profile pic
⌘ '
raccourcis clavier

See also slides

model-based

  • conclusions from the model of the system

Components:

  • decision variables
  • constraints
  • objectives
  • functions: mathematical function that determines the objective as a function of decision variable
minxϕ=f(x) Objective function s.t Constraints h(x)=0 Equality constraints g(x)0 Inequality constraints xlbxxub Bounds\begin{align*} \min_{x} \phi = f(x) & &\leftarrow &\space \text{Objective function} \\\ \text{s.t} & &\leftarrow &\space \text{Constraints} \\\ h(x) = 0 & &\leftarrow &\space \text{Equality constraints} \\\ g(x) \leq 0 & &\leftarrow &\space \text{Inequality constraints} \\\ x_{lb} \leq x \leq x_{ub} & &\leftarrow &\space \text{Bounds} \end{align*}

decision variables

discrete.

limited to a fixed or countable set of values

xDaI={1,2,3,4,5}x_{\mathcal{D}} \mid a \in \mathcal{I} = \lbrace 1, 2, 3, 4, 5 \rbrace

continuous.

can take any value within a range

xCRx_{\mathcal{C}} \subset \mathcal{R}

constraints

  • physical limitations: cannot purchase negative raw materials

  • model assumptions: assumptions about the system

domain of a definition

a decision upper and lower bounds (xUx^{\mathcal{U}} and xLx^{\mathcal{L}})

Properties

  • Active/binding:  xg(x)=0\exists \space x^{*} \mid g(x^{*}) = 0
  • Inactive:  xg(x)<0\exists \space x^{*} \mid g(x^{*}) < 0

graphing models

feasible set of an optimization model

The collection of decision variables that satisfy all constraints

S{x:g(x)0,h(x)=0,xLxxU}\mathcal{S} \triangleq \lbrace x : g(x) \leq 0, h(x) = 0, x^L \leq x \leq x^U \rbrace

outcomes

optimal value

the optimal value ϕ\phi^{*} is the value of the objective at the optimum(s)

ϕϕ(x)\phi^{*} \triangleq \phi(x^{*})

Constraints satisfy, but it is not binding

Linear optimization problems

minx1,x2 ϕ=50x1+37.5x2s.t 0.3x1+0.4x22000 0.4x1+0.15x21500 0.2x1+0.35x21000, x19000 x26000 xi0\begin{aligned} \underset{x_1,x_2}{\min} \space \phi &= 50x_1 + 37.5x_2 \\ &\text{s.t} \\\ 0.3x_1 + 0.4x_2 &\geq 2000 \\\ 0.4x_1 + 0.15x_2 &\geq 1500 \\\ 0.2x_1 + 0.35x_2 &\leq 1000, \\\ x_1 &\leq 9000 \\\ x_2 &\leq 6000 \\\ x_i &\geq 0 \end{aligned}

See also Linear Optimization