profile pic
⌘ '
raccourcis clavier

see also some OS-related for real-time system, Control systems, or Frequency Domain

time domain versus frequency domain

use Laplace transform to convert from time domain to frequency domain

Consider the following circuit:

RCdvo(t)dt+vo(t)=vi(t)vi(t)=1\begin{aligned} \text{RC} \frac{d v_o(t)}{dt} + v_o(t) &= v_i(t) \\ v_i(t) &= 1 \end{aligned}

Laplace transform

graph LR
    Diff{{differential equations}} -- "Laplace transform" --> Algebraic{{algebraic equations}} -- "inverse Laplace transform" --> End{{time domain solution}}
L{f(t)}=0f(t)stdt=F(s)\mathcal{L} \{f(t)\} = \int_0^{\infty}f(t)^{-st}dt = F(s) Item no.f(t)F(s)1.δ(t)12.u(t)1s3.tu(t)1s24.tnu(t)n!sn+15.eatu(t)1s+a6.sin(ωt)u(t)ωs2+ω27.cos(ωt)u(t)ss2+ω2\begin{array}{c c c} \hline \text{Item no.} & f(t) & F(s) \\ \hline 1. & \delta(t) & 1 \\ 2. & u(t) & \frac{1}{s} \\ 3. & tu(t) & \frac{1}{s^2} \\ 4. & t^n u(t) & \frac{n!}{s^{n+1}} \\ 5. & e^{-at}u(t) & \frac{1}{s + a} \\ 6. & \sin(\omega t)u(t) & \frac{\omega}{s^2 + \omega^2} \\ 7. & \cos(\omega t)u(t) & \frac{s}{s^2 + \omega^2} \\ \hline \end{array} δ(t)=0,t0,0δ(t)dt=1\delta{(t)} = 0, \quad t \neq 0,\quad \int_0^{\infty}{\delta{(t)}}dt=1

example: Given a unit step function u(t)={0t<01t0u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}

U(s)=L{u(t)}=0u(t)estdt=1sestdtU(s)=1s(01)=1s\begin{aligned} U(s) = \mathcal{L} \{u(t)\} &= \int_{0}^{\infty} u(t) e^{-st} dt = -\frac{1}{s} e^{-st} dt \\ U(s) &= -\frac{1}{s}(0-1) = \frac{1}{s} \end{aligned}

inverse form

L1{F(s)}=12πjlimωσjωσ+jωF(s)estds\mathcal{L}^{-1} \{ F(s) \} = \frac{1}{2\pi j} \lim_{\omega \to \infty} \int_{\sigma-j\omega}^{\sigma+j\omega} F(s) e^{st} \, dsLien vers l'original

derivatives and integral

if L[f(t)]=F(s)\mathcal{L}[f(t)] = F(s) then we have

L[f(t)]=sF(s)f(0)L[0tf(t)dt]=F(s)s\begin{aligned} \mathcal{L}[f^{'}(t)] &= sF(s) -f(0) \\ \mathcal{L}[\int_0^{t}f(t) dt] &= \frac{F(s)}{s} \end{aligned}

For higher derivatives we have L[f(t)]=s2F(s)sf(0)f(0)\mathcal{L}[f^{''}(t)] = s^{2} F(s) - sf(0) - f^{'}(0)

another form of system model

we can replace ss with jwjw

ex: G(jw)=11+jwRCG(jw) = \frac{1}{1+jw \text{RC}}, so G(jw)=11+jwRC=11+(wRC2)|G(jw)| = |\frac{1}{1+jw \text{RC}}| = \frac{1}{\sqrt{1+(w \text{RC}^2)}}

reasoning: we substitute Laplace transform with Fourier transform with s=jws=jw

example for a first-order system

Y(s)=s+2s(s+5)=25s+35(s+5)y(t)=25+35e5ttotal response=forced+natural\begin{aligned} Y(s) &= \frac{s+2}{s(s+5)} = \frac{2}{5s} + \frac{3}{5(s+5)} \\ y(t) &= \frac{2}{5} + \frac{3}{5} e^{-5t} \\[8pt] \because \text{total response} &= \text{forced} + \text{natural} \end{aligned}

