profile pic
⌘ '
raccourcis clavier

For determine discrete systems and vice versa.

G(z)G(z) with a Zero-Order hold

G(z)=(1z1)Z[Gp(s)s]=G(z)z1G(z)G(z) = (1-z^{-1}) Z[\frac{G_p(s)}{s}] = G^{*}(z) - z^{-1}G^{*}(z)

example: Find G(z)G(z) if Gp(s)=s+2s+1G_p(s) = \frac{s+2}{s+1}

G(s)=Gp(s)s=2s1s+1g(t)=2et(inverse Laplace transform)g(kT)=2ekTG(z)=2zz1zzeT\begin{aligned} G^{*}(s) &= \frac{G_p(s)}{s} = \frac{2}{s} - \frac{1}{s+1} \\[8pt] g^{*}(t) &= 2 - e^{-t} \quad (\text{inverse Laplace transform}) \\ g^{*}(kT) &= 2 - e^{-kT} \\ G^{*}(z) = \frac{2z}{z-1} - \frac{z}{z-e^{-T}} \end{aligned}

block diagram reduction

a. C(z)=G1(z)G2(z)E(z)C(z) = G_1(z) G_2(z) E(z) b. C(z)=Z[G1(s)G2(s)]E(z)C(z) = Z[G_1(s) G_2(s)]E(z)

Note

The product of G1(s)G2(s)G_1(s)G_2(s) must be evaluated first

model for Open-loop system

The output of open-loop system is

C(z)=G(z)D(z)E(z)C(z) = G(z)D(z)E(z)

closed loop sample data system

E(z)=R(z)Z[G(s)H(s)]E(z)C(z)R(z)=G(z)1+Z[G(s)H(s)]\begin{aligned} E(z) &= R(z) - Z[G(s)H(s)]E(z) \\[12pt] &\because \frac{C(z)}{R(z)} = \frac{G(z)}{1+Z[G(s)H(s)]} \end{aligned}

using digital sensing device

C(z)=Z[G(s)R(s)]1+Z(G(s)H(s))C(z) = \frac{Z[G(s)R(s)]}{1+Z(G(s)H(s))}

using digital controller

C(z)R(z)=G1(z)G1(z)1+G1(z)Z(G2(s)H(s))\frac{C(z)}{R(z)} = \frac{G_{1}(z)G_{1}(z)}{1+G_{1}(z)Z(G_{2}(s)H(s))}

time response

T(z)=G(z)1+G(z)T(z) = \frac{G(z)}{1+G(z)}