First Order System eg. - II

Figure 4.1.
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Poles and Zeros of First Order System eg. - III

1. Pole of input function generated forced response, u(t).
2. Pole of transfer function generated natural response, e�5t.

The above is not a↵ected at all by the zero.
3. Pole on real axis, say at �↵, generates an exponential

response, e�↵t.

Farther to the left on negative axis, the faster the response
decays.

4. Both the poles and zeros contribute to the amplitude of the

response (ie. the
2

5
and

3

5
factors).

Figure 4.2.
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Evaluating Response using Poles eg.

I Consider system shown below.

Figure 4.3.

I From inspection, we can immediately determine:

C(s) ⌘ K1

s|{z}
Forced

+
K2

s+ 2
+

K3

s+ 4
+

K4

s+ 5| {z }
Natural

I Using L{ 1
s+↵} = e�↵t gives:

c(t) ⌘ K1|{z}
Forced

+K2e
�2t +K3e

�4t +K4e
�5t

| {z }
Natural
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First Order Systems

I We will now examine first order systems without zeros so we
can define performance specifications.

I We use systems of the form G(s) = a
s+a as our base form for

our definitions.

I If our input is the step function, R(s) = 1
s , we get

c(t) = cf (t) + cn(t) = 1� e�at

Figure 4.4.
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Time Constant

I We will now examine first order systems without zeros so we
can define performance specifications.

I Our first specification is the system’s time constant, ⌧ = 1
a .

I The time constant is the time required for step response to
rise to 63% percent of its final value.

c(⌧) = 1� e�a⌧ = 1� e�a· 1a = 1� e�1 ⇡ 1� 0.37 = 0.63

I As
dc(t)

dt
= ae�at, we thus have a

equal to the slope at t = 0.

I We call a the exponential
frequency.

Figure 4.5
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Rise and Settling Time

I Rise time, Tr, is the time for the output to go from 10% to
90% of its final value.

I Can show that Tr =
2.2
a .

I Settling time, Ts, is time required for the output to reach 98%
of its final value.

I Setting c(Ts) = 0.98, we find that
Ts =

4
a .

Figure 4.5
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Using Testing to Determine Transfer Function

I It is quite often not possible or practical to determine a
system’s transfer function by analytical means.

I In general, gain of system at s = 0 (D.C. gain) is not unity.

I A more general model would be G(s) =
K

s+ a
.

I Step response is thus

C(s) =
K

s(s+ a)
=

K

a
s

�

K

a
s+ a

I We thus have

c(t) =
K

a
(1� e�at)

I How can we experimentally determine the values of K and a?
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Using Testing to Determine Transfer Function - II

I For system to be a first-order system, its unit step response
should have no overshoot and should have a nonzero initial
slope, as in diagram below.

I From diagram, we can see the final value is about 0.72, thus
63% of that is 0.63⇥ 0.72 = 0.45.

I From diagram, the output reaches 0.45 at about ⌧ = 0.13
(time constant).

I We thus have a =
1

⌧
= 7.7.

I We next note that

c(1) =
K

a
(1� e�at)|t!1 =

K

a
I Thus K = a · c(1) =

(7.7)(0.72) = 5.54

I Thus G(s) =
5.54

s+ 7.7
Figure 4.6
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Second-Order Systems

I For first order systems, varying the systems parameters only
changed the speed of the response.

I Form of a second order system we will analyze is
G(s) = b

s2+as+b .

I Changes in these parameters can actually change the form of
the system’s response.

I May see responses similar to first-order system, damped
oscillations, or undamped oscillations.
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Second-Order System Examples

Figure 4.7.
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Second-Order System Examples -II

Figure 4.7.

I Like for first-order system, we want to determine information
about system’s steady state and transient response by
examination.
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Overdamped Response

I For overdamped response, we have a system with two non
equal real poles.

I The unit step response to system below is

C(s) =
9

s(s2 + 9s+ 9)
=

9

s(s+ 7.854)(s+ 1.146)

I From inspection of poles, we know form of system’s response
will be:

c(t) = K1 +K2e
��1t +K3e

��2t

where ��1 = �7.854 and ��2 = �1.146, are our two real
poles.

Figure 4.7.
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Critically Damped Response

I For critically damped response, we have a system with two
equal real poles.

I The unit step response to system below is

C(s) =
9

s(s2 + 6s+ 9)
=

9

s(s+ 3)2
=

K1

s
+

K2

(s+ 3)
+

K3

(s+ 3)2

I From inspection of poles, we know form of system’s response
will be:

c(t) = K1 +K2e
��1t +K3te

��1t

where ��1 = �3 is our pole location.

Figure 4.7.
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Underdamped Response

I For underdamped response, we have a system with two
complex conjugate poles (non zero real and imaginary parts).

I The unit step response to system below is

C(s) =
9

s(s2 + 2s+ 9)
=

9

s(s+ 1 + j
p
8)(s+ 1� j

p
8)

=
K1

s
+

↵+ j�

s+ 1 + j
p
8
+

↵� j�

s+ 1� j
p
8

I Thus the form of system’s response will be:

c(t) = K1 + e��dt[2↵ cos!dt+ 2� sin!dt]

where ��d ± j!d = �1± j
p
8.

Figure 4.7.
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Underdamped Response - II

I For system with poles at s = ��d ± j!d, the real part (�d)
determines the exponential frequency (decay rate) for the
exponential envelope.

I The imaginary part, !d, determines the oscillation frequency
of the sinusoids, and is called the damped frequency of
oscillation.

I Can show that

e��dt[2↵ cos!dt+ 2� sin!dt]

= K4e
��dt cos(!dt� �)

where � = tan�1(�↵) and

K4 =
p
(2↵)2 + (2�)2

Figure 4.8
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Undamped Response

I For undamped response, we have a system with two
imaginary poles (zero real part).

I The unit step response to system below is

C(s) =
9

s(s2 + 9)
=

9

s(s+ j3)(s� j3)
=

K1

s
+

↵+ j�

s+ j3
+

↵� j�

s� j3

I Thus the form of system’s response will be:

c(t) = K1 + e�(0)t[2↵ cos!dt+ 2� sin!dt]

= K1 + 2↵ cos!dt+ 2� sin!dt

= K1 +K4 cos(!dt� �)

I where
±j!d = ±j3.

Figure 4.7

2006-2012 R.J. Leduc 20



Second-order System’s Step Responses

I Critically damped case represents the transition between the
underdamped and overdamped cases.

I Critically damped case is the fastest response without
overshoot.

Figure 4.10.
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General Second-Order Systems

I We now generalize our discussion of second-order systems and
develop specifications to describe the response of the system.

1. The natural frequency, !n, of a second-order system is the
frequency of oscillation of the system with damping removed.

2. The damping ratio of a second-order system is a way to
describe a system’s damped oscillation, independent of time
scale.

We define damping ratio, ⇣, to be

⇣ =
Exponential decay frequency

Natural frequency(rad/sec)
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Deriving Parameters - !n

I We want to rewrite the second-order system shown below in
terms of !n and ⇣

G(s) =
b

s2 + as+ b
(1)

I The quadratic equation tells us the poles are:

s1,2 =
�a±

p
a2 � 4b

2
=

�a

2
±

p
a2 � 4b

2
(2)

I To determine !n, we need an undamped system; thus a = 0,
G(s) = b

s2+b .

I Our poles are thus s1,2 = ±j
p
b, giving !n =

p
b and b = !2

n.
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Deriving Parameters - ⇣

G(s) =
b

s2 + as+ b
s1,2 =

�a

2
±

p
a2 � 4b

2
I For an underdamped system, the poles must have a real part,

� =
�a

2
.

I The exponential decay frequency is equal to the absolute
value of �.