stability: total response = natural response + forced response

the output response of a system

  1. natural (transient) response: 35e5t\frac{3}{5} e^{-5t}
  2. forced response (steady-state) response: 25\frac{2}{5}

poles and zeros

zeros and poles generate the amplitude for both forced and natural response

Y(s)=s+2s(s+5)Y(s) = \frac{s+2}{s(s+5)}

s=0,5s=0,-5 are poles and s=2s=-2 are zeros

poles

  • at origin, generated step function
  • at -5 generate transient response e5te^{-5t}

System response

We will consider first-order and second-order system

first-order systems, time constant

"\\usepackage{tikz}\n\\usetikzlibrary{positioning}\n\n\\begin{document}\n\\begin{tikzpicture}[auto, node distance=2cm, >=latex]\n\n% Nodes\n\\node[draw, rectangle, minimum width=3cm, minimum height=1.5cm] (block) {$\\frac{a}{s + a}$};\n\\node[left=1.5cm of block] (input) {$X(s) = \\frac{1}{s}$};\n\\node[right=1.5cm of block] (output) {$Y(s)$};\n\\node[above=0.5cm of block] (G) {$G(s)$};\n\n% Arrows\n\\draw[->] (input) -- (block);\n\\draw[->] (block) -- (output);\n\n\\end{tikzpicture}\n\\end{document}"as+aX(s)=1sY(s)G(s)
source code

Output of a general first-order system is

Y(s)=X(s)G(s)=as(s+a)Y(s) = X(s)G(s) = \frac{a}{s(s+a)}

thus the time domain output is y(t)=1eaty(t) = 1 - e^{-at}

time constant

usually, t=1at=\frac{1}{a}, and y(t)=0.63y(t) = 0.63, hence 63.2% to find the rise time.

response in time domain

rise time TrT_r

TrT_r, time for the waveform to go from 0.1 to 0.8 of its final value

for first order: Tr=2.2aT_r = \frac{2.2}{a}

settling time TsT_s

TsT_s, time for response to reach and stay with 2% of its final value

for first order: Ts=4aT_s = \frac{4}{a}

second-order systems

general order system:

G(s)=bs2+as+bG(s) = \frac{b}{s^{2}+as +b}

Thus the pole for this system:

s1,s2=a+a24b2s_{1},s_{2}= \frac{-a + \sqrt{a^2 - 4b}}{2}

natural frequency

happens when a=0a=0

The transfer function is G(s)=bs2+bG(s)=\frac{b}{s^{2}+b}, and poles will only have imaginary ±jw\pm jw

wn=bw_n = \sqrt{b} is the frequency of oscillation of this system.

in a sense, this is the undamped case:

damping coefficient

complex poles has real part σ=a2\sigma = -\frac{a}{2}

definition

damping ratio is defined as:

ζ=exponential decay frequencynatural frequency=σwn\zeta = \frac{\text{exponential decay frequency}}{\text{natural frequency}} = \frac{|\sigma|}{w_n}

So that a=2ζwna = 2 \zeta w_n

general second order

G(s)=wn2s2+2ζwns+wn2s1,s2=ζwn±wnζ21\begin{aligned} G(s) &= \frac{w_n^2}{s^2 + 2 \zeta w_n s + w_n^2} \\[12pt] s_{1},s_{2} &= - \zeta w_n \pm w_n \sqrt{\zeta^2 - 1} \end{aligned}

observations

ConditionPolespole typeDamping Ratio (ζ\zeta)Natural Response c(t)c(t)
Undamped±jωn\pm j \omega_nimaginaryζ=0\zeta = 0Acos(ωntφ)A \cos (\omega_n t - \varphi)
Underdampedωd±jωd\omega_d \pm j \omega_dcomplex0<ζ<10 < \zeta < 1Ae(σd)tcos(ωdtφ)A e^{(-\sigma_d)t} \cos (\omega_d t - \varphi) where wd=wn1ζ2w_d = w_n \sqrt{1- \zeta^2}
critically dampedσ1\sigma_1realζ=1\zeta = 1Kteσ1tK t e^{\sigma_1 t}
overdampedσ1σ2\sigma_1 \quad \sigma_2realζ>1\zeta > 1K(eσ1t+eσ2t)K (e^{\sigma_1 t} + e^{\sigma_2 t})

