profile pic
⌘ '
raccourcis clavier

definition

A epigraph or supergraph of a function f:X[,]f: X \to [-\infty, \infty] valued in the extended real numbers [,]=R{±}[-\infty, \infty]=\mathbb{R} \cup \{\pm \infty\} is the following set:

epif={(x,r)X×R:rf(x)}\text{epi} f = \{(x,r) \in X \times \mathbb{R} : r \ge f(x)\}

which consists of all points in the Cartesian product X×RX \times \mathbb{R} lying on or above the function’s graph.

A strict epigraph epiSf\text{epi}_S f is the set of points in X×RX \times \mathbb{R} lying strictly above its graph.