profile pic
⌘ '
raccourcis clavier

certain differentiable vector fields can be resolved into sum of an irrotational vector field and solenoidal vector vield

definition

for a vector field FC1(V,Rn)\mathbf{F} \in C^1 (V, \mathbb{R}^n) defined on a domain VRnV \subseteq \mathbb{R}^n, a Helmholtz decomposition is a pair of vector fields GC1(V,Rn)\mathbf{G} \in C^1 (V, \mathbb{R}^n) and RC1(V,Rn)\mathbf{R} \in C^1 (V, \mathbb{R}^n) such that:

F(r)=G(r)+R(r)G(r)=Φ(r)R(r)=0\begin{aligned} \mathbf{F}(\mathbf{r}) &= \mathbf{G}(\mathbf{r}) + \mathbf{R}(\mathbf{r}) \\ \mathbf{G}(\mathbf{r}) &= - \nabla \Phi (\mathbf{r}) \\ \nabla \cdot \mathbf{R}(\mathbf{r}) &= 0 \end{aligned}

Here ΦC2(V,R)\Phi \in C^2(V, \mathbb{R}) is a scalar potential, Φ\nabla \Phi is its gradient, and R\nabla \cdot \mathbf{R} is the divergence of the vector field RR