underdamped second-order step response

Transfer function C(s)C(s) is given by

C(s)=wn2s(s2+2ζwns+wn2)C(s) = \frac{w_n^2}{s(s^2 + 2 \zeta w_n s + w_n^2)}

response in time-domain via inverse Laplace transform:

c(t)=111ζ2eζwntcos(1ζ2ωnt+φ)c(t) = 1 - \frac{1}{\sqrt{1- \zeta^2}} e^{- \zeta w_n t} \cos (\sqrt{1- \zeta^2}\omega_n t + \varphi)

where φ=tan1(ζ1ζ2)\varphi = \tan^{-1} (\frac{\zeta}{\sqrt{1-\zeta^2}})

peak time TpT_p

time required to reach the first or maximum peak

Tp=πωn1ζ2T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}

percent overshoot

%OS (percent overshoot)

%OS=eζπ/1ζ2×100%\%OS = e^{\zeta \pi / \sqrt{1-\zeta^2}} \times 100 \%Lien vers l'original

or in terms of damping ratio ζ\zeta:

ζ=ln%OS100π2+ln2(%OS100)\zeta = \frac{-\ln \frac{\text{\%OS}}{100}}{\sqrt{\pi^2 + \ln^2(\frac{\text{\%OS}}{100})}}

relations to poles

G(s)=wn2s2+2ζwns+wn2s1,s2=ζwn±wnζ21Tp=πωn1ζ2Ts4ζωn\begin{aligned} G(s) &= \frac{w_n^2}{s^2 + 2 \zeta w_n s + w_n^2} \\[12pt] s_{1},s_{2} &= - \zeta w_n \pm w_n \sqrt{\zeta^2 - 1} \\[8pt] T_p &= \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \\ T_s &\cong \frac{4}{\zeta \omega_n} \end{aligned}
poles of second-order underdamped system
poles of second-order underdamped system
location of polesresponseexamples
Same envelopesystem response
Same frequencysystem response
Same overshootsystem response

same envelope

"\\usepackage{tikz}\n\\usepackage{pgfplots}\n\\pgfplotsset{compat=1.16}\n\n\\begin{document}\n\\begin{tikzpicture}\n \\begin{axis}[\n width=12cm, height=8cm,\n xlabel={$t$ (time)},\n ylabel={Amplitude},\n grid=major,\n legend style={at={(0.5,1.1)}, anchor=north, legend columns=-1},\n xmin=0, xmax=10,\n ymin=-1.2, ymax=1.2\n ]\n % First Transfer Function (Sinusoidal)\n \\addplot[blue, thick, samples=100, domain=0:10]\n {exp(-0.1*x)*sin(deg(2*pi*0.5*x))};\n\n % Second Transfer Function (Envelope with Different Frequency)\n \\addplot[red, dashed, thick, samples=100, domain=0:10]\n {exp(-0.1*x)*sin(deg(2*pi*0.8*x))};\n\n % Envelope (Exponential Decay)\n \\addplot[black, dotted, thick, samples=100, domain=0:10]\n {exp(-0.1*x)};\n\n \\addplot[black, dotted, thick, samples=100, domain=0:10]\n {-exp(-0.1*x)};\n \\end{axis}\n\\end{tikzpicture}\n\\end{document}"012345678910¡1¡0:500:51t(time)Amplitude
source code

same frequency

"\\usepackage{tikz}\n\\usepackage{pgfplots}\n\\pgfplotsset{compat=1.16}\n\n\\begin{document}\n\\begin{tikzpicture}\n \\begin{axis}[\n width=12cm, height=8cm,\n xlabel={$t$ (time)},\n ylabel={Amplitude},\n grid=major,\n legend style={at={(0.5,1.1)}, anchor=north, legend columns=-1},\n xmin=0, xmax=10,\n ymin=-3, ymax=3\n ]\n % First Transfer Function (Higher Amplitude)\n \\addplot[blue, thick, samples=100, domain=0:10]\n {2*sin(deg(2*pi*0.5*x))};\n\n % Second Transfer Function (Lower Amplitude)\n \\addplot[red, dashed, thick, samples=100, domain=0:10]\n {1*sin(deg(2*pi*0.5*x))};\n \\end{axis}\n\\end{tikzpicture}\n\\end{document}"012345678910¡3¡2¡10123t(time)Amplitude
source code

same overshoot

"\\usepackage{tikz}\n\\usepackage{pgfplots}\n\\pgfplotsset{compat=1.16}\n\n\\begin{document}\n\\begin{tikzpicture}\n \\begin{axis}[\n width=12cm, height=8cm,\n xlabel={Time $t$},\n ylabel={Response},\n grid=major,\n legend style={at={(0.5,1.1)}, anchor=north, legend columns=-1},\n xmin=0, xmax=10,\n ymin=0, ymax=2\n ]\n % First System Response\n \\addplot[blue, thick, samples=200, domain=0:10]\n {1 - exp(-0.5*x)*(cos(deg(2*pi*0.5*x)) + 0.1*sin(deg(2*pi*0.5*x)))};\n\n % Second System Response (Same Overshoot, Different Natural Frequency)\n \\addplot[red, dashed, thick, samples=200, domain=0:10]\n {1 - exp(-1*x)*(cos(deg(2*pi*1*x)) + 0.05*sin(deg(2*pi*1*x)))};\n\n % Reference Line for Steady-State Response\n \\addplot[black, dotted, thick] coordinates {(0,1) (10,1)};\n \\end{axis}\n\\end{tikzpicture}\n\\end{document}"01234567891000:511:52TimetResponse
source code
Lien vers l'original

Root locus

reference: slides, and awesome calculator

excerpt from real-time system slides

final value theorem

If a system is stable and has a final constant value, then one can find steady state value without solving for system’s response. Formally:

limtx(t)=lims0sX(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)

sketching root locus

RuleDescription
Number of BranchesNumber of closed-loop poles, or the number of finite open-loop poles = number of finite open-loop zeros
SymmetryAbout the real axis
Start and End PointsStarts at poles of open loop transfer function and ends at finite and infinite open loop zeros
Behaviour at \inftyReal axis: σa=Σfinite polesΣfinite zeros# finite poles - # finite zeros\sigma_a = \frac{\Sigma{\text{finite poles}} - \Sigma{\text{finite zeros}}}{\text{\# finite poles - \# finite zeros}}
Angle: θa=(2k+1)π# finite poles - # finite zeros\theta_a = \frac{(2k+1)\pi}{\text{\# finite poles - \# finite zeros}} where k=0,±1,±2,±3k = 0, \pm 1, \pm 2, \pm 3
Breakaway/Break-in PointsLocated at roots where d[G(s)H(s)]ds=0\frac{d[G(s)H(s)]}{ds} = 0
Lien vers l'original
Control TypeTransfer function T(s)T(s)Key CharacteristicsEffects
Proportional (P)KpGp1+KpGp\frac{K_p G_p}{1 + K_p G_p}Basic control action- Affects speed of response
- Cannot eliminate steady-state error
Integral (I)KIs2+s+KI\frac{K_I}{s^2 + s + K_I}Integrates error over time- Eliminates steady-state error
- Output reaches 1 at steady state
PIKI+sKps2+(1+Kp)s+KI\frac{K_I + sK_p}{s^2 + (1+K_p)s + K_I}Combines P and I- P impacts response speed
- I forces zero steady-state error
Derivative (D)KDs(1+KD)s+1\frac{K_D s}{(1+K_D)s + 1}Based on rate of change- Adds open-loop zero
- Can affect stability
- Provides damping effect

PID control

GC(s)=Kp+KIs+KDsG_C(s) = K_p + \frac{K_I}{s} + K_D s

in time domain:

u(t)=KPe(t)+KI0te(η)dη+KDd(e(t))dtu(t) = K_P e(t) + K_I \int_{0}^{t} e(\eta) d\eta + K_D \frac{d(e(t))}{dt}
ComponentDiscrete-Time Equation
Proportionalu(k)=KPe(k)u(k) = K_P e(k)
Integralu(k)=KITi=1ke(i)u(k) = K_I T \sum_{i=1}^{k} e(i)
Derivativeu(k)=KDT[e(k)e(k1)]u(k) = \frac{K_D}{T}[e(k) - e(k-1)]

approximate of PID controller: u(k)=KPe(k)+KITi=1ne(i)+KDT[e(k)e(k1)]u(k) = K_P e(k) + K_I T \sum_{i=1}^{n} e(i) + \frac{K_D}{T}[e(k) - e(k-1)]

Lien vers l'original

S and Z-transform table

Time Domain x(t)x(t)Laplace Transform X(s)X(s)Z Transform X(z)X(z)
δ(t)={1t=00t=kT,k0\delta(t) = \begin{cases} 1 & t = 0 \\ 0 & t = kT, k \neq 0 \end{cases}1111
δ(tkT)={1t=kT0tkT\delta(t - kT) = \begin{cases} 1 & t = kT \\ 0 & t \neq kT \end{cases}ekTse^{-kTs}zkz^{-k}
u(t)u(t) (unit step)1s\frac{1}{s}zz1\frac{z}{z - 1}
tt1s2\frac{1}{s^2}Tz(z1)2\frac{Tz}{(z - 1)^2}
t2t^22s3\frac{2}{s^3}T2z(z+1)(z1)3\frac{T^2 z(z + 1)}{(z - 1)^3}
eate^{-at}1s+a\frac{1}{s + a}zzeaT\frac{z}{z - e^{-aT}}
1eat1 - e^{-at}as(s+a)\frac{a}{s(s + a)}(1eaT)z(z1)(zeaT)\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}
teatte^{-at}1(s+a)2\frac{1}{(s + a)^2}TzeaT(zeaT)2\frac{Tz e^{-aT}}{(z - e^{-aT})^2}
t2eatt^2 e^{-at}2(s+a)3\frac{2}{(s + a)^3}T2eaTz(z+eaT)(zeaT)3\frac{T^2 e^{-aT} z(z + e^{-aT})}{(z - e^{-aT})^3}
bebtaeatb e^{-bt} - a e^{-at}(ba)s(s+a)(s+b)\frac{(b - a)s}{(s + a)(s + b)}z[z(ba)(beaTaebT)](zeaT)(zebT)\frac{z [ z(b - a) - (b e^{-aT} - a e^{-bT}) ]}{(z - e^{-aT})(z - e^{-bT})}
sinωt\sin \omega tωs2+ω2\frac{\omega}{s^2 + \omega^2}zsinωTz22zcosωT+1\frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}
cosωt\cos \omega tss2+ω2\frac{s}{s^2 + \omega^2}z(zcosωT)z22zcosωT+1\frac{z(z - \cos \omega T)}{z^2 - 2z \cos \omega T + 1}
eatsinωte^{-at} \sin \omega tω(s+a)2+ω2\frac{\omega}{(s + a)^2 + \omega^2}zeaTsinωTz22zeaTcosωT+e2aT\frac{z e^{-aT} \sin \omega T}{z^2 - 2z e^{-aT} \cos \omega T + e^{-2aT}}

Z-transform

reference: examples for z-transform

SequenceTransform
δ(kn)\delta(k - n)znz^{-n}
11zz1\frac{z}{z - 1}
kkz(z1)2\frac{z}{(z - 1)^2}
k2k^2z(z+1)(z1)3\frac{z(z + 1)}{(z - 1)^3}
aka^kzza\frac{z}{z - a}
kakka^kaz(za)2\frac{az}{(z - a)^2}
sinak\sin akzsinaz22zcosa+1\frac{z \sin a}{z^2 - 2z \cos a + 1}
cosak\cos akz(zcosa)z22zcosa+1\frac{z(z - \cos a)}{z^2 - 2z \cos a + 1}
aksinbka^k \sin bkazsinbz22azcosb+a2\frac{az \sin b}{z^2 - 2az \cos b + a^2}
akcosbka^k \cos bkz2azcosbz22azcosb+a2\frac{z^2 - az \cos b}{z^2 - 2az \cos b + a^2}

properties

Linearity: if x(n)=af1(n)+bf2(n)x(n) = af_{1}(n) + bf_{2}(n) then X(z)=aF1(z)+bF2(z)X(z) = aF_{1}(z) + bF_{2}(z)

Time shifting:

Z[x(t)]=X(z)x(kn)=znX(z)x(k+n)=znX(z)\begin{aligned} Z[x(t)] &= X(z) \\ x(k-n) &= z^{-n}X(z) \\ x(k+n) &= z^{n}X(z) \end{aligned}

quantization error

sampling

The idea to convert analog to digital

TT is the sampling period, and 1T\frac{1}{T} is the sampling rate in cycles per second

error=M2n+1\text{error} = \frac{M}{2^{n+1}}

where nn is number of bits used for digitalisation

resolution of A/D converter

minimum value of the output that can be represented as binary number, or M2n\frac{M}{2^n}

sampled data system

reference input rr is the sequence of sample values r(kT)r(kT)

A sampler is a switch that closes every TT seconds:

r(t)=k=0r(kT)δ(tkT)(t>0)r^{*}(t) = \sum_{k=0}^{\infty} r(kT) \delta (t-kT) \quad (t>0)

Transfer function of sampled data:

R(s)=L(r(t))=k=0r(kT)eksTR^{*}(s) = \mathcal{L} (r^{*}(t)) = \sum_{k=0}^{\infty} r(kT) e^{-ksT}

definition

Let z=esTz = e^{sT}, we have the following definition:

z-transform

Z{r(t)}=F(z)=Z(r(t))=k=0r(kT)zkZ \{r(t)\} = F(z) = Z(r^{*}(t)) = \sum_{k=0}^{\infty} r(kT)z^{-k}

zero-order hold

Transfer function of Zero-Order hold

L(u(t)u(tT))=1sesTs\mathcal{L}(u(t) - u(t-T)) = \frac{1}{s} - \frac{e^{sT}}{s}

finding the discrete transfer function

G(s)=s2+4s+3s3+6s2+8sG(s) = \frac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s}

G(s)=s2+4s+3s3+6s2+8s=0.375s+0.25s+2+0.375s+4G(t)=L1(G(s))=0.375+0.25e2t+0.375e4tG(z)=Z(G(t))=0.375zz1+0.25zze2T+0.375zze4T\begin{aligned} G(s) &= \frac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s} = \frac{0.375}{s} + \frac{0.25}{s+2} + \frac{0.375}{s+4} \\ G(t) &= \mathcal{L}^{-1}(G(s)) = 0.375 + 0.25 e^{-2t} + 0.375 e^{-4t} \\ G(z) &= Z(G(t)) = 0.375 \frac{z}{z-1} + 0.25 \frac{z}{z-e^{-2T}} + 0.375 \frac{z}{z-e^{-4T}} \end{aligned}

inverse z-transform

G(z)x(k)G(z) \to x(k)

power series

use: when G(z) is expressed as the ratio of two polynomials in z

G(z)=a0+a1z1+a2z2+G(z) = a_{0} + a_{1} z^{-1} + a_{2} z^{-2} + \ldots

partial fraction

For example: G(z)=z(z1)(z2)=zz1+zz2=k=0(1+2k)zkG(z) = \frac{z}{(z-1)(z-2)} = \frac{-z}{z-1} + \frac{z}{z-2} = \sum_{k=0}^{\infty} (-1 + 2^k)z^{-k}

thus, g(kT)=2k1g(kT) = 2^k-1

stability

systempole location criteria on z-plane
StableAll poles inside unit circle
UnstableAny poles outside unit circle
Marginally StableOne or more poles on unit circle, remaining poles inside unit circle
poles on s-plane
poles on s-plane