⇣ =
Exponential decay frequency

Natural frequency(rad/sec)
=

|�|
!n

=
a/2

!n
(3)

I We thus have:

a = 2⇣!n (4)

I We can now rewrite our system as

G(s) =
!2
n

s2 + 2⇣!ns+ !2
n

(5)
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Relating Parameters to Poles

I Substituting into the poles equation gives:

s1,2 =
�a

2
±

p
a2 � 4b

2
=

�(2⇣!n)

2
±

p
(2⇣!n)2 � 4!2

n

2

= �⇣!n ± !n

p
⇣2 � 1 (6)

Figure 4.11.
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Relating Parameters to Poles - II

s1,2 = �⇣!n ± !n

p
⇣2 � 1

Figure 4.11.
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Underdamped Second-order Systems

I We are mostly interested in underdamped systems as they
give us the fastest response.

I Need to examine behavior more closely for analysis and design.
I Will now define transient specifications for underdamped

responses.
I The step response is:

C(s) =
!2
n

s(s2 + 2⇣!ns+ !2
n)

=
K1

s
+

K2s+K3

s2 + 2⇣!ns+ !2
n

(7)

I Assuming ⇣ < 1 (ie. underdamped case), partial fractions
gives:

C(s) =
1

s
�

(s+ ⇣!n) +
⇣p

1� ⇣2
!n

p
1� ⇣2

(s+ ⇣!n)2 + !2
n(1� ⇣2)

(8)
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Underdamped Second-order Systems - II

C(s) =
1

s
�

(s+ ⇣!n) +
⇣p

1� ⇣2
!n

p
1� ⇣2

(s+ ⇣!n)2 + !2
n(1� ⇣2)

I We can now use the inverse Laplace transform below that we
derived earlier

L{K1e
�atcos!t+K2e

�atsin!t} =
K1(s+ a) +K2!

(s+ a)2 + !2

I This gives:

c(t) = 1� e�⇣!nt(cos!n

p
1� ⇣2 t+

⇣p
1� ⇣2

sin!n

p
1� ⇣2 t)

= 1� 1p
1� ⇣2

e�⇣!ntcos(!n

p
1� ⇣2 t� �) (9)

where � = tan�1( ⇣p
1�⇣2

).
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Underdamped Second-order Systems - III

c(t) = 1� 1p
1� ⇣2

e�⇣!ntcos(!n

p
1� ⇣2 t� �)

where � = tan�1( ⇣p
1�⇣2

).

I We can now plot the output with the time axis normalized to
the natural frequency.

Figure 4.13.
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Underdamped Response Specifications

Let cfinal = limt!1 c(t).

1. Rise time, Tr, is the time for the output to go from 10%
(0.1cfinal) to 90% (0.9cfinal) of its final value.

2. Peak time, Tp, is the time required to reach the first and
largest peak, cmax.

3. Percent overshoot, %OS, is the percentage that the output
overshoots the final value at t = Tp.

%OS =
cmax � cfinal

cfinal
⇥ 100%

4. Settling time, Ts, is time
required for the output to
reach and stay within ±2% of
cfinal.

Figure 4.14
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Calculating Peak time

I We can determine Tp by di↵erentiating c(t) in equation 9 and
finding the first time it equals zero after t = 0.

L{ċ(t)} = sC(s) =
!2
n

(s2 + 2⇣!ns+ !2
n)

(10)

I As we want in form of L{sinwt}, we complete the square for
the denominator giving

L{ċ(t)} = sC(s) =
!2
n

(s+ ⇣!n)2 + !2
n(1� ⇣2)

=

!np
1�⇣2

!n

p
1� ⇣2

(s+ ⇣!n)2 + !2
n(1� ⇣2)

(11)

I We thus have

ċ(t) =
!np
1� ⇣2

e�⇣!nt sin(!n

p
1� ⇣2 t) (12)
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Calculating Peak time - II

I Setting ċ(t) = 0 gives

!n

p
1� ⇣2 t = n⇡

thus

t =
n⇡

!n

p
1� ⇣2

(13)

