Singular Value Decomposition VIDEO
X = [ 1 1 ⋯ 1 x 1 x 2 ⋯ x m ⋮ ⋮ ⋮ ⋮ 1 x 1 ⋯ x m ] = U Σ V T = [ 1 1 ⋯ 1 u 1 u 2 ⋯ u n ⋮ ⋮ ⋮ ⋮ 1 1 ⋯ 1 ] [ σ 1 ⋯ ⋯ ⋯ ⋮ σ 2 ⋯ ⋯ ⋮ ⋯ ⋱ ⋯ ⋮ ⋯ ⋯ σ m 0 0 0 0 ] [ ⋮ ⋮ ⋮ ⋮ v 1 v 2 ⋯ v n ⋮ ⋮ ⋮ ⋮ ] T x k ∈ R n U, V : unitary matrices Σ : diagonal matrix \begin{aligned}
X &= \begin{bmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_m \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_1 & \cdots & x_m
\end{bmatrix} = U \Sigma V^T \\
&= \begin{bmatrix}
1 & 1 & \cdots & 1 \\
u_{1} & u_{2} & \cdots & u_n \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
\sigma_1 & \cdots & \cdots & \cdots \\
\vdots & \sigma_2 & \cdots & \cdots \\
\vdots & \cdots & \ddots & \cdots \\
\vdots & \cdots & \cdots & \sigma_m \\
0 & 0 & 0 & 0 \\
\end{bmatrix} {\begin{bmatrix}
\vdots & \vdots & \vdots & \vdots \\
v_{1} & v_{2} & \cdots & v_n \\
\vdots & \vdots & \vdots & \vdots
\end{bmatrix}}^T
\\
\\
x_k &\in \mathbb{R}^n \\
\\
\text{U, V } &: \text{unitary matrices} \\
\Sigma &: \text{diagonal matrix}
\end{aligned} X x k U, V Σ = 1 x 1 ⋮ 1 1 x 2 ⋮ x 1 ⋯ ⋯ ⋮ ⋯ 1 x m ⋮ x m = U Σ V T = 1 u 1 ⋮ 1 1 u 2 ⋮ 1 ⋯ ⋯ ⋮ ⋯ 1 u n ⋮ 1 σ 1 ⋮ ⋮ ⋮ 0 ⋯ σ 2 ⋯ ⋯ 0 ⋯ ⋯ ⋱ ⋯ 0 ⋯ ⋯ ⋯ σ m 0 ⋮ v 1 ⋮ ⋮ v 2 ⋮ ⋮ ⋯ ⋮ ⋮ v n ⋮ T ∈ R n : unitary matrices : diagonal matrix
where [ 1 u 1 ⋮ 1 ] \begin{bmatrix} 1 \\ u_{1} \\ \vdots \\ 1 \end{bmatrix} 1 u 1 ⋮ 1 are “eigen-faces”
U U U is orthonormal, meaning:
U U T = U T U = I n × n V V T = V T V = I m × m Σ : diagonal σ 1 ≥ σ 2 ≥ ⋯ ≥ σ m ≥ 0 \begin{aligned}
U U^T &= U^T U = \mathbb{I}_{n \times n} \\
V V^T &= V^T V = \mathbb{I}_{m \times m} \\
\\
\Sigma &: \text{diagonal} \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0
\end{aligned} U U T V V T Σ = U T U = I n × n = V T V = I m × m : diagonal σ 1 ≥ σ 2 ≥ ⋯ ≥ σ m ≥ 0