mapping from s-plane to z-plane

z=eαT(cosωT+jsinωT)z = e^{\alpha T}(\cos \omega T + j \sin \omega T)

we assume s=α+jωs = \alpha + j \omega

Location on s-planeValue of α\alphaValue of eαTe^{\alpha T}Mapping on z-plane
Imaginary axis (jωj\omega)α=0\alpha = 0eαT=1e^{\alpha T} = 1On unit circle
Right half-planeα>0\alpha > 0eαT>1e^{\alpha T} > 1Outside unit circle
Left half-planeα<0\alpha < 0eαT<1e^{\alpha T} < 1Inside unit circle

final value theorem

definition

If limkx(k)\lim_{k \to \infty}x(k) exists, then the follow exists:

limkx(k)=limz1(z1)X(z)\lim_{k \to \infty} x(k) = \lim_{z \to 1} (z-1) X(z)

root locus on z-plane

  • derive open loop function KGHˉK \bar{GH}
  • Factor numerator and denominator to get open loop zeros and poles
  • Plot roots of 1+KGHˉ=01+K \bar{GH}=0 in z-plane as k varies GH(z)ˉ=N(z)D(z)\bar{GH(z)} = \frac{N(z)}{D(z)}
Lien vers l'original

closed loop system

For determine discrete systems and vice versa.

G(z)G(z) with a Zero-Order hold

G(z)=(1z1)Z[Gp(s)s]=G(z)z1G(z)G(z) = (1-z^{-1}) Z[\frac{G_p(s)}{s}] = G^{*}(z) - z^{-1}G^{*}(z)

example: Find G(z)G(z) if Gp(s)=s+2s+1G_p(s) = \frac{s+2}{s+1}

G(s)=Gp(s)s=2s1s+1g(t)=2et(inverse Laplace transform)g(kT)=2ekTG(z)=2zz1zzeT\begin{aligned} G^{*}(s) &= \frac{G_p(s)}{s} = \frac{2}{s} - \frac{1}{s+1} \\[8pt] g^{*}(t) &= 2 - e^{-t} \quad (\text{inverse Laplace transform}) \\ g^{*}(kT) &= 2 - e^{-kT} \\ G^{*}(z) = \frac{2z}{z-1} - \frac{z}{z-e^{-T}} \end{aligned}

block diagram reduction

a. C(z)=G1(z)G2(z)E(z)C(z) = G_1(z) G_2(z) E(z) b. C(z)=Z[G1(s)G2(s)]E(z)C(z) = Z[G_1(s) G_2(s)]E(z)

Note

The product of G1(s)G2(s)G_1(s)G_2(s) must be evaluated first

model for Open-loop system

The output of open-loop system is

C(z)=G(z)D(z)E(z)C(z) = G(z)D(z)E(z)

closed loop sample data system

E(z)=R(z)Z[G(s)H(s)]E(z)C(z)R(z)=G(z)1+Z[G(s)H(s)]\begin{aligned} E(z) &= R(z) - Z[G(s)H(s)]E(z) \\[12pt] &\because \frac{C(z)}{R(z)} = \frac{G(z)}{1+Z[G(s)H(s)]} \end{aligned}

using digital sensing device

C(z)=Z[G(s)R(s)]1+Z(G(s)H(s))C(z) = \frac{Z[G(s)R(s)]}{1+Z(G(s)H(s))}

using digital controller

C(z)R(z)=G1(z)G1(z)1+G1(z)Z(G2(s)H(s))\frac{C(z)}{R(z)} = \frac{G_{1}(z)G_{1}(z)}{1+G_{1}(z)Z(G_{2}(s)H(s))}

time response

T(z)=G(z)1+G(z)T(z) = \frac{G(z)}{1+G(z)}Lien vers l'original
System TypeTransfer FunctionDiagram
BasisC(z)R(z)=G(z)1+Z[G(s)H(s)]\frac{C(z)}{R(z)} = \frac{G(z)}{1+Z[G(s)H(s)]}
w/ digital sensing deviceC(z)=Z[G(s)R(s)]1+Z(G(s)H(s))C(z) = \frac{Z[G(s)R(s)]}{1+Z(G(s)H(s))}
w/ digital controllerC(z)R(z)=G1(z)G1(z)1+G1(z)Z(G2(s)H(s))\frac{C(z)}{R(z)} = \frac{G_{1}(z)G_{1}(z)}{1+G_{1}(z)Z(G_{2}(s)H(s))}