I At n = 1, we get first time derivative equals zero after t = 0.
We thus have:

Tp =
⇡

!n

p
1� ⇣2

(14)
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Calculating %OS

I Percent overshoot is: %OS =
cmax�cfinal

cfinal
⇥ 100%

I To determine cmax, we need to evaluate c(Tp) by substituting
equation (14) into equation (9) reproduced below:

c(t) = 1� e�⇣!nt(cos!n

p
1� ⇣2 t+

⇣p
1� ⇣2

sin!n

p
1� ⇣2 t)

c(Tp) = 1� e�⇣⇡/
p

1�⇣2(cos⇡ +
⇣p

1� ⇣2
sin⇡)

= 1 + e�⇣⇡/
p

1�⇣2 (15)

I From equation 9, it is easy to see that c(1) = cfinal = 1.

I Substituting into the %OS formula gives:

%OS =
1 + e�⇣⇡/

p
1�⇣2 � 1

1
⇥ 100%

%OS = e�⇣⇡/
p

1�⇣2 ⇥ 100% (16)
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Calculating %OS -II

%OS = e�⇣⇡/
p

1�⇣2 ⇥ 100%

I However, what if we knew which %OS we wanted?

I We can use the equation above to solve for ⇣ in terms of
%OS. This gives:

⇣ =
� ln(%OS/100)q
⇡2 + ln2(%OS/100)

(17)

Figure 4.15.
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Calculating 2% Settling Time

I Settling time is when the ouput reaches and stays within 2%
of its final value.

I This occurs at latest when the exponential envelope of
equation 9 reaches the value of 0.02. This gives:

1p
1� ⇣2

e�⇣!nt = 0.02 (18)

I Solving for t gives:

e�⇣!nt = 0.02
p

1� ⇣2

�⇣!nt = ln(0.02
p

1� ⇣2)

Ts =
� ln(0.02

p
1� ⇣2)

⇣!n
(19)

Ts ⇡
4

⇣!n
(20)
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Calculating Rise Time

I There does not exist a precise relationship between rise time
and damping ratio.

I Instead, we use a computer and equation 9 to solve for
c(!nt1) = 0.1cfinal and c(!nt2) = 0.9cfinal, normalizing for
the natural frequency.

I We then calculate the normalized rize time, !nTr, as
!nTr = (!nt2)� (!nt1)

I Then, we can use charts below to solve for Tr given a specific
⇣ and !n.

Figure 4.16.
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System Response with Additional Poles

I In last section, we analyzed second-order systems.

I The formulas we have derived for percent overshoot, settling
time, and peak time are only directly valid for systems with
two complex poles and no zeros.

I However, sometimes we can approximate a higher-order
system as a second-order system containing the dominant
poles.

I The dominant poles are the two poles farthest to the right.

Figure 4.23.
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System Response with Additional Poles - II

I How far away do the additional poles have to be?.

I Depends on the accuracy you want.

I Text assumes that if a pole is five times more to the left than
the dominant poles, then system is represented by the
dominant poles.

I If above met, you would design using the second-order
approximation, then simulate final system to make sure it
satisfies the design specifications such as %OS, and Ts etc.
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Example Three Pole Systems

I Compare step responses of systems below:

T1(s) =
24.542

s2 + 4s+ 24.542

T2(s) =
10⇥ 24.542

(s+ 10)(s2 + 4s+ 24.542)

T3(s) =
3⇥ 24.542

(s+ 3)(s2 + 4s+ 24.542)

Figure 4.24.
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Justification for Ignoring Nondominant Poles

I As long as the nondominant pole is far enough to the left,
then its contribution to the output will be negligible.

I Easy to see that this will cause it to decay quickly, but what
about its amplitude?

