first order.

second order.

G(s)=bs2+as+bG(s) = \frac{b}{s^2 + as + b}

C(s)=9s(s2+9s+9)C(s) = \frac{9}{s(s^2+9s+9)}

over-damped response.

For inspect of poles, form of system’s response

c(t)=K1+K2eσ1t+K3eσ2tc(t) = K_1 + K_2e^{-\sigma_1 t} + K_3e^{-\sigma_2 t}

critically damped response.

System’s response:

c(t)=K1+K2eσ1t+K3teσ2tc(t) = K_1 + K_2e^{-\sigma_1 t} + K_3te^{-\sigma_2 t}

where σ1=3-\sigma_1=-3 is our pole location.

under-damped response.

Unit step response to the system:

C(s)=K1s+α+jβs+1+j8+αjβs+1j8C(s) = \frac{K_1}{s} + \frac{\alpha + j\beta}{s+1+j\sqrt{8}}+ \frac{\alpha - j\beta}{s+1-j\sqrt{8}}

Thus the form of system’s response:

c(t)=K1+eσdt[2αcosωdt+2βsinωdt]c(t) = K_1 + e^{-\sigma_dt} \lbrack 2\alpha \cos \omega_d t+ 2\beta \sin \omega_d t \rbrack eσdt[2αcosωdt+2βsinωdt]=K4eσdtcos(ωdtϕ)e^{-\sigma_dt} \lbrack 2\alpha \cos \omega_d t+ 2\beta \sin \omega_d t \rbrack = K_4 e^{-\sigma_d t} \cos (\omega_dt - \phi)

where ϕ=tan1(βα)\phi = \tan^{-1}(\frac{\beta}{\alpha}) and K4=(2α)2+(2β)2K_4=\sqrt{(2\alpha)^2 + (2\beta)^2}

general second-order systems

  • nature frequency ωn\omega_n: frequency of oscillation of the system
  • damping ratio ζ=exponential decay frequencynatural frequency (rad/sec)\zeta = \frac{\text{exponential decay frequency}}{\text{natural frequency (rad/sec)}}

Deriving ζ\zeta:

  • For under-damped system, the poles are σ=a2\sigma = \frac{-a}{2}

%OS (percent overshoot)

%OS=eζπ/1ζ2×100%\%OS = e^{\zeta \pi / \sqrt{1-\zeta^2}} \times 100 \%