Continuous Control System to Digital Control System

Assume the transfer function is given by

D(s)=U(s)E(s)=K0s+as+bD(s) = \frac{U(s)}{E(s)} = K_{0} \frac{s+a}{s+b}

difference equation

u(k)=(1bT)u(k1)+K0(aT1)E(k1)+K0e(k)u(k) = (1-bT)u(k-1) + K_{0}(aT-1)E(k-1) + K_{0}e(k)

The corresponding z-transform

U(z)E(z)=K0(aT1)z1+K01+(bT1)z1=K0z+K0(aT1)z+(bT1)=[K0(aT1)+zK0]/[z+(bT1)]\begin{aligned} \frac{U(z)}{E(z)} &= \frac{K_{0}(aT-1)z^{-1} + K_{0}}{1+(bT-1)z^{-1}} = \frac{K_{0}z + K_{0}(aT-1)}{z+(bT-1)} \\ &=[K_{0}(aT-1) + zK_{0}]/[z+(bT-1)] \end{aligned}

z-transform of difference equation

example: Given D(s)=as+aD(s) = \frac{a}{s+a}, u(kT)=u(k)u(kT) = u(k)

U(s)(s+a)=aE(s)U(s)(s+a) = aE(s) (Laplace transform) gives u(k+1)u(k)T+au(k)=ae(k)\frac{u(k+1)-u(k)}{T} + au(k) = a e(k)

difference equation is u(k+1)=(1aT)u(k)+aTe(k)u(k+1) = (1-aT)u(k) + aTe(k)

z-transform is U(z)E(z)=aTz11+(aT1)z1=aTz+(aT1)\frac{U(z)}{E(z)}=\frac{aT z^{-1}}{1+(aT -1)z^{-1}}=\frac{aT}{z+(aT-1)}

discrete equivalent

Consider the example

D(s)=U(s)E(s)=as+aU(s)s=aE(s)aU(s)u(t)=au(t)+ae(t)\begin{aligned} D(s) &= \frac{U(s)}{E(s)} = \frac{a}{s+a} \to U(s)s = aE(s) - aU(s) \\ &\to u^{'}(t) = -au(t) + ae(t) \end{aligned} u(t)=0t[au(τ)+ae(τ)]dτu(t) = \int_0^t [-au(\tau) + ae(\tau)] d \tau

for discrete system

u(kT)=u(kTT)+kTTkT[au(τ)+ae(τ)]dτu(kT) = u(kT - T) + \int_{kT-T}^{kT} [-au(\tau) + ae(\tau)] d \tau

We can use the following approximation methods for the second term from D(z)D(z) to D(s)D(s)

D(s)D(s)rulez-transfer function D(z)D(z)approximationz-plane to s-planestability
as+a\frac{a}{s+a}forwarda(z1)/T+a\frac{a}{(z-1)/T+a}sz1Ts \gets \frac{z-1}{T}zsT+1z \gets sT + 1discrete \to continuous
as+a\frac{a}{s+a}backwarda(z1)/(Tz)+a\frac{a}{(z-1)/(Tz)+a}sz1Tzs \gets \frac{z-1}{Tz}z11Tsz \gets \frac{1}{1-Ts}discrete \gets continuous
as+a\frac{a}{s+a}trapzoida(2/T)[(z1)/(z+1)]+a\frac{a}{(2/T)[(z-1)/(z+1)]+a}s2Tz1z+1s \gets \frac{2}{T} \frac{z-1}{z+1}z1+Ts/21Ts/2z \gets \frac{1+Ts/2}{1-Ts/2}discrete \leftrightarrow continuous
Lien vers l'original