correctness of BestTwoSum

Let TS(start, end)=(L[i],L[j])(L[i]+L[j]=w)(startijend)\text{TS(start, end)} = {(L[i], L[j]) \mid (L[i] + L[j] = w) \land (\text{start} \leq i \leq j \leq end)}

result := empty bag
i, j := 0, N-1
while i < j do
  if L[i] + L[j] = w then
    add (L[i], L[j]) to result
    i,j := i+1,j-1
  else if L[i] + L[j] < w then
    i := i+1
  else
    j := j-1
return result /* result = TS(L, 0, N-1) */

selection sort.

Input: L[0...N) of N values
For pos := 0 to N-2 do
  min := pos
  For i := pos+1 to N-1 do
    if L[i] < L[min] then
      min := i
  swap L[pos] and L[min]

Comparison: pos=0N2(N1pos)=Θ(N2)\sum_{\text{pos}=0}^{N-2}(N-1-pos) = \Theta(N^2), changes 2(N1)=Θ(N)2(N-1) = \Theta(N)

insertion sort.

Input: L[0...N) of N values
For pos := 1 to N-1 do
  v := L[pos]
  p := pos
  while p > 0 and v< L[p-1] do
    L[p] := L[p-1]
    p := p-1
  L[p] := v

Comparison: pos=pos=1N1pos=N(N1)2\leq \text{pos} = \sum_{\text{pos}=1}^{N-1} pos = \frac{N(N-1)}{2}, changes pos=pos=1N1(1+pos)=N(N1)2+N1\leq \text{pos} = \sum_{\text{pos}=1}^{N-1}(1+pos) = \frac{N(N-1)}{2} + N - 1

merge sort.

  • divide-and-conquer

A lower bound for general-purpose sorting

assume we have a list of L[0N)L \lbrack 0 \dots N) of NN distinct values

SS: All possible lists LL that are treated the same by A such that C:L[i]<L[j]C: L[i] < L[j]

Question

Can we improve mergesort O(N) memory?

quick sort.

Complexity of quicksort

T(N)={1if N1; T(N1)+Nif N>1T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\\ T(N-1) + N & \text{if } N > 1 \end{cases}

recursion tree: