Transfer function for angular speed:

A1+τs\frac{A}{1 + \tau s}

The input signal that begins at time t0t_{0} and its minimum and maximum values are given by umin,umaxu_\text{min}, u_\text{max}.

The resulting output signal is initially at y0y_{0} and eventually settles down for a steady state value of yssy_\text{ss}.

The steady state gain AA is given by:

A=yssy0umaxumin=yuA = \frac{y_\text{ss} - y_0}{u_\text{max} - u_\text{min}} = \frac{\triangle y}{\triangle u}

Time constant τ\tau is time required for output to increase from initial value to 0.632×y0.632 \times \triangle y

Let t1t_1 is time when change in output is 0.632×y0.632 \times \triangle y:

y(t1)=0.632×(yssy0)+y0τ=t1t0\begin{aligned} y(t_{1}) &= 0.632 \times (y_\text{ss} -y_{0}) + y_{0} \\[8pt] \tau &= t_{1} - t_{0} \end{aligned}

find the transfer function

y=3Vv=8.2852.454=5.831rad/sA=5.8313=1.9436666667rad/starget velocity=2.454+0.6325.831=6.139192rad/sτ0.029secs\begin{align*} \triangle y &= 3V \\[6pt] \triangle v &= 8.285 - 2.454 = 5.831 \text{rad/s} \\[6pt] A &= \frac{5.831}{3} = 1.9436666667 \text{rad/s} \\[12pt] \text{target velocity} &= 2.454 + 0.632 * 5.831 = 6.139192 \text{rad/s} \\[8pt] \tau \approx 0.029 \text{secs} \end{align*}

note: reach it at around 5.029 sec

graphs

see simulink file

proportional P=350π180P = 350 * \frac{\pi}{180}