I Consider the third order system below

C(s) =
bc

s(s2 + as+ b)(s+ c)
=

A

s
+

Bs+ C

s2 + as+ b
+

D

s+ c

I If we assume steady state response is unity, and that the
nondominant pole is at s = �c, we can then solve for the
following constants using partial fractions:

A = 1; B =
ca� c2

c2 + b� ca

C =
ca2 � c2a� bc

c2 + b� ca
; D =

�b

c2 + b� ca
(21)
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Justification for Ignoring Nondominant Poles - II

A = 1; B =
ca� c2

c2 + b� ca

C =
ca2 � c2a� bc

c2 + b� ca
; D =

�b

c2 + b� ca

I If we let c ! 1, we find:

A = 1; B = �1

C = �a; D = 0. (22)
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System Response with Zeros

I We now examine systems with Zeros.

I As we saw before, zeros don’t change the type of system, but
can a↵ect the constants found during partial fraction
expansion.

I Consider the system below

G(s) =
(s+ a)

(s+ b)(s+ c)
=

A

s+ b
+

B

s+ c

where by partial fractions we have:

A =
�b+ a

�b+ c
; B =

�c+ a

�c+ b
(23)
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System Response with Zeros -II

A =
�b+ a

�b+ c
; B =

�c+ a

�c+ b

I When the zero is far to the left, it will be much larger than
the poles, thus:

A ⇡ a

�b+ c
; B ⇡ a

�c+ b

I Our system then becomes

G(s) ⇡ a

"
1

�b+c

s+ b
+

1
�c+b

s+ c

#
=

a

(s+ b)(s+ c)
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Nonminium-Phase System

I What if the zero is in the right half plane (ie. a < 0)?

I If C(s) is the response of a system, then after adding zero at
�a, we get:

(s+ a)C(s) = sC(s) + aC(s)

I If the derivative term sC(s) is larger than the scaled response
aC(s), the system will initially follow the derivative in the
wrong direction!

I If we take r(t) = �u(t) as our input, we could get a system
like the one below.

Figure 4.26.
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Pole Zero Cancellations

I Consider the system below:

G(s) =
K(s+ z1)

(s+ p1)(s2 + as+ b)
(24)

I If z1 and p1 are close enough to each other, they can
e↵ectively cancel each other even though they are not exactly
equal.

C(s) =
26.25(s+ 4)

s(s+ 4.01)(s+ 5)(s+ 6)
(25)

=
0.87

s
� 5.3

s+ 5
+

4.4

s+ 6
+

�0.033

s+ 4.01
(26)

⇡ 0.87

s
� 5.3

s+ 5
+

4.4

s+ 6
(27)
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Analysis and Design of Feedback Systems

I Using the block diagram algebra we developed earlier, we can
now apply our second-order system results to feedback
systems.

I Applying feedback reduction, we find that the equivalent
closed-loop transfer function of system on right is

T (s) =
K

s2 + as+K
(28)

Figures 5.6 and 4.14.
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Analysis and Design of Feedback Systems - II

T (s) =
K

s2 + as+K

I As we increase K from zero, the poles of the system will go
from overdamped (0  K < a2

4 ), critically damped (K = a2

4 ),

to underdamped (K > a2

4 ).

s1,2 =
�a

2
±

p
a2 � 4K

2
s1,2 =

�a

2
s1,2 =

�a

2
± j

p
4K � a2

2
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Gain Design for Transient Response

I Design the value for system gain, K, such that the system
response has 10% overshoot.

I Applying feedback reduction, our closed-loop transfer function
becomes

T (s) =
K

s2 + 5s+K
(29)

Figure 5.16.
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Matlab solution to the problem

1 a=5
2 G=zpk ( [ ] , [ 0 �a ] , 1 )
3 pos=10
4 z e t a=�l o g ( pos /100) / s q r t ( p i ˆ2+ l og ( pos /100) ˆ2)
5 K=aˆ2/(4 z e t a ˆ2)
6 Wn=sq r t (K)
7

8 r l o c u s (G)
9 s g r i d ( zeta ,Wn)

10 pause
11

12 Gcl=K G/(1+K G)
13 s t e p ( Gc l )
14 [ y , t ]= s t ep ( Gc l ) ;
15 max( y )
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