profile pic
⌘ '
raccourcis clavier

See also problem

Problemè 1

In Lab 4, We used a PD compensator to control our ball and beam apparatus. The transfer function of our PD compensator was as follows:

GC(s)=KDs+KPG_C(s) = K_Ds + K_P

However, we did not use the compensator in this form. The transfer function we used in lab was as follows:

GC(s)=KC(s+z)G_C(s) = K_C(s+z)

Question

Solve for KCK_C and zz in terms of KPK_P and KDK_D.

Given

GC(s)=KC(s+z) GC(s)=KDs+KP\begin{align*} G_C(s) &= K_C(s+z) \\\ G_C(s) &= K_Ds + K_P \end{align*}

Or it can be written as:

(KCKD)s+KCzKP=0(K_C - K_D)s + K_Cz - K_P = 0

To solve for the characteristic equation, we can set the coefficients of ss and the constant term to zero:

KCKD=0 KCzKP=0\begin{align*} K_C - K_D &= 0 \\\ K_Cz - K_P &= 0 \end{align*}

Thus, we can solve for KCK_C and zz as follows:

KC=KD z=KPKC=KPKD\begin{align*} K_C &= K_D \\\ z &= \frac{K_P}{K_C} = \frac{K_P}{K_D} \end{align*}

Problemè 2

Given that the transfer function of our Ball and Beam plant used in the previous lab is as follows:

G(s)=0.419s2G(s) = \frac{0.419}{s^2}

And given that the controller is applied to the plant in cascade configuration, find:

2.a

Static error constant for position (position constant)

This is a Type-2 system, thus position constant Kp=K_p = \infty

2.b

Static error constant for velocity (velocity constant)

Velocity constant Kv=lims0sG(s)=lims00.419ss2=K_v = \lim_{s\to 0} sG(s) = \lim_{s\to 0} \frac{0.419s}{s^2} = \infty

2.c

Static error constant for acceleration (acceleration constant)

Acceleration constant Ka=lims0s2G(s)=lims00.419s2s2=0.419K_a = \lim_{s\to 0} s^2G(s) = \lim_{s\to 0} \frac{0.419s^2}{s^2} = 0.419

2.d

Steady-state error for a step input u(t)u(t)

For a step input R(s)=1sR(s) = \frac{1}{s}, the steady-state error is given by:

ess=lims0R(s)1+KpG(s)=lims01/s1+=0e_{ss} = \lim_{s\to 0} \frac{R(s)}{1+K_pG(s)} = \lim_{s\to 0} \frac{1/s}{1+\infty} = 0

2.e

Steady-state error for a ramp input tu(t)tu(t)

For a ramp input R(s)=1s2R(s) = \frac{1}{s^2}, the steady-state error is given by:

ess=lims0sR(s)1+KvG(s)=lims0s/s21+0.419=10.4192.39e_{ss} = \lim_{s\to 0} \frac{sR(s)}{1+K_vG(s)} = \lim_{s\to 0} \frac{s/s^2}{1+0.419} = \frac{1}{0.419} \approx 2.39

2.f

Steady-state error for a parabolic input t2u(t)t^2u(t)

For a parabolic input R(s)=1s3R(s) = \frac{1}{s^3}, the steady-state error is given by:

ess=lims0s2R(s)1+KaG(s)=lims0s2/s31+0.419=10.4192.39e_{ss} = \lim_{s\to 0} \frac{s^2R(s)}{1+K_aG(s)} = \lim_{s\to 0} \frac{s^2/s^3}{1+0.419} = \frac{1}{0.419} \approx 2.39

Problemè 3

We will be augmenting our controller to include an integrator. The transfer function of our new PID compensator will be as follows;

GC(s)=KDs+KP+KIsG_C(s) = K_Ds + K_P + \frac{K_I}{s}

Given that the transfer function for our plant has not changed, and given that this controller is also applied to the plant in cascade configuration.

The closed-loop transfer function is

Y(s)R(s)=G(s)GC(s)1+G(s)GC(s)=0.419s2(KDs+KP+KIs)1+0.419s2(KDs+KP+KIs)=0.419(KDs+KP+KIs)s2+0.419(KDs+KP+KIs)\frac{Y(s)}{R(s)} = \frac{G(s)G_C(s)}{1+G(s)G_C(s)} = \frac{\frac{0.419}{s^2} * (K_Ds + K_P + \frac{K_I}{s})}{1+\frac{0.419}{s^2} * (K_Ds + K_P + \frac{K_I}{s})} = \frac{0.419*(K_Ds + K_P + \frac{K_I}{s})}{s^2 + 0.419*(K_Ds + K_P + \frac{K_I}{s})}

3.a

Static error constant for position (position constant)

KP=lims0GC(s)G(s)=lims00.419s2(KDs+KP+KIs)=K_P = \lim_{s\to 0} G_C(s)G(s) = \lim_{s\to 0} \frac{0.419}{s^2}(K_Ds+K_P+\frac{K_I}{s}) = \infty

3.b

Static error constant for velocity (velocity constant)

KV=lims0sGC(s)G(s)=lims0s0.419s2(KDs+KP+KIs)=0.419KD+0.419KPs+0.419KIs2=0.419KIK_V = \lim_{s\to 0} sG_C(s)G(s) = \lim_{s\to 0} s\frac{0.419}{s^2}(K_Ds+K_P+\frac{K_I}{s}) = 0.419K_D + \frac{0.419K_P}{s} + \frac{0.419K_I}{s^2} = 0.419K_I

3.c

Static error constant for acceleration (acceleration constant)

KA=lims0s2GC(s)G(s)=lims0s20.419s2(KDs+KP+KIs)=0.419KPK_A = \lim_{s\to 0} s^2G_C(s)G(s) = \lim_{s\to 0} s^2\frac{0.419}{s^2}(K_Ds+K_P+\frac{K_I}{s}) = 0.419K_P

3.d

Steady-state error for a step input u(t)u(t)

For a step input R(s)=1sR(s) = \frac{1}{s}, the steady-state error is given by:

ess=lims0sR(s)1C(s)R(s)=lims0s1/s1C(s)R(s)=11+KP=0e_{ss} = \lim_{s\to 0} \frac{sR(s)}{1-\frac{C(s)}{R(s)}} = \lim_{s\to 0} s\frac{1/s}{1-\frac{C(s)}{R(s)}} = \frac{1}{1+K_P} = 0

3.e

Steady-state error for a ramp input tu(t)tu(t)

For a ramp input R(s)=1s2R(s) = \frac{1}{s^2}, the steady-state error is given by:

ess=lims0s2R(s)1C(s)R(s)=lims0s2/s21C(s)R(s)=1KV=10.419KIe_{ss} = \lim_{s\to 0} \frac{s^2R(s)}{1-\frac{C(s)}{R(s)}} = \lim_{s\to 0} \frac{s^2/s^2}{1-\frac{C(s)}{R(s)}} = \frac{1}{K_V} = \frac{1}{0.419K_I}

3.f

Steady-state error for a parabolic input t2u(t)t^2u(t)

For a parabolic input R(s)=1s3R(s) = \frac{1}{s^3}, the steady-state error is given by:

ess=lims0s3R(s)1C(s)R(s)=lims0s3/s31C(s)R(s)=1KA=10.419KPe_{ss} = \lim_{s\to 0} \frac{s^3R(s)}{1-\frac{C(s)}{R(s)}} = \lim_{s\to 0} \frac{s^3/s^3}{1-\frac{C(s)}{R(s)}} = \frac{1}{K_A} = \frac{1}{0.419K_P}

Problemè 4

Ideally you want your controller design to reject a step disturbance input at D(s)D(s). This means that in the steady state for D(s)=1sD(s) = \frac{1}{s}, the output Y(s)Y(s) is unchanged.

4.a

Ignoring the input R(s)R(s), what is the transfer function E(s)D(s)\frac{E(s)}{D(s)} in terms of G1(s)G_1(s) and G2(s)G_2(s)?

To find the transfer function E(s)D(s)\frac{E(s)}{D(s)}, then the transfer function E(s)D(s)\frac{E(s)}{D(s)} is given by:

E(s)D(s)=G1(s)G2(s)1+G1(s)G2(s)\frac{E(s)}{D(s)}=\frac{G_1(s)G_2(s)}{1+G_1(s)G_2(s)}

4.b

For G1(s)=KC(s+z)G_1(s) = K_C(s+z) and G2(s)=0.419s2G_2(s) = \frac{0.419}{s^2} what is the steady state error resulting from step inputs R(s)=AsR(s) = \frac{A}{s} and D(s)=BsD(s) = \frac{B}{s}

The steady-state error to step input R(s)=AsR(s) = \frac{A}{s} is given by:

ess(R)=lims0As(11+L(s))e_{ss}(R) = \lim_{s\to 0} \frac{A}{s}(\frac{1}{1+L(s)})

with L(s)=G1(s)G2(s)=0.419KC(s+z)s2L(s) = G_1(s)G_2(s) = \frac{0.419K_C(s+z)}{s^2}

ess(R)=lims0As(11+0.419KC(s+z)s2)=A0.419KCe_{ss}(R) = \lim_{s\to 0} \frac{A}{s}(\frac{1}{1+\frac{0.419K_C(s+z)}{s^2}}) = \frac{A}{0.419K_C}

The steady-state error to step input D(s)=BsD(s) = \frac{B}{s} is given by: ess(D)=B0.419KCe_{ss}(D) = \frac{B}{0.419K_C}

Thus, the total steady-state error is ess=ess(R)+ess(D)=A+B0.419KCe_{ss} = e_{ss}(R) + e_{ss}(D) = \frac{A+B}{0.419K_C}

4.c

For G1(s)=KDs+KP+KIsG_1(s) = K_Ds + K_P + \frac{K_I}{s} and G2(s)=0.419s2G_2(s) = \frac{0.419}{s^2} what is the steady state error resulting from step inputs R(s)=AsR(s) = \frac{A}{s} and D(s)=BsD(s) = \frac{B}{s}

L(s)=G1(s)G2(s)=0.419(KDs+KP+KIs)s2=0.419KDs2+0.419KPs+0.419KIs3L(s) = G_1(s)G_2(s) = \frac{0.419(K_Ds + K_P + \frac{K_I}{s})}{s^2} = \frac{0.419K_Ds^2 + 0.419K_Ps + 0.419K_I}{s^3}

The steady-state error to step input R(s)=AsR(s) = \frac{A}{s} is zero:

ess(R)=lims0As(11+L(s))=lims0As(11+0.419KDs2+0.419KPs+0.419KIs3)=0e_{ss}(R) = \lim_{s\to 0} \frac{A}{s}(\frac{1}{1+L(s)}) = \lim_{s\to 0} \frac{A}{s}(\frac{1}{1+\frac{0.419K_Ds^2 + 0.419K_Ps + 0.419K_I}{s^3}}) = 0