Introduction and Notes

Open-loop versus closed-loop

Transient and steady-state response

Stability

  • Total response = Natural response + Forced response
    • Natural response (homogeneous solution): evolution of system due to initial conditions
    • Forced response (particular solution): evolution of system due to input

Control objects:

  • Stabilize the system
  • Produce the desired transient response
  • Decrease/eliminate steady-state error
  • Make system “robust” to withstand disturbances and variations in parameters
  • Achieve optimal performance

Block diagram representation of a system

stateDiagram-v2
  direction LR

  [*] --> System: r(t)
  System --> End: c(t)

System as linear differential equation

Laplace Transform

graph LR
    Diff{{differential equations}} -- "Laplace transform" --> Algebraic{{algebraic equations}} -- "inverse Laplace transform" --> End{{time domain solution}}
L{f(t)}=0f(t)stdt=F(s)\mathcal{L} \{f(t)\} = \int_0^{\infty}f(t)^{-st}dt = F(s) Item no.f(t)F(s)1.δ(t)12.u(t)1s3.tu(t)1s24.tnu(t)n!sn+15.eatu(t)1s+a6.sin(ωt)u(t)ωs2+ω27.cos(ωt)u(t)ss2+ω2\begin{array}{c c c} \hline \text{Item no.} & f(t) & F(s) \\ \hline 1. & \delta(t) & 1 \\ 2. & u(t) & \frac{1}{s} \\ 3. & tu(t) & \frac{1}{s^2} \\ 4. & t^n u(t) & \frac{n!}{s^{n+1}} \\ 5. & e^{-at}u(t) & \frac{1}{s + a} \\ 6. & \sin(\omega t)u(t) & \frac{\omega}{s^2 + \omega^2} \\ 7. & \cos(\omega t)u(t) & \frac{s}{s^2 + \omega^2} \\ \hline \end{array} δ(t)=0,t0,0δ(t)dt=1\delta{(t)} = 0, \quad t \neq 0,\quad \int_0^{\infty}{\delta{(t)}}dt=1

Properties

f(0): initial condition just before 0Linearity:L{k1f1(t)±k2f2(t)}=k1F1(s)±k2F2(s)Differentiation:L{df(t)dt}=sF(s)f(0)L{d2f(t)dt2}=s2F(s)sf(0)f(0)Frequency Shifting:L{eatf(t)}=F(s+a)\begin{aligned} & f(0-)\text{: initial condition just before 0} \\[12pt] & \textbf{Linearity:} \quad \mathcal{L}\{k_1 f_1(t) \pm k_2 f_2(t)\} = k_1 F_1(s) \pm k_2 F_2(s) \\[12pt] & \textbf{Differentiation:} \\ & \quad \mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0^-) \\ & \quad \mathcal{L}\left\{\frac{d^2f(t)}{dt^2}\right\} = s^2 F(s) - sf(0^-) - f'(0^-) \\[12pt] & \textbf{Frequency Shifting:} \quad \mathcal{L}\{e^{-at}f(t)\} = F(s + a) \\ \end{aligned}

Transfer function

nthn^{th} order linear, time-invariant (LTI) differential equation:

andnc(t)dtn+an1dn1c(t)dtn1++a0c(t)=bmdmr(t)dtm+bm1dm1r(t)dtm1++b0r(t)a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \cdots + a_0 c(t) = b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \cdots + b_0 r(t)

takes Laplace transform from both side

ansnC(s)+an1sn1C(s)++a0C(s) and init terms for c(t)=bmsmR(s)+bm1sm1R(s)++b0R(s) and init terms for r(t)\begin{aligned} & a_n s^n C(s) + a_{n-1} s^{n-1} C(s) + \cdots + a_0 C(s) \text{ and init terms for } c(t) \\ & = b_m s^m R(s) + b_{m-1} s^{m-1} R(s) + \cdots + b_0 R(s) \text{ and init terms for } r(t) \\ \end{aligned}

assume initial conditions are zero

(ansn+an1sn1++a0)C(s)=(bmsm+bm1sm1++b0)R(s)C(s)R(s)=G(s)=bmsm+bm1sm1++b0ansn+an1sn1++a0\begin{aligned} (a_n s^n + a_{n-1} s^{n-1} + \cdots + a_0)C(s) &= (b_m s^m + b_{m-1} s^{m-1} + \cdots + b_0)R(s) \\[8pt] \frac{C(s)}{R(s)} &= G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_0} \end{aligned}

Transfer function

G(s)=C(s)R(s)G(s)=\frac{C(s)}{R(s)}

Q: G(s)=1S+2G(s) = \frac{1}{S+2}. Input: u(t)u(t). What is y(t)y(t) ?

Y(s)=G(s)u(s)Y(s)=1s(s+2)=As+Bs+2=12s12(s+2)y(t)=12(1e2t)u(t)\begin{aligned} Y(s) &= G(s)\cdot u(s) \rightarrow Y(s)=\frac{1}{s(s+2)} = \frac{A}{s} + \frac{B}{s+2} = \frac{1}{2\cdot{s}} - \frac{1}{2\cdot{(s+2)}} \\ y(t) &= -\frac{1}{2}(1-e^{-2t})u(t) \end{aligned}

Inverse Laplace transform

L1{F(s)}=12πjlimωσjωσ+jωF(s)estds\mathcal{L}^{-1} \{ F(s) \} = \frac{1}{2\pi j} \lim_{\omega \to \infty} \int_{\sigma-j\omega}^{\sigma+j\omega} F(s) e^{st} \, ds

Partial fraction expansion

F(s)=N(s)D(s)N(s):mth order polynomial in sD(s):nth order polynomial in s\begin{aligned} F(s) &= \frac{N(s)}{D(s)} \\[8pt] N(s) &: m^{th} \text{ order polynomial in } s \\ D(s) &: n^{th} \text{ order polynomial in } s \\ \end{aligned}

Decomposition of N(s)D(s)\frac{N(s)}{D(s)}

  1. Divide if improper: N(s)D(s)\frac{N(s)}{D(s)} such that degree of N(s)degree of D(s)\text{degree of }N(s) \leq \text{degree of } D(s) such that N(s)D(s)=a polynomial +N1(s)D(s)\frac{N(s)}{D(s)} = \text{a polynomial } + \frac{N_1(s)}{D(s)}
  2. Factor Denominator: into factor form (ps+q)m and (as2+bs+c)n(ps+q)^m \text{ and } (as^2+bs+c)^n
  3. Linear Factors: (ps+q)m(ps+q)^m such that: j=1mAj(ps+q)j\sum_{j=1}^{m}\frac{A_j}{(ps+q)^j}
  4. Quadratic Factors: (as2+bs+c)n(as^2+bs+c)^n such that j=1nBjs+Cj(as2+bs+c)j\sum_{j=1}^{n}{\frac{B_j s+C_j}{(as^2+bs+c)^j}}
  5. Determine Unknown

Stability analysis using Root of D(s)D(s)

roots of D(s)D(s)

roots of D(s)D(s) as poles

G(s)=N(s)D(s)=N(s)j=1n(s+pj)=j=1nAjs+pjG(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{\prod_{j=1}^{n}(s+p_j)} = \sum_{j=1}^{n}{\frac{A_j}{s+p_j}}

pip_i can be imaginary

Solving for g(t)g(t) gives

g(t)=j=1nL1{Aj(s+pj)}=j=1nAjepjtg(t) = \sum_{j=1}^{n}{\mathcal{L}^{-1}\{\frac{A_j}{(s+p_j)}\}} = \sum_{j=1}^{n}{A_je^{-p_jt}}

stability analysis

Important

If σi>0\sigma_i > 0 then pole is in the left side of imaginary plane, and system is ==stable ==

Complex root

For poles at s=σi±jωs=\sigma_i \pm j\omega we get

α+jβs+σi+jωi+αjβs+σijωi\frac{\alpha + j\beta}{s + \sigma_i + j\omega_i} + \frac{\alpha - j\beta}{s + \sigma_i - j\omega_i}

Wants to be on LHP for time-function associated with ss plane to be stable

Impedance of Inductor

Z(s)=V(s)I(s)=LsZ(s) = \frac{V(s)}{I(s)} = Ls

since the voltage-current relation for an inductor is v(t)=Ldi(t)dtv(t) = L\frac{di(t)}{dt}

Impedance of Capacitor

Z(s)=V(s)I(s)=1CsZ(s) = \frac{V(s)}{I(s)} = \frac{1}{Cs}

since the voltage-current relation for a capacitor is v(t)=1C0ti(τ)dτv(t) = \frac{1}{C} \int_0^{t}{i(\tau) d\tau}