profile pic
⌘ '
raccourcis clavier

Assume the transfer function is given by

D(s)=U(s)E(s)=K0s+as+bD(s) = \frac{U(s)}{E(s)} = K_{0} \frac{s+a}{s+b}

difference equation

u(k)=(1bT)u(k1)+K0(aT1)E(k1)+K0e(k)u(k) = (1-bT)u(k-1) + K_{0}(aT-1)E(k-1) + K_{0}e(k)

The corresponding z-transform

U(z)E(z)=K0(aT1)z1+K01+(bT1)z1=K0z+K0(aT1)z+(bT1)=[K0(aT1)+zK0]/[z+(bT1)]\begin{aligned} \frac{U(z)}{E(z)} &= \frac{K_{0}(aT-1)z^{-1} + K_{0}}{1+(bT-1)z^{-1}} = \frac{K_{0}z + K_{0}(aT-1)}{z+(bT-1)} \\ &=[K_{0}(aT-1) + zK_{0}]/[z+(bT-1)] \end{aligned}

z-transform of difference equation

example: Given D(s)=as+aD(s) = \frac{a}{s+a}, u(kT)=u(k)u(kT) = u(k)

U(s)(s+a)=aE(s)U(s)(s+a) = aE(s) (Laplace transform) gives u(k+1)u(k)T+au(k)=ae(k)\frac{u(k+1)-u(k)}{T} + au(k) = a e(k)

difference equation is u(k+1)=(1aT)u(k)+aTe(k)u(k+1) = (1-aT)u(k) + aTe(k)

z-transform is U(z)E(z)=aTz11+(aT1)z1=aTz+(aT1)\frac{U(z)}{E(z)}=\frac{aT z^{-1}}{1+(aT -1)z^{-1}}=\frac{aT}{z+(aT-1)}

discrete equivalent

Consider the example

D(s)=U(s)E(s)=as+aU(s)s=aE(s)aU(s)u(t)=au(t)+ae(t)\begin{aligned} D(s) &= \frac{U(s)}{E(s)} = \frac{a}{s+a} \to U(s)s = aE(s) - aU(s) \\ &\to u^{'}(t) = -au(t) + ae(t) \end{aligned} u(t)=0t[au(τ)+ae(τ)]dτu(t) = \int_0^t [-au(\tau) + ae(\tau)] d \tau

for discrete system

u(kT)=u(kTT)+kTTkT[au(τ)+ae(τ)]dτu(kT) = u(kT - T) + \int_{kT-T}^{kT} [-au(\tau) + ae(\tau)] d \tau

We can use the following approximation methods for the second term from D(z)D(z) to D(s)D(s)

D(s)D(s)rulez-transfer function D(z)D(z)approximationz-plane to s-planestability
as+a\frac{a}{s+a}forwarda(z1)/T+a\frac{a}{(z-1)/T+a}sz1Ts \gets \frac{z-1}{T}zsT+1z \gets sT + 1discrete \to continuous
as+a\frac{a}{s+a}backwarda(z1)/(Tz)+a\frac{a}{(z-1)/(Tz)+a}sz1Tzs \gets \frac{z-1}{Tz}z11Tsz \gets \frac{1}{1-Ts}discrete \gets continuous
as+a\frac{a}{s+a}trapzoida(2/T)[(z1)/(z+1)]+a\frac{a}{(2/T)[(z-1)/(z+1)]+a}s2Tz1z+1s \gets \frac{2}{T} \frac{z-1}{z+1}z1+Ts/21Ts/2z \gets \frac{1+Ts/2}{1-Ts/2}discrete \leftrightarrow continuous