profile pic
⌘ '
raccourcis clavier

Also known as Leibniz-Reynolds transport therem

A three-dimensional generalization of Leibniz integral rule

theorem

Consider integrating f=f(x,t)\mathbf{f} = \mathbf{f}(x, t) over time-dependent region Ω(t)\Omega (t) that has boundary Ω(t)\partial \Omega (t) then take derivative w.r.t time:

ddtΩ(t)fdV\frac{d}{dt} \int_{\Omega (t)} \mathbf{f} dV

general form

ddtΩ(t)fdV=Ω(t)ftdV+Ω(t)(vbn)fdA\frac{d}{dt} \int_{\Omega(t)} \mathbf{f} dV = \int_{\Omega (t)} \frac{\partial{\mathbf{f}}}{\partial{t}} dV + \int_{\partial{\Omega (t)}}(\mathbf{v}_b \cdot \mathbf{n}) \mathbf{f} dA

where:

  • n(x,t)\mathbf{n}(\mathbf{x},t) is the outward-pointing unit normal vector
  • x\mathbf{x} is the variable of integrations
  • dVdV and dAdA are volume and surface elements at x\mathbf{x}
  • vb(x,t)\mathbf{v}_b(\mathbf{x},t) is the velocity of